ACS Publications. Most Trusted. Most Cited. Most Read
Synthesis and Preclinical Evaluation of a Bispecific PSMA-617/RM2 Heterodimer Targeting Prostate Cancer
My Activity

Figure 1Loading Img
  • Open Access
Letter

Synthesis and Preclinical Evaluation of a Bispecific PSMA-617/RM2 Heterodimer Targeting Prostate Cancer
Click to copy article linkArticle link copied!

  • Christos Liolios*
    Christos Liolios
    Division of Radiopharmaceutical Chemistry, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
    Radiochemical Studies Laboratory, INRASTES, N.C.S.R. “Demokritos”, Agia Paraskevi Attikis, 15310 Athens, Greece
    Institute of Pharmaceutical Research & Technology (IFET), 18th km of Marathonos Avenue, 15351 Pallini, Attica, Greece
    Department of Nursing & Department of Physiotherapy, School of Health and Caring Sciences, University of West Attica, Agiou Spyridonos, 12243, Egaleo, Greece
    *Email: [email protected]
  • Danai Bouziotis
    Danai Bouziotis
    Radiochemical Studies Laboratory, INRASTES, N.C.S.R. “Demokritos”, Agia Paraskevi Attikis, 15310 Athens, Greece
  • Wiebke Sihver
    Wiebke Sihver
    Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328 Dresden, Germany
  • Martin Schäfer
    Martin Schäfer
    Division of Radiopharmaceutical Chemistry, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
  • George Lambrinidis
    George Lambrinidis
    Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis−Zografou, 15771 Athens, Greece
  • Evangelia-Alexandra Salvanou
    Evangelia-Alexandra Salvanou
    Radiochemical Studies Laboratory, INRASTES, N.C.S.R. “Demokritos”, Agia Paraskevi Attikis, 15310 Athens, Greece
  • Ulrike Bauder-Wüst
    Ulrike Bauder-Wüst
    Division of Radiopharmaceutical Chemistry, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
  • Martina Benesova
    Martina Benesova
    Division of Radiopharmaceutical Chemistry, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
  • Klaus Kopka
    Klaus Kopka
    Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328 Dresden, Germany
    Faculty of Chemistry and Food Chemistry, School of Science, Technical University Dresden, Raum 413 Bergstr. 66, 01069 Dresden, Germany
    More by Klaus Kopka
  • Antonios Kolocouris
    Antonios Kolocouris
    Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis−Zografou, 15771 Athens, Greece
  • Penelope Bouziotis
    Penelope Bouziotis
    Radiochemical Studies Laboratory, INRASTES, N.C.S.R. “Demokritos”, Agia Paraskevi Attikis, 15310 Athens, Greece
Open PDFSupporting Information (1)

ACS Medicinal Chemistry Letters

Cite this: ACS Med. Chem. Lett. 2024, 15, 11, 1970–1978
Click to copy citationCitation copied!
https://doi.org/10.1021/acsmedchemlett.4c00324
Published October 18, 2024

Copyright © 2024 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY 4.0 .

Abstract

Click to copy section linkSection link copied!

Prostate-specific membrane antigen (PSMA) and gastrin-releasing peptide receptor (GRPR) have been used for diagnostic molecular imaging/therapy of prostate cancer (PCa). To address tumor heterogeneity, we synthesized and evaluated a bispecific PSMA/GRPR ligand (3) combining PSMA-617 (1) and the GRPR antagonist RM2 (2) with the radiometal chelator DOTA. 3 was radiolabeled with 68Ga ([68Ga]Ga-3) and 177Lu ([177Lu]Lu-3). [68Ga]Ga-3 was tested in the following PCa cell lines for receptor affinity, time kinetic cell-binding/specificity, and cell-internalization: PC-3 and LNCaP. Compared to the monomers (1 and 2), ligand 3 showed specific cell binding, similar receptor affinities, and higher lipophilicity, while its internalization rates and cell-binding were superior. Docking calculations showed that 3 can have binding interactions of PSMA-617 (1) inside the PSMA receptor funnel and RM2 (2) inside the GRPR. In vivo biodistribution studies for [68Ga]Ga-3 showed dual targeting for PSMA(+) and GRPR(+) tumors and higher tumor uptake, faster pharmacokinetic, and lower kidney uptake compared to 1 and 2

This publication is licensed under

CC-BY 4.0 .
  • cc licence
  • by licence
Copyright © 2024 The Authors. Published by American Chemical Society
The most prevalent cancer among men globally is prostate cancer (PCa), with consistently high rates of mortality associated with the disease. (1−3) The prostate-specific membrane antigen (PSMA) (4−7) and gastrin-releasing peptide receptor (GRPR) (8−14) are two targets that have been utilized for the design of numerous diagnostic and therapeutic ligands, as well as for theranostic applications in nuclear medicine (NM). (15) PSMA or glutamate carboxypeptidase II (GCPII) is a binuclear zinc metallopeptidase protein expressed in normal prostate cells as a truncated form (PSM′) lacking the intracellular and transmembrane domains of PSMA (16) and in PCa cells as a membrane protein, expressed on the cell surface, which eventually is overexpressed in high-grade and metastatic PCa. (6,17) However, a decrease or loss of PSMA expression has been observed, which is often linked to the progression of PCa from an androgen-dependent to an androgen-independent stage. Additionally, there are reports of increased PSMA expression associated with androgen deprivation therapies. (18,19) Two radiotracers, [68Ga]Ga-PSMA-11 and PSMA-617 (1, Scheme 1) (vipivotide tetraxetan), radiolabeled with 68Ga for imaging and with 177Lu (β-particle therapy) or 225Ac (α-particle therapy) for endoradio-therapeutic applications have tipped the scale in favor of PSMA as a target. (14,20−24) [68Ga]Ga-PSMA-11 and [177Lu]Lu-PSMA-617 (EU approval 2022) are currently used for the diagnosis and treatment of PSMA-positive metastatic castration-resistant prostate cancer.
The membrane protein GRPR or bombesin receptor subtype 2 (BB2R), a G-coupled protein receptor (GPCR), has been also considered as a target for PCa, especially for locally recurrent PCa after brachytherapy and external beam radiotherapy. (9−11,13,14,25−27) GRPR is overexpressed in PCa in comparison to sparse expression in normal prostate tissue, while its expression increases in well-differentiated carcinomas and is correlated with the process of prostate cells transforming into malignant neoplasms. (10,13,14,26−29) One of the most studied GRPR ligands coupled with the DOTA chelator is the GRPR-specific antagonist DOTA-(4-amino-1-carboxymethylpiperidine)-d-Phe6-Gln7-Trp8-Ala9-Val10-Gly11-His12-Sta13-Leu14-NH2 (2) or RM2 (2) (Scheme 1). The radiolabeled [68Ga]Ga-2 has entered clinical trials for the diagnosis and treatment of PCa and BCa. (10,30,31)

