ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

The Advent of Generative Chemistry

Cite this: ACS Med. Chem. Lett. 2020, 11, 8, 1496–1505
Publication Date (Web):July 14, 2020
https://doi.org/10.1021/acsmedchemlett.0c00088
Copyright © 2020 American Chemical Society

    Article Views

    3689

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)
    Supporting Info (2)»

    Abstract

    Abstract Image

    Generative adversarial networks (GANs), first published in 2014, are among the most important concepts in modern artificial intelligence (AI). Bridging deep learning and game theory, GANs are used to generate or “imagine” new objects with desired properties. Since 2016, multiple GANs with reinforcement learning (RL) have been successfully applied in pharmacology for de novo molecular design. Those techniques aim at a more efficient use of the data and a better exploration of the chemical space. We review recent advances for the generation of novel molecules with desired properties with a focus on the applications of GANs, RL, and related techniques. We also discuss the current limitations and challenges in the new growing field of generative chemistry.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsmedchemlett.0c00088.

    • Key features of AI-based models designed for de novo molecular generation which have been published in peer-reviewed journals (PDF)

    • Glossary containing the definition of key technical terms commonly used within the field of AI/ML (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 50 publications.

    1. Yan Ivanenkov, Bogdan Zagribelnyy, Alex Malyshev, Sergei Evteev, Victor Terentiev, Petrina Kamya, Dmitry Bezrukov, Alex Aliper, Feng Ren, Alex Zhavoronkov. The Hitchhiker’s Guide to Deep Learning Driven Generative Chemistry. ACS Medicinal Chemistry Letters 2023, 14 (7) , 901-915. https://doi.org/10.1021/acsmedchemlett.3c00041
    2. Po-Yu Kao, Ya-Chu Yang, Wei-Yin Chiang, Jen-Yueh Hsiao, Yudong Cao, Alex Aliper, Feng Ren, Alán Aspuru-Guzik, Alex Zhavoronkov, Min-Hsiu Hsieh, Yen-Chu Lin. Exploring the Advantages of Quantum Generative Adversarial Networks in Generative Chemistry. Journal of Chemical Information and Modeling 2023, 63 (11) , 3307-3318. https://doi.org/10.1021/acs.jcim.3c00562
    3. Emma P. Tysinger, Brajesh K. Rai, Anton V. Sinitskiy. Can We Quickly Learn to “Translate” Bioactive Molecules with Transformer Models?. Journal of Chemical Information and Modeling 2023, 63 (6) , 1734-1744. https://doi.org/10.1021/acs.jcim.2c01618
    4. Yang Yu, Junhong Huang, Hu He, Jing Han, Geyan Ye, Tingyang Xu, Xianqiang Sun, Xiumei Chen, Xiaoming Ren, Chunlai Li, Huijuan Li, Wei Huang, Yangyang Liu, Xinjuan Wang, Yongzhi Gao, Nianhe Cheng, Na Guo, Xibo Chen, Jianxia Feng, Yuxia Hua, Chong Liu, Guoyun Zhu, Zhi Xie, Lili Yao, Wenge Zhong, Xinde Chen, Wei Liu, Hailong Li. Accelerated Discovery of Macrocyclic CDK2 Inhibitor QR-6401 by Generative Models and Structure-Based Drug Design. ACS Medicinal Chemistry Letters 2023, 14 (3) , 297-304. https://doi.org/10.1021/acsmedchemlett.2c00515
    5. Yan A. Ivanenkov, Daniil Polykovskiy, Dmitry Bezrukov, Bogdan Zagribelnyy, Vladimir Aladinskiy, Petrina Kamya, Alex Aliper, Feng Ren, Alex Zhavoronkov. Chemistry42: An AI-Driven Platform for Molecular Design and Optimization. Journal of Chemical Information and Modeling 2023, 63 (3) , 695-701. https://doi.org/10.1021/acs.jcim.2c01191
    6. Miquel Duran-Frigola, Marko Cigler, Georg E. Winter. Advancing Targeted Protein Degradation via Multiomics Profiling and Artificial Intelligence. Journal of the American Chemical Society 2023, 145 (5) , 2711-2732. https://doi.org/10.1021/jacs.2c11098
    7. Brian Goldman, Steven Kearnes, Trevor Kramer, Patrick Riley, W. Patrick Walters. Defining Levels of Automated Chemical Design. Journal of Medicinal Chemistry 2022, 65 (10) , 7073-7087. https://doi.org/10.1021/acs.jmedchem.2c00334