Scheme 1

Scheme 1. Chemical Structures of PSMA-617 (1), RM2 (2)m and Heterodimer 3
PCa tumors show heterogeneity due to the inharmonious expression of receptors like PSMA and GRPR. Lack of detection of either receptor’s expression may significantly reduce the image quality and detection ability of the PCa-associated lesion. (32−34) A novel strategy that could improve the sensitivity of PET imaging for biochemically recurrent PCa and enhance the clinical relevance of the diagnostic assessment is the development of heterodimeric molecules combining two specificities: PSMA and GRPR. (20,35−38) A low molecular weight heterodimer consists of two covalently linked peptides or peptidomimetics combining specificities for two different antigens/epitopes, while a chelator group (i.e., the open chelator HBED-CC, (39,40) NOTA, (41,42) DOTA, (43) or DO3A (44)) for radiometal complexation is usually included in the structure. (35,42,45)
Previous studies from our group with heterodimers utilized the Lys-CO-Glu-OH pharmacophore (PSMA) and the GRPR agonist H2N-PEG2-[d-Tyr6,β-Ala11,Thi13,Nle14)BN(6–14) covalently connected with the HBED-CC chelator linked via its two carboxylic groups with either one of the pharmacophores. (39,40) The BN analogue used in those cases was structurally relevant to the peptidase-resistant BN analogue that was used in the clinically tested [68Ga]GaBZH3 (BZH3 = DOTA-PEG2-[d-Tyr6,β-Ala11,Thi13,Nle14]BN(6–14) amide). (46,47) These heterodimers showed high affinity values for both PSMA and GRPR targets, (i.e., PC-3, 4.40–9.00 nM; LNCaP, 17.4–42.4 nM) with high uptake and specific tumor uptake in LNCaP and AR42J xenographs. (39,40) The addition of the (HE)n (n = 1–3) amino acid spacer between the HBED-CC chelator and the PSMA pharmacophore (HE0–3) reduced the kidney (73.25–87.57% IA/g, 1 h pi) uptake and in some cases improved the tumor uptake, resulting in higher values than the respective monomers. (40)
Another heterodimeric radiotracer, [68Ga]Ga-iPSMA-BN, consisted of the iPSMA (Lys(NaI)-urea-Glu-OH; Nal = 3-(1-naphthyl)-l-alanine) oligopeptide and the Lys3-BN(1–14) peptide agonist, both linked to a DOTA chelator. (43) Heterodimer [68Ga]Ga-iPSMA-BN showed superiority against each monomer, [68Ga]Ga-iPSMA and [68Ga]Ga-BN, in both cell lines (LNCaP and PC-3 cells) and animal models. (43) The ligand was also labeled with 177Lu and evaluated with ex vivo biodistributions and Micro-SPECT/CT imaging studies in xenographed mice, which proved the positive influence of the heterobivalent effect. (48) Furthermore, pharmacokinetics and dosimetry data for [68Ga]Ga-iPSMA-BN were collected in a study involving four healthy volunteers, revealing specific uptake in the pancreas, which expresses GRPR, and the salivary glands, which express PSMA. (49)
Three additional bispecific heterodimers based on the antagonistic peptide RM26 (d-Phe6-Gln7-Trp8-Ala9-Val10-Gly11-His12-Sta13-Leu14-NH2) for GRPR and PSMA-617 (1) were developed (50) using the general structure PSMA-617-X-triazolyl-Tyr-PEG2-RM26 (X = 0, PEG2, (CH2)8), where the two pharmacophores were linked via the spacer X-triazolyl-Tyr-PEG2. The resulting heterodimers were radio-iodinated (125I) and evaluated in vitro and in vivo in PC-3 (IC50 = 6.0–20.0 nM) and LNCaP and PC-3 PIP (IC50 = 80.0–100.0 nM) (PSMA/GRPR positive) xenographs. All resulting heterodimers showed binding specificity, cellular retention, and affinity, while among them [125I]I-PSMA-617-PEG2-triazolyl-Tyr-PEG2-RM26 presented the highest values regarding cancer cell uptake and higher tumor accumulation (PC-3, 4.3% ID/g, PC-3 PiP 10% ID/g at 1 h pi). However, it also showed high kidney radioactivity values (66% ID/g and 56% ID/g, respectively). (50)
A heterodimer based on the pharmacophores RM26 (GRPR) and DUPA (PSMA) and the NOTA chelator was labeled with 111In and 68Ga. (41) The ligand showed affinity toward GRPR (IC50 = 4 ± 1 nM) and PSMA (IC50 = 824 ± 230 nM), which was less than the monomers (10-fold GRP, 5-fold PSMA). Despite its low PSMA affinity, it exhibited tumor uptake in the PC-3-PIP-xenografted mice at 1 h pi (68Ga labeling, 8 ± 2% ID/g; 111In labeling, 12 ± 2% ID/g), along with less kidney uptake (68Ga labeling, 6.6 ± 0.8% ID/g; 111In labeling, 10 ± 2% ID/g). (41) The lower kidney uptake was possibly due to its low PSMA affinity, considering the fact the kidneys naturally express PSMA receptors. (51)
Three additional heterodimers, based on the pharmacophore RM26 (GRPR)/DUPA (PSMA) connected to the NOTA chelator via a PEG and an Aoc-Phe linker, were investigated after labeling with 111In. Among the three heterodimers, [111In]In-BQ7812, with Phe and the short PEG linker, demonstrated the best affinity toward PSMA (IC50 = 102 ± 80 nM) and thus was selected for biodistribution studies, (42) where it showed specific uptake (1 h pi, 16.10 ± 2.96% ID/g) for the PC-3-pip tumor (PSMA+/ GRPR+) and high kidney uptake (64.87 ± 27.26% ID/g). (42) The same ligand was labeled with 68Ga [68Ga]Ga-BQ7812 in a later study, (52) where it showed a similar pharmacokinetic profile (tumor, 10.4 ± 1.0% ID/g; kidneys, 45 ± 16% IA/g).
In the present study, we synthesized a heterodimer (3) using the core structures of PSMA-617 (1) and RM2 (2) ligands and the DOTA chelator (Scheme 1). Synthesis of pharmacophores 1′ and 2′ was accomplished using SPPS on 2-chloro-trytyl resin and rink amide resin, respectively, as outlined in Scheme 2 according to standard Fmoc peptide synthesis protocols. (40,53) The PSMA-specific azido-PSMA-617 analogue (1′) and GRPR-specific alkyno-RM2 analogue (2′) were each cleaved from the resin with TFA/TIPS/H2O, purified by RP-HPLC, and analyzed with MALDI-MS (see SI, Figure S1, Table S1). In the next step, they reacted with CuAAC, and the intermediate conjugate was coupled with DOTA-mono-N-hydroxysuccinimide ester (DOTA-NHS-ester) to form heterodimer 3, which was purified with RP-HPLC and analyzed with MALDI-MS (see SI, Figure S1, Table S1). The universal DOTA chelator that was utilized replaced the HBED-CC chelator of previously developed heterodimers (39,40) in order to provide theranostic potential, since [68Ga[Ga]-HBED-CC] can only be utilized for diagnosis.

Scheme 2

Scheme 2. Chemical Synthesis of PSMA-Specific 1′, GRPR-Specific 2′ , and Heterodimeric Conjugate 3a

a(a) Triphosgene, DIPEA, DCM (°C). (b) Pd(PPh3)4, morpholine, DCM (dry). (c) Amino acid (a.a.) and amino acid derivatives (6-azido-l-lysine, 4-pentynoic acid) coupling: a.a./DIPEA/HBTU (4.0:4.0:3.9 equiv). Fmoc deprotection: 40% piperidine in DMF. (d) Cleavage mixture: TFA/TIPS/H2O 95:2.5:2.5 (v/v/v). (e) CuAAC reaction (4 equiv of CuSO4, 4 equiv of Na-ascorbate). (f) DOTA-NHS, EDC, PBS (pH = 8.5). (g) [68Ga]Ga, Hepes buffer (0.25 M), pH = 4.0, 95 °C, 30 min. (h) [177Lu]LuCl3, Na–Ac buffer (400 nM), pH = 5.0, 98 °C, 25 min.

Heterodimer 3 and the two monomers, PSMA-617 (1) and RM2 (2) (controls), were radiolabeled with (i) the PET diagnostic 68Ga [half-life (T1/2) = 68 min; maximum energy of positrons (b1) = 1.9 MeV [88%]) in HEPES (N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid) buffer, resulting in [68Ga]Ga-PSMA-617, [68Ga]Ga-RM2, and [68Ga]Ga-3, and (ii) with the therapeutic 177Lu (T1/2 = 6.71 d; maximum energy of electrons [β] = 497 keV [79%]; energy of photons (γ) = 113 keV [6%]; roentgen radiation (x) = 208 keV [11%]) in sodium acetate (Na–Ac) buffer, resulting in [177Lu]Lu-PSMA-617, [177Lu]Lu-RM2, and [177Lu]Lu-3. During the radio RP-HPLC analysis, PSMA-617 (1) was eluted first and the heterodimer 3 was eluted last, which was in accordance with the size of each ligand (see SI, Figure S1). Radiochemical purity in all cases was above 95%, while radiochemical yield was over 90%, a crucial requirement for possible future application as theranostic agents.
The lipophilicities of all compounds, i.e., [68Ga]Ga-PSMA-617, [68Ga]Ga-RM2, [68Ga]Ga-3, [177Lu]Lu-PSMA-617, [177Lu]Lu-RM2, and [177Lu]Lu-3, were determined by measuring their equilibrium distributions in a two-phase system consisting of n-octanol and phosphate buffer solution (PBS) with pH 7.4. In all cases, negative logD values were observed, showing the preference of all compounds for the water phase; however, in both cases the monomers were more hydrophilic than the heterodimer 3, which also showed logD values that were negative but closer to zero. This agreed with previously mentioned results from the radio RP-HPLC analysis (see SI, Table S2).
Docking calculations were performed for the PSMA-617 part and the RM2 part of the heterodimer (3) in the binding area of PSMA (54) or GRPR, respectively. The active site of PSMA is bordered by two binding regions, (5) with Arg210 or K699 in one region interacting through their side chain guanidinium or ammonium groups, respectively, with the side chain carboxyl of glutamate in the Glu-urea-Lys pharmacophore of PSMA-617 and the arginine patch, which contains Arg463, Arg534, and Arg536, in the other pocket interacting with Lys’s carboxylate. The urea group carbonyls bind the two zinc ions. (55,56) The chelator can be stabilized with ionic hydrogen bonding interactions with cationic amino acids in the entrance of the funnel, which has ∼20 Å length, e.g., with R610 or K514 (Figure 1A and B), and the RM2 lies outside the PSMA channel (Figure 1A). The structure of the GRPR in complex with Gαq and the peptide-agonist [d-Phe6,β-Ala11,Phe13,Nle14)Bn(6–14)] with PDB ID 7W40 (57) was recently solved with electron cryo-microscopy (cryo-EM). This structure was used as a template for the docking calculations. As a BN antagonist, the GPCR-bound part of heterodimer 3, i.e., the RM2 part, binds tightly toGRPR. Thus, its C-amidated end forms hydrogen bonding interactions with critical amino acids (57) at the bottom of the binding area, e.g., Q1203.32 and R3087.39 (Figure 1C), the main chain is stabilized inside the GPCR bundle through numerous hydrophobic interactions, and the peptide antagonist interacts with ECL2 at the extracellular regions. The chelator and PSMA-617 parts of 3 lie in the extracellular part of the GPCR (see Figure 1D and SI).

Figure 1

Figure 1. Results from docking calculations of heterodimer 3 (A, B) inside the PSMA receptor and (C, D) inside the BB2R. (A) Docked PSMA-617 part of 3 inside the PSMA funnel; the zoomed-in view shows the Glu-urea-Lys-linker-chelator binding. (C, D) Binding of RM2 peptide part of heterodimer 3 inside the GPCR BB2R (ligand carbons, green; oxygen, red; nitrogen, blue; polar hydrogen: white, the receptor is shown with a light blue cartoon representation).

The inhibition potency (IC50) of heterodimer 3 was determined by a cell-based competitive assay (C = 0–5000 nM) with LNCaP (PSMA+, GRPR−) and PC-3 cells (PSMA–, GRPR+) (Figure 2). The affinity (IC50) of PSMA-617 (1) for PSMA was 6.41 nM, and that of 3 was 21.41 nM, while for GRPR the affinity of RM2 (2) (IC50 = 45.59 nM) and that of 3 (IC50 = 43.93 nM) were almost equal (See S.I. Table S3). In summary, after in vitro testing in LNCaP and PC-3 cells, heterodimer 3 showed similar affinities for the PSMA receptor and GRPR compared to both control monomers PSMA-617 (1) and RM2 (2), respectively.

Figure 2

Figure 2. Competitive binding curves plotted using various concentrations (C = 0–5000 nM) of 3 and controls (A) PSMA-617 (1) against [68Ga]Ga-PSMA-10 (standard, IC50 = 3.8 ± 1.8 nM, C = 0.75 nM) and (b) RM2 (2) against 125I-bombesin (standard, IC50 = 0.4 nM, C = 50 pM). Each value was measured in quadruplicate.

Time kinetic data for heterodimer [68Ga]Ga-3 and the controls, [68Ga]Ga-PSMA-617 (LNCaP) and [68Ga]Ga-RM2, (PC-3), were investigated in the time range of 0–120 min, while blocking studies were also conducted (see S.I., Figure S3). Heterodimer [68Ga]Ga-3 presented specific cell binding in both cell lines, i.e., LNCaP and PC-3, while specificity was proved after minimization of cell-bound radioactivity during the blocking experiments (Figure S3). Heterodimer [68Ga]Ga-3 in all cases presented higher cell uptake in comparison to that of the monomers (controls) (Figure S3).
The above 68Ga-labeled tracers were also tested in LNCaP and PC-3 cells at 37 and 4 °C (45 min incubation time) to determine the fractions of surface-bound and internalized radio-ligand (Figure 3).

Figure 3

Figure 3. Specific cell-bound radioactivity (surface, internalized, and total) for [68Ga]Ga-3 at 37 and 4 °C in (A) LNCaP and (B) PC-3 cells. Results are expressed as the percentage of the added radioactivity for 106 cells (mean values % ID/g ± SD, N = 3–4).

The majority of [68Ga]Ga-3 was surface-bound. The amount of total cell-bound [68Ga]Ga-3, summing up the internalized and surface-bound fractions for LNCaP and PC-3 cells, was in both cases higher than or comparable to that the corresponding monomers [68Ga]Ga-PSMA-617 (1) and [68Ga]Ga-RM2 (2) (Figure 4). As expected, at 4 °C energy-dependent internalization was minimized, while the surface-bound fraction remained practically the same (Figure 3). In addition, the percentage of bound ligand 3 for the LNCaP cells was much higher than that for the PC-3 cells. All the above in vitro assays further established the specificity of ligand [68Ga]Ga-3 for both PSMA and GRPR, while its total internalization rates and cell binding showed superiority over both monomers.

Figure 4

Figure 4. Comparison of [68Ga]Ga-3 with the controls (A) [68Ga]Ga-PSMA-617 and (B) [68Ga]Ga-RM2. Results are expressed as the percentage of the added radioactivity for 106 cells (mean values % ID/g ± SD, N = 3–4). Statistical differences are noted with * above the bars (one-way Anova, α = 0.1, *p < 0.05, **p < 0.01).

The pharmacokinetic profile and tumor targeting ability of the radiolabeled heterodimer [68Ga]Ga-3 were examined with organ distribution experiments (30, 60, and 120 min pi) in Swiss albino mice bearing PC-3 (Figure 5A) and LNCaP (Figure 5B) tumors. The heterodimer [68Ga]Ga-3 showed fast blood clearance, while it was mainly excreted via the kidneys into the urinary bladder. Tumor uptake was higher for the LNCaP tumors than for PC-3 tumors, which can be attributed to the higher expression of PSMA in LNCaP cells in comparison to that of GRPR in PC-3 cells (levels of expression: PSMA, 1.26–1.8 × 105 per LNCaP; GRPR, 9.7 × 104 per PC-3 cell) (58−60) In addition, the amount of [68Ga]Ga-3 inside the LNCaP tumors did not degrade as fast as the one in the PC-3 tumors, possibly because of the higher rates of internalization for the PSMA ligand–receptor complexes compared to the GRPR antagonist complexes.

Figure 5

Figure 5. Biodistribution results expressed as % IA/g for [68Ga]Ga-3 in nude mice bearing (A) LNCaP and (B) PC-3 tumors at three different time points 30, 60, and 120 min pi.

Considering the increased expression of PSMA in the kidneys, the kidney uptake was much lower than that in other heterodimers we previously developed, which ranged between 66% and 122% IA/g. (39,40) The observed off-target uptake in the pancreas was due to the normal expression of GRPRs in this tissue; however, pancratic uptake degraded with time at a faster rate than the radio-activity located in the tumors. Such off-target accumulation has also been described for previously studied heterodimers, e.g., [68Ga]Ga-iPSMA-BN. (43) In general, [68Ga]Ga-3 showed dual targeting of PSMA-positive and GRPR-positive tumors and mainly renal clearance from the body.
In comparison to literature data regarding the biodistribution of 68Ga-3 and the monomers (1 h pi), a higher LNCaP tumor uptake was observed (68Ga-3, 15.36 ± 3.34% ID/g; 68Ga-1, 8.47 ± 4.09% ID/g (21)) in combination with lower kidneys uptake (68Ga-3, 17.38 ± 2.14; 68Ga-1, 113.3 ± 24.4% ID/g (21)), while the opposite results were observed for the PC-3 tumors (68Ga-3, 3.96 ± 0.63% ID/g; 68Ga-2, 14.11 ± 1.88% ID/g (30)) and for the kidneys (68Ga-3, 26.94 ± 4.55% ID/g; 68Ga-2, 3.34 ± 0.54% ID/g (30)). 68Ga-3 showed higher tumor uptake than previously published 68Ga-labeled heterodimers using RM26 and DUPA pharmacophores (1 h pi, PC-3-PIP tumor, 8 ± 2% ID/g (41) and 10.4 ± 1.0% ID/g (52)). However, such a direct comparison is not accurate due to the different tumor model used.
The differences in the wash out profile of 68Ga-3 in the two different animal models could be attributed to its accumulation in the different kinds of tumors (LNCaP and PC-3) in combination with its accumulation in normal organs expressing PSMA or GRPR receptors. For example, in the mice bearing LNCaP tumors (PSMA+, GRPR−), a lower % ID/g was observed for the kidneys (30 and 60 min) than in the kidneys of the mice bearing PC-3 tumors. The reason for this is that the kidneys express PSMA receptors and, in the first case, less 68Ga-3 was available for the kidneys due to 68Ga-3 accumulation in the LNCaP tumor. Considering also that kidney–urinary bladder–urine was the major route of clearance for 68Ga-3, kidney PSMA receptors affected the washout profile, resulting in slightly higher values for blood % ID/g.
Tumor/tissue ratios for the two tumor animal models (PC-3 and LNCaP) showed increasing contrast for most of the tissues, i.e., blood/heart, muscle, spleen, intestines, and lungs, over time, which was much more intense for the LNCaP tumors due to the higher uptake of 68Ga-3 (Figure 6). Tumor/kidneys ratios were very low due to the reasons mentioned previously. However, the tumor/pancreas ratio also showed a trend of increasing over time despite the fact that pancreas expresses GRPRs.

Figure 6

Figure 6. Tumor/tissue ratios for [68Ga]Ga-3 in nude mice bearing (A) LNCaP and (B) PC-3 tumors at three different time points 30, 60, and 120 min pi.

In conclusion, heterodimer 3 combining the PSMA-specific scaffold of PSMA-617 and the GRPR scaffold of RM26 with the DOTA chelator demonstrated simple and high yielding radiolabeling for both 68Ga/177Lu. Ligand 3 showed similar affinities for PSMA and GRPR receptors in comparison to control monomers (PSMA-617 and RM2, respectively), which were further supported by the results of the docking calculations. In vitro assays established the specificity of [68Ga]Ga-3 for PSMA/GRPR, while total internalization rates and cell binding showed its superiority over both monomers. In vivo, the high tumor accumulation of [68Ga]Ga-3 in combination with its low off-target organ radio-activity make it suitable for further studies as a PET-imaging agent, while its combination with [177Lu]Lu-3 could result in a theranostic pair. These results were a proof-of-concept justifying the future investigation of 3 with in vivo imaging experiments in order to investigate and possibly improve its pharmacokinetics, i.e., with the inclusion of various linkers.

Experimental Procedures

Click to copy section linkSection link copied!

See also the SI for a detailed analysis of the material and methods.

Safety

Caution: Due to radiation emission during the handling of radionuclides, e.g., 68Ga ([68Ga]Ga-3) and 177Lu ([177Lu]Lu-3), all studies were conducted in a radiation laboratory equipped with HEPA filtered hoods, appropriate radiation shielding, and dosimetry safety measurements for working personnel. Caution: Triphosgene, also named BTC, used in the synthesis of 1′ is toxic and fatal if inhaled.

Supporting Information

Click to copy section linkSection link copied!

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsmedchemlett.4c00324.

  • General materials and methods, compound preparation, radiolabeling, determination of lipophilicity, general cell culture and cell assays, determination of binding affinity in PC-3 and LNCaP cells, time kinetic cell binding, internalization in PC-3 and LNCAP cells, biodistribution, and docking calculations (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
    • Christos Liolios - Division of Radiopharmaceutical Chemistry, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, GermanyRadiochemical Studies Laboratory, INRASTES, N.C.S.R. “Demokritos”, Agia Paraskevi Attikis, 15310 Athens, GreeceInstitute of Pharmaceutical Research & Technology (IFET), 18th km of Marathonos Avenue, 15351 Pallini, Attica, GreeceDepartment of Nursing & Department of Physiotherapy, School of Health and Caring Sciences, University of West Attica, Agiou Spyridonos, 12243, Egaleo, GreeceOrcidhttps://orcid.org/0000-0002-1909-6212 Email: [email protected]
  • Authors
    • Danai Bouziotis - Radiochemical Studies Laboratory, INRASTES, N.C.S.R. “Demokritos”, Agia Paraskevi Attikis, 15310 Athens, Greece
    • Wiebke Sihver - Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328 Dresden, GermanyOrcidhttps://orcid.org/0000-0002-2876-9925
    • Martin Schäfer - Division of Radiopharmaceutical Chemistry, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
    • George Lambrinidis - Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis−Zografou, 15771 Athens, GreeceOrcidhttps://orcid.org/0000-0002-2820-9338
    • Evangelia-Alexandra Salvanou - Radiochemical Studies Laboratory, INRASTES, N.C.S.R. “Demokritos”, Agia Paraskevi Attikis, 15310 Athens, Greece
    • Ulrike Bauder-Wüst - Division of Radiopharmaceutical Chemistry, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
    • Martina Benesova - Division of Radiopharmaceutical Chemistry, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
    • Klaus Kopka - Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328 Dresden, GermanyFaculty of Chemistry and Food Chemistry, School of Science, Technical University Dresden, Raum 413 Bergstr. 66, 01069 Dresden, Germany
    • Antonios Kolocouris - Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis−Zografou, 15771 Athens, GreeceOrcidhttps://orcid.org/0000-0001-6110-1903
    • Penelope Bouziotis - Radiochemical Studies Laboratory, INRASTES, N.C.S.R. “Demokritos”, Agia Paraskevi Attikis, 15310 Athens, GreeceOrcidhttps://orcid.org/0000-0001-6778-2201
  • Author Contributions

    C.L. conceived the project and designed the experiments. C.L. and P.B. guided the research. C.L. synthesized compounds 15 with D.B. and M.B. in the P.B. lab and performed the radiolabeling and cell assays. M.S. performed radiochemistry experiments. U.B.-W. performed radiolabeling and cell assays. G.L. and A.K. performed the simulations. C.L. and A.K. wrote the manuscript, and K.K. edited it.

  • Funding

    The open access publishing of this article is financially supported by HEAL-Link.

  • Notes
    The authors declare no competing financial interest.

Abbreviations

Click to copy section linkSection link copied!

Aoc

8-aminooctanoic acid

CuAAC

copper-catalyzed click chemistry

DUPA

2-[3-(1,3-dicarboxypropyl)ureido]pentanedioic acid

GCPII

glutamate carboxypeptidase II

GPCR

G protein-coupled receptors

GRPR

gastrin releasing peptide receptor

GUI

graphical user interface

MD

molecular dynamics

NM

nuclear medicine

Nle

norleucine

PET

positron electron tomography

PCa

prostate cancer

pi.

post-injection

PSMA

prostate-specific membrane antigen

Phe

phenylalanine

POPC

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine

SPECT

single-photon emission computerized tomography

SPPS

solid-phase peptide synthesis

Thi

3-thienylalanine,

References

Click to copy section linkSection link copied!

This article references 60 other publications.

  1. 1
    Center, M. M.; Jemal, A.; Lortet-Tieulent, J.; Ward, E.; Ferlay, J.; Brawley, O.; Bray, F. International Variation in Prostate Cancer Incidence and Mortality Rates. Eur. Urol. 2012, 61 (6), 10791092,  DOI: 10.1016/j.eururo.2012.02.054
  2. 2
    Jemal, A.; Siegel, R.; Xu, J.; Ward, E. Cancer Statistics, 2010. CA. Cancer J. Clin. 2010, 60 (5), 277300,  DOI: 10.3322/caac.20073
  3. 3
    Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer Statistics, 2020. CA. Cancer J. Clin. 2020, 70 (1), 730,  DOI: 10.3322/caac.21590
  4. 4
    Wolf, P. Prostate Specific Membrane Antigen as Biomarker and Therapeutic Target for Prostate Cancer. In Prostate Cancer - Diagnostic and Therapeutic Advances; Spiess, P. E., Ed.; InTech, 2011; pp 81100.  DOI: 10.5772/26951 .
  5. 5
    Davis, M. I.; Bennett, M. J.; Thomas, L. M.; Bjorkman, P. J. Crystal Structure of Prostate-Specific Membrane Antigen, a Tumor Marker and Peptidase. Proc. Natl. Acad. Sci. U. S. A. 2005, 102 (17), 59815986,  DOI: 10.1073/pnas.0502101102
  6. 6
    Bacich, D. J.; Pinto, J. T.; Tong, W. P.; Heston, W. D. W. Cloning, Expression, Genomic Localization, and Enzymatic Activities of the Mouse Homolog of Prostate-Specific Membrane Antigen/NAALADase/Folate Hydrolase. Mamm. Genome 2001, 12 (2), 117123,  DOI: 10.1007/s003350010240
  7. 7
    Israeli, R. S.; Powell, C. T.; Corr, J. G.; Fair, W. R.; Heston, W. D. Expression of the Prostate-Specific Membrane Antigen. Cancer Res. 1994, 54 (7), 18071811
  8. 8
    Patel, O.; Shulkes, A.; Baldwin, G. S. Gastrin-Releasing Peptide and Cancer. Biochim. Biophys. Acta 2006, 1766, 2341,  DOI: 10.1016/j.bbcan.2006.01.003
  9. 9
    Cornelio, D. B.; Roesler, R.; Schwartsmann, G. Gastrin-Releasing Peptide Receptor as a Molecular Target in Experimental Anticancer Therapy. Ann. Oncol. 2007, 18 (9), 14571466,  DOI: 10.1093/annonc/mdm058
  10. 10
    Dumont, R. a; Tamma, M.; Braun, F.; Borkowski, S.; Reubi, J. C.; Maecke, H.; Weber, W. a; Mansi, R. Targeted Radiotherapy of Prostate Cancer with a Gastrin-Releasing Peptide Receptor Antagonist Is Effective as Monotherapy and in Combination with Rapamycin. J. Nucl. Med. 2013, 54 (5), 762769,  DOI: 10.2967/jnumed.112.112169
  11. 11
    Biddlecombe, G. B.; Rogers, B. E.; de Visser, M.; Parry, J. J.; de Jong, M.; Erion, J. L.; Lewis, J. S. Molecular Imaging of Gastrin-Releasing Peptide Receptor-Positive Tumors in Mice Using 64Cu- and 86Y-DOTA-(Pro1,Tyr4)-Bombesin(1–14). Bioconjugate Chem. 2007, 18 (3), 724730,  DOI: 10.1021/bc060281l
  12. 12
    Veerendra, B.; Sieckman, G.; Hoffman, T.; Rold, T.; Retzloff, L.; McCrate, J.; Prasanphanich, A.; Smith, C. Synthesis, Radiolabeling and In Vitro GRP Receptor Targeting Studies of 99mTc-Triaza-X-BBN[7–14]NH 2 (X = Serylserylserine, Glycylglycylglycine, Glycylserylglycine, or Beta Alanine). Synth. React. Inorganic, Met. Nano-Metal Chem. (formerly Synth. React. Inorg. Met. Chem. 2006, 36 (6), 481491,  DOI: 10.1080/15533170600778075
  13. 13
    Sancho, V.; Di Florio, A.; Moody, T. W.; Jensen, R. T. Bombesin Receptor-Mediated Imaging and Cytotoxicity: Review and Current Status. Curr. Drug Delivery 2011, 8 (1), 79134,  DOI: 10.2174/156720111793663624
  14. 14
    Iagaru, A. Will GRPR Compete with PSMA as a Target in Prostate Cancer?. J. Nucl. Med. 2017, 58 (12), 18831884,  DOI: 10.2967/jnumed.117.198192
  15. 15
    Dadachova, E. Cancer Therapy with Alpha-Emitters Labeled Peptides. Semin. Nucl. Med. 2010, 40 (3), 204208,  DOI: 10.1053/j.semnuclmed.2010.01.002
  16. 16
    Yao, V.; Parwani, A.; Maier, C.; Heston, W. D.; Bacich, D. J. Moderate Expression of Prostate-Specific Membrane Antigen, a Tissue Differentiation Antigen and Folate Hydrolase, Facilitates Prostate Carcinogenesis. Cancer Res. 2008, 68 (21), 90709077,  DOI: 10.1158/0008-5472.CAN-08-2328
  17. 17
    Bařinka, C.; Rojas, C.; Slusher, B.; Pomper, M. Glutamate Carboxypeptidase II in Diagnosis and Treatment of Neurologic Disorders and Prostate Cancer. Curr. Med. Chem. 2012, 19 (6), 856870,  DOI: 10.2174/092986712799034888
  18. 18
    Evans, M. J.; Smith-Jones, P. M.; Wongvipat, J.; Navarro, V.; Kim, S.; Bander, N. H.; Larson, S. M.; Sawyers, C. L. Noninvasive Measurement of Androgen Receptor Signaling with a Positron-Emitting Radiopharmaceutical That Targets Prostate-Specific Membrane Antigen. Proc. Natl. Acad. Sci. U. S. A. 2011, 108 (23), 95789582,  DOI: 10.1073/pnas.1106383108
  19. 19
    Kranzbühler, B.; Salemi, S.; Umbricht, C. A.; Müller, C.; Burger, I. A.; Sulser, T.; Eberli, D. Pharmacological Upregulation of Prostate-Specific Membrane Antigen (PSMA) Expression in Prostate Cancer Cells. Prostate 2018, 78 (10), 758765,  DOI: 10.1002/pros.23522
  20. 20
    Neels, O. C.; Kopka, K.; Liolios, C.; Afshar-Oromieh, A. Radiolabeled PSMA Inhibitors. Cancers (Basel) 2021, 13 (24), 6255,  DOI: 10.3390/cancers13246255
  21. 21
    Benešová, M.; Schäfer, M.; Bauder-Wüst, U.; Afshar-Oromieh, A.; Kratochwil, C.; Mier, W.; Haberkorn, U.; Kopka, K.; Eder, M. Preclinical Evaluation of a Tailor-Made DOTA-Conjugated PSMA Inhibitor with Optimized Linker Moiety for Imaging and Endoradiotherapy of Prostate Cancer. J. Nucl. Med. 2015, 56 (6), 914920,  DOI: 10.2967/jnumed.114.147413
  22. 22
    Afshar-Oromieh, A.; Hetzheim, H.; Kratochwil, C.; Benesova, M.; Eder, M.; Neels, O. C.; Eisenhut, M.; Kübler, W.; Holland-Letz, T.; Giesel, F. L.; Mier, W.; Kopka, K.; Haberkorn, U. The Novel Theranostic PSMA-Ligand PSMA-617 in the Diagnosis of Prostate Cancer by PET/CT: Biodistribution in Humans, Radiation Dosimetry and First Evaluation of Tumor Lesions. J. Nucl. Med. 2015, 56, 1697,  DOI: 10.2967/jnumed.115.161299
  23. 23
    Kopka, K.; Benešová, M.; Bařinka, C.; Haberkorn, U.; Babich, J. Glu-Ureido–Based Inhibitors of Prostate-Specific Membrane Antigen: Lessons Learned During the Development of a Novel Class of Low-Molecular-Weight Theranostic Radiotracers. J. Nucl. Med. 2017, 58 (Supplement 2), 17S26S,  DOI: 10.2967/jnumed.116.186775
  24. 24
    Ristau, B. T.; O’Keefe, D. S.; Bacich, D. J. The Prostate-Specific Membrane Antigen: Lessons and Current Clinical Implications from 20 Years of Research. Urol. Oncol. 2014, 32 (3), 272279,  DOI: 10.1016/j.urolonc.2013.09.003
  25. 25
    Smith, J. C.; Sieckman, G. L.; Owen, N. K.; Hayes, D. L.; Mazuru, D. G.; Volkert, W. A.; Hoffman, T. J. Radiochemical Investigations of [188Re(H2O)(CO)3-Diaminopropionic Acid-SSS-Bombesin(7–14)NH2]: Syntheses, Radiolabeling and in Vitro/in Vivo GRP Receptor Targeting Studies. Anticancer Res. 2003, 23 (1A), 6370
  26. 26
    Reubi, J. C.; Maecke, H. R. Peptide-Based Probes for Cancer Imaging. J. Nucl. Med. 2008, 49 (11), 17351738,  DOI: 10.2967/jnumed.108.053041
  27. 27
    Maecke, H.; Hofmann, M.; Haberkorn, U. 68Ga-Labeled Peptides in Tumor Imaging. J. Nucl. Med. 2005, 46 (1 (Suppl)), 172S178S
  28. 28
    Nagasaki, S.; Nakamura, Y.; Maekawa, T.; Akahira, J.; Miki, Y.; Suzuki, T.; Ishidoya, S.; Arai, Y.; Sasano, H. Immunohistochemical Analysis of Gastrin-Releasing Peptide Receptor (GRPR) and Possible Regulation by Estrogen Receptor Bcx in Human Prostate Carcinoma. Neoplasma 2012, 59 (2), 224232,  DOI: 10.4149/neo_2012_029
  29. 29
    Liolios, C.; Patsis, C.; Bauder-Wuest, U.; Scholl, C.; Eder, M.; Kopka, K. Relations between PSMA and GRP Receptor Expression in Prostate and Breast Cancer Cell Lines for Tumor Imaging. J. Nucl. Med. 2017, 58 (Supplement 1), 929929
  30. 30
    Mansi, R.; Wang, X.; Forrer, F.; Waser, B.; Cescato, R.; Graham, K.; Borkowski, S.; Reubi, J. C.; Maecke, H. R. Development of a Potent DOTA-Conjugated Bombesin Antagonist for Targeting GRPr-Positive Tumours. Eur. J. Nucl. Med. Mol. Imaging 2011, 38 (1), 97107,  DOI: 10.1007/s00259-010-1596-9
  31. 31
    Stoykow, C.; Erbes, T.; Maecke, H. R.; Bulla, S.; Bartholomä, M.; Mayer, S.; Drendel, V.; Bronsert, P.; Werner, M.; Gitsch, G.; Weber, W. A.; Stickeler, E.; Meyer, P. T. Gastrin-Releasing Peptide Receptor Imaging in Breast Cancer Using the Receptor Antagonist 68 Ga-RM2 And PET. Theranostics 2016, 6 (10), 16411650,  DOI: 10.7150/thno.14958
  32. 32
    Marusyk, A.; Polyak, K. Tumor Heterogeneity: Causes and Consequences. Biochim. Biophys. Acta - Rev. Cancer 2010, 1805 (1), 105117,  DOI: 10.1016/j.bbcan.2009.11.002
  33. 33
    Ciccarese, C.; Massari, F.; Iacovelli, R.; Fiorentino, M.; Montironi, R.; Di Nunno, V.; Giunchi, F.; Brunelli, M.; Tortora, G. Prostate Cancer Heterogeneity: Discovering Novel Molecular Targets for Therapy. Cancer Treat. Rev. 2017, 54, 6873,  DOI: 10.1016/j.ctrv.2017.02.001
  34. 34
    Rybalov, M.; Ananias, H. J. K.; Hoving, H. D.; van der Poel, H. G.; Rosati, S.; de Jong, I. J. PSMA, EpCAM, VEGF and GRPR as Imaging Targets in Locally Recurrent Prostate Cancer after Radiotherapy. Int. J. Mol. Sci. 2014, 15 (4), 60466061,  DOI: 10.3390/ijms15046046
  35. 35
    Liolios, C.; Sachpekidis, C.; Schäfer, M.; Kopka, K. Bispecific Radioligands Targeting Prostate-Specific Membrane Antigen and Gastrin-Releasing Peptide Receptors on the Surface of Prostate Cancer Cells. J. Label. Compd. Radiopharm. 2019, 62 (8), 510522,  DOI: 10.1002/jlcr.3749
  36. 36
    Liolios, C. C.; Fragogeorgi, E. A.; Zikos, C.; Loudos, G.; Xanthopoulos, S.; Bouziotis, P.; Paravatou-Petsotas, M.; Livaniou, E.; Varvarigou, A. D.; Sivolapenko, G. B. Structural Modifications of 99mTc-Labelled Bombesin-like Peptides for Optimizing Pharmacokinetics in Prostate Tumor Targeting. Int. J. Pharm. 2012, 430 (1–2), 117,  DOI: 10.1016/j.ijpharm.2012.02.049
  37. 37
    Reubi, J. C.; Maecke, H. R. Approaches to Multireceptor Targeting: Hybrid Radioligands, Radioligand Cocktails, and Sequential Radioligand Applications. J. Nucl. Med. 2017, 58 (Supplement 2), 10S16S,  DOI: 10.2967/jnumed.116.186882
  38. 38
    Handl, H. L.; Vagner, J.; Han, H.; Mash, E.; Hruby, V. J.; Gillies, R. J. Hitting Multiple Targets with Multimeric Ligands. Expert Opin. Ther. Targets 2004, 8 (6), 565586,  DOI: 10.1517/14728222.8.6.565
  39. 39
    Eder, M.; Schäfer, M.; Bauder-Wüst, U.; Haberkorn, U.; Eisenhut, M.; Kopka, K. Preclinical Evaluation of a Bispecific Low-Molecular Heterodimer Targeting Both PSMA and GRPR for Improved PET Imaging and Therapy of Prostate Cancer. Prostate 2014, 74 (6), 659668,  DOI: 10.1002/pros.22784
  40. 40
    Liolios, C.; Schäfer, M.; Haberkorn, U.; Eder, M.; Kopka, K. Novel Bispecific PSMA/GRPr Targeting Radioligands with Optimized Pharmacokinetics for Improved PET Imaging of Prostate Cancer. Bioconjugate Chem. 2016, 27 (3), 737751,  DOI: 10.1021/acs.bioconjchem.5b00687
  41. 41
    Mitran, B.; Varasteh, Z.; Abouzayed, A.; Rinne, S. S.; Puuvuori, E.; De Rosa, M.; Larhed, M.; Tolmachev, V.; Orlova, A.; Rosenström, U. Bispecific GRPR-Antagonistic Anti-PSMA/GRPR Heterodimer for PET and SPECT Diagnostic Imaging of Prostate Cancer. Cancers (Basel) 2019, 11 (9), 1371,  DOI: 10.3390/cancers11091371
  42. 42
    Lundmark, F.; Abouzayed, A.; Mitran, B.; Rinne, S. S.; Varasteh, Z.; Larhed, M.; Tolmachev, V.; Rosenström, U.; Orlova, A. Heterodimeric Radiotracer Targeting PSMA and GRPR for Imaging of Prostate Cancer─Optimization of the Affinity towards PSMA by Linker Modification in Murine Model. Pharmaceutics 2020, 12 (7), 614,  DOI: 10.3390/pharmaceutics12070614
  43. 43
    Mendoza-Figueroa, M. J.; Escudero-Castellanos, A.; Ramirez-Nava, G. J.; Ocampo-García, B. E.; Santos-Cuevas, C. L.; Ferro-Flores, G.; Pedraza-Lopez, M.; Avila-Rodriguez, M. A. Preparation and Preclinical Evaluation of 68Ga-IPSMA-BN as a Potential Heterodimeric Radiotracer for PET-Imaging of Prostate Cancer. J. Radioanal. Nucl. Chem. 2018, 318 (3), 20972105,  DOI: 10.1007/s10967-018-6285-3
  44. 44
    Bandari, R. P.; Carmack, T. L.; Malhotra, A.; Watkinson, L.; Fergason Cantrell, E. A.; Lewis, M. R.; Smith, C. J. Development of Heterobivalent Theranostic Probes Having High Affinity/Selectivity for the GRPR/PSMA. J. Med. Chem. 2021, 64 (4), 21512166,  DOI: 10.1021/acs.jmedchem.0c01785
  45. 45
    Yan, Y.; Chen, X. Peptide Heterodimers for Molecular Imaging. Amino Acids 2011, 41, 10811092,  DOI: 10.1007/s00726-010-0546-y
  46. 46
    Cheng, C.; Pan, L.; Dimitrakopoulou-Strauss, A.; Schäfer, M.; Wängler, C.; Wängler, B.; Haberkorn, U.; Strauss, L. G. Comparison between 68Ga-Bombesin (68Ga-BZH3) and the CRGD Tetramer 68Ga-RGD4 Studies in an Experimental Nude Rat Model with a Neuroendocrine Pancreatic Tumor Cell Line. EJNMMI Res. 2011, 1, 34,  DOI: 10.1186/2191-219X-1-34
  47. 47
    Strauss, L. G.; Koczan, D.; Seiz, M.; Tuettenberg, J.; Schmieder, K.; Pan, L.; Cheng, C.; Dimitrakopoulou-Strauss, A. Correlation of the Ga-68-Bombesin Analog Ga-68-BZH3 with Receptors Expression in Gliomas as Measured by Quantitative Dynamic Positron Emission Tomography (DPET) and Gene Arrays. Mol. Imaging Biol. 2012, 14 (3), 376383,  DOI: 10.1007/s11307-011-0508-0
  48. 48
    Escudero-Castellanos, A.; Ocampo-García, B.; Ferro-Flores, G.; Santos-Cuevas, C.; Morales-Ávila, E.; Luna-Gutiérrez, M.; Isaac-Olivé, K. Synthesis and Preclinical Evaluation of the 177Lu-DOTA-PSMA(Inhibitor)-Lys 3 -Bombesin Heterodimer Designed as a Radiotheranostic Probe for Prostate Cancer. Nucl. Med. Commun. 2019, 40 (3), 278286,  DOI: 10.1097/MNM.0000000000000966
  49. 49
    Santos-Cuevas, C.; Ferro-Flores, G.; García-Pérez, F. O.; Jiménez-Mancilla, N.; Ramírez-Nava, G.; Ocampo-García, B.; Luna-Gutiérrez, M.; Azorín-Vega, E.; Davanzo, J.; Soldevilla-Gallardo, I. 177Lu-DOTA-HYNIC-Lys(Nal)-Urea-Glu: Biokinetics, Dosimetry, and Evaluation in Patients with Advanced