    8. Eugene Lin, Chieh-Hsin Lin, Hsien-Yuan Lane. De Novo Peptide and Protein Design Using Generative Adversarial Networks: An Update. Journal of Chemical Information and Modeling 2022, 62 (4) , 761-774. https://doi.org/10.1021/acs.jcim.1c01361
    9. Jannis Born, Tien Huynh, Astrid Stroobants, Wendy D. Cornell, Matteo Manica. Active Site Sequence Representations of Human Kinases Outperform Full Sequence Representations for Affinity Prediction and Inhibitor Generation: 3D Effects in a 1D Model. Journal of Chemical Information and Modeling 2022, 62 (2) , 240-257. https://doi.org/10.1021/acs.jcim.1c00889
    10. Wendy L. Williams, Lingyu Zeng, Tobias Gensch, Matthew S. Sigman, Abigail G. Doyle, Eric V. Anslyn. The Evolution of Data-Driven Modeling in Organic Chemistry. ACS Central Science 2021, 7 (10) , 1622-1637. https://doi.org/10.1021/acscentsci.1c00535
    11. Josiah Roberts, Julia R. S. Bursten, Chad Risko. Genetic Algorithms and Machine Learning for Predicting Surface Composition, Structure, and Chemistry: A Historical Perspective and Assessment. Chemistry of Materials 2021, 33 (17) , 6589-6615. https://doi.org/10.1021/acs.chemmater.1c00538
    12. John A. Keith, Valentin Vassilev-Galindo, Bingqing Cheng, Stefan Chmiela, Michael Gastegger, Klaus-Robert Müller, Alexandre Tkatchenko. Combining Machine Learning and Computational Chemistry for Predictive Insights Into Chemical Systems. Chemical Reviews 2021, 121 (16) , 9816-9872. https://doi.org/10.1021/acs.chemrev.1c00107
    13. Gergely M. Makara, László Kovács, István Szabó, Gábor Pőcze. Derivatization Design of Synthetically Accessible Space for Optimization: In Silico Synthesis vs Deep Generative Design. ACS Medicinal Chemistry Letters 2021, 12 (2) , 185-194. https://doi.org/10.1021/acsmedchemlett.0c00540
    14. Manuel Glaser, Julia Ritterhof, Patrick Most, Rebecca C. Wade. Wird KI neue Medikamente gegen Herzkrankheiten hervorbringen?. Aktuelle Kardiologie 2023, 12 (06) , 450-458. https://doi.org/10.1055/a-2131-2843
    15. Goran Mauša, Marko Njirjak, Erik Otović, Daniela Kalafatovic. Configurable soft computing-based generative model: The search for catalytic peptides. MRS Advances 2023, 11 https://doi.org/10.1557/s43580-023-00629-8
    16. Cefe López. Artificial Intelligence and Advanced Materials. Advanced Materials 2023, 35 (23) https://doi.org/10.1002/adma.202208683
    17. Maged Nasser, Umi Kalsom Yusof, Naomie Salim. Deep Learning Based Methods for Molecular Similarity Searching: A Systematic Review. Processes 2023, 11 (5) , 1340. https://doi.org/10.3390/pr11051340
    18. Anastasiia V. Sadybekov, Vsevolod Katritch. Computational approaches streamlining drug discovery. Nature 2023, 616 (7958) , 673-685. https://doi.org/10.1038/s41586-023-05905-z
    19. Michael Muller, Lydia B Chilton, Anna Kantosalo, Q. Vera Liao, Mary Lou Maher, Charles Patrick Martin, Greg Walsh. GenAICHI 2023: Generative AI and HCI at CHI 2023. 2023, 1-7. https://doi.org/10.1145/3544549.3573794
    20. Fernando Delgado-Licona, Milad Abolhasani. Research Acceleration in Self‐Driving Labs: Technological Roadmap toward Accelerated Materials and Molecular Discovery. Advanced Intelligent Systems 2023, 5 (4) https://doi.org/10.1002/aisy.202200331
    21. Absar Talat, Asad U. Khan. Artificial intelligence as a smart approach to develop antimicrobial drug molecules: A paradigm to combat drug-resistant infections. Drug Discovery Today 2023, 28 (4) , 103491. https://doi.org/10.1016/j.drudis.2023.103491
    22. Feng Ren, Xiao Ding, Min Zheng, Mikhail Korzinkin, Xin Cai, Wei Zhu, Alexey Mantsyzov, Alex Aliper, Vladimir Aladinskiy, Zhongying Cao, Shanshan Kong, Xi Long, Bonnie Hei Man Liu, Yingtao Liu, Vladimir Naumov, Anastasia Shneyderman, Ivan V. Ozerov, Ju Wang, Frank W. Pun, Daniil A. Polykovskiy, Chong Sun, Michael Levitt, Alán Aspuru-Guzik, Alex Zhavoronkov. AlphaFold accelerates artificial intelligence powered drug discovery: efficient discovery of a novel CDK20 small molecule inhibitor. Chemical Science 2023, 14 (6) , 1443-1452. https://doi.org/10.1039/D2SC05709C
    23. Shikha Mallick, Sahely Bhadra. CDGCN: Conditional de novo Drug Generative Model Using Graph Convolution Networks. 2023, 104-119. https://doi.org/10.1007/978-3-031-29119-7_7
    24. Xiaopeng Xu, Juexiao Zhou, Chen Zhu, Qing Zhan, Zhongxiao Li, Ruochi Zhang, Yu Wang, Xingyu Liao, Xin Gao. Optimization of binding affinities in chemical space with generative pre-trained transformer and deep reinforcement learning. F1000Research 2023, 12 , 757. https://doi.org/10.12688/f1000research.130936.1
    25. Satvik Tripathi, Alisha Isabelle Augustin, Adam Dunlop, Rithvik Sukumaran, Suhani Dheer, Alex Zavalny, Owen Haslam, Thomas Austin, Jacob Donchez, Pushpendra Kumar Tripathi, Edward Kim. Recent advances and application of generative adversarial networks in drug discovery, development, and targeting. Artificial Intelligence in the Life Sciences 2022, 2 , 100045. https://doi.org/10.1016/j.ailsci.2022.100045
    26. Andrew E Blanchard, John Gounley, Debsindhu Bhowmik, Mayanka Chandra Shekar, Isaac Lyngaas, Shang Gao, Junqi Yin, Aristeidis Tsaris, Feiyi Wang, Jens Glaser. Language models for the prediction of SARS-CoV-2 inhibitors. The International Journal of High Performance Computing Applications 2022, 36 (5-6) , 587-602. https://doi.org/10.1177/10943420221121804
    27. Camille Bilodeau, Wengong Jin, Tommi Jaakkola, Regina Barzilay, Klavs F. Jensen. Generative models for molecular discovery: Recent advances and challenges. WIREs Computational Molecular Science 2022, 12 (5) https://doi.org/10.1002/wcms.1608
    28. Frank W. Pun, Bonnie Hei Man Liu, Xi Long, Hoi Wing Leung, Geoffrey Ho Duen Leung, Quinlan T. Mewborne, Junli Gao, Anastasia Shneyderman, Ivan V. Ozerov, Ju Wang, Feng Ren, Alexander Aliper, Evelyne Bischof, Evgeny Izumchenko, Xiaoming Guan, Ke Zhang, Bai Lu, Jeffrey D. Rothstein, Merit E. Cudkowicz, Alex Zhavoronkov. Identification of Therapeutic Targets for Amyotrophic Lateral Sclerosis Using PandaOmics – An AI-Enabled Biological Target Discovery Platform. Frontiers in Aging Neuroscience 2022, 14 https://doi.org/10.3389/fnagi.2022.914017
    29. Ruben Laplaza, Simone Gallarati, Clemence Corminboeuf. Genetic Optimization of Homogeneous Catalysts. Chemistry–Methods 2022, 2 (6) https://doi.org/10.1002/cmtd.202100107
    30. Sagorika Nag, Anurag T. K. Baidya, Abhimanyu Mandal, Alen T. Mathew, Bhanuranjan Das, Bharti Devi, Rajnish Kumar. Deep learning tools for advancing drug discovery and development. 3 Biotech 2022, 12 (5) https://doi.org/10.1007/s13205-022-03165-8
    31. Michael Muller, Lydia B Chilton, Anna Kantosalo, Charles Patrick Martin, Greg Walsh. GenAICHI: Generative AI and HCI. 2022, 1-7. https://doi.org/10.1145/3491101.3503719
    32. R.S.K. Vijayan, Jan Kihlberg, Jason B. Cross, Vasanthanathan Poongavanam. Enhancing preclinical drug discovery with artificial intelligence. Drug Discovery Today 2022, 27 (4) , 967-984. https://doi.org/10.1016/j.drudis.2021.11.023
    33. Addis S. Fuhr, Bobby G. Sumpter. Deep Generative Models for Materials Discovery and Machine Learning-Accelerated Innovation. Frontiers in Materials 2022, 9 https://doi.org/10.3389/fmats.2022.865270
    34. Yuemin Bian, Xiang-Qun Xie. Artificial Intelligent Deep Learning Molecular Generative Modeling of Scaffold-Focused and Cannabinoid CB2 Target-Specific Small-Molecule Sublibraries. Cells 2022, 11 (5) , 915. https://doi.org/10.3390/cells11050915
    35. William J. Godinez, Eric J. Ma, Alexander T. Chao, Luying Pei, Peter Skewes-Cox, Stephen M. Canham, Jeremy L. Jenkins, Joseph M. Young, Eric J. Martin, W. Armand Guiguemde. Design of potent antimalarials with generative chemistry. Nature Machine Intelligence 2022, 4 (2) , 180-186. https://doi.org/10.1038/s42256-022-00448-w
    36. Ferruccio Palazzesi, Alfonso Pozzan. Deep Learning Applied to Ligand-Based De Novo Drug Design. 2022, 273-299. https://doi.org/10.1007/978-1-0716-1787-8_12
    37. Hua Zhao, Aibo Wang, Ying Fan, . Research on the Identification and Evaluation of Aerobics Movements Based on Deep Learning. Scientific Programming 2021, 2021 , 1-10. https://doi.org/10.1155/2021/6433260
    38. Andrew E. Blanchard, Christopher Stanley, Debsindhu Bhowmik. Using GANs with adaptive training data to search for new molecules. Journal of Cheminformatics 2021, 13 (1) https://doi.org/10.1186/s13321-021-00494-3
    39. José Jiménez-Luna, Francesca Grisoni, Nils Weskamp, Gisbert Schneider. Artificial intelligence in drug discovery: recent advances and future perspectives. Expert Opinion on Drug Discovery 2021, 16 (9) , 949-959. https://doi.org/10.1080/17460441.2021.1909567
    40. W. Patrick Walters, Regina Barzilay. Critical assessment of AI in drug discovery. Expert Opinion on Drug Discovery 2021, 16 (9) , 937-947. https://doi.org/10.1080/17460441.2021.1915982
    41. Kuan Lee, Ann Yang, Yen-Chu Lin, Daniel Reker, Gonçalo J.L. Bernardes, Tiago Rodrigues. Combating small-molecule aggregation with machine learning. Cell Reports Physical Science 2021, 2 (9) , 100573. https://doi.org/10.1016/j.xcrp.2021.100573
    42. Michael A. Skinnider, R. Greg Stacey, David S. Wishart, Leonard J. Foster. Chemical language models enable navigation in sparsely populated chemical space. Nature Machine Intelligence 2021, 3 (9) , 759-770. https://doi.org/10.1038/s42256-021-00368-1
    43. Jintae Kim, Sera Park, Dongbo Min, Wankyu Kim. Comprehensive Survey of Recent Drug Discovery Using Deep Learning. International Journal of Molecular Sciences 2021, 22 (18) , 9983. https://doi.org/10.3390/ijms22189983
    44. Rustam Zhumagambetov, Ferdinand Molnár, Vsevolod A. Peshkov, Siamac Fazli. Transmol: repurposing a language model for molecular generation. RSC Advances 2021, 11 (42) , 25921-25932. https://doi.org/10.1039/D1RA03086H
    45. Małgorzata Z. Makoś, Niraj Verma, Eric C. Larson, Marek Freindorf, Elfi Kraka. Generative adversarial networks for transition state geometry prediction. The Journal of Chemical Physics 2021, 155 (2) https://doi.org/10.1063/5.0055094
    46. Ghanshyam Pilania. Machine learning in materials science: From explainable predictions to autonomous design. Computational Materials Science 2021, 193 , 110360. https://doi.org/10.1016/j.commatsci.2021.110360
    47. Youzhong Liu, Thomas De Vijlder, Wout Bittremieux, Kris Laukens, Wouter Heyndrickx. Current and future deep learning algorithms for tandem mass spectrometry (MS/MS)‐based small molecule structure elucidation. Rapid Communications in Mass Spectrometry 2021, 48 https://doi.org/10.1002/rcm.9120
    48. Connor W. Coley. Defining and Exploring Chemical Spaces. Trends in Chemistry 2021, 3 (2) , 133-145. https://doi.org/10.1016/j.trechm.2020.11.004
    49. Varnavas D. Mouchlis, Antreas Afantitis, Angela Serra, Michele Fratello, Anastasios G. Papadiamantis, Vassilis Aidinis, Iseult Lynch, Dario Greco, Georgia Melagraki. Advances in De Novo Drug Design: From Conventional to Machine Learning Methods. International Journal of Molecular Sciences 2021, 22 (4) , 1676. https://doi.org/10.3390/ijms22041676
    50. Douglas B. Kell, Soumitra Samanta, Neil Swainston. Deep learning and generative methods in cheminformatics and chemical biology: navigating small molecule space intelligently. Biochemical Journal 2020, 477 (23) , 4559-4580. https://doi.org/10.1042/BCJ20200781

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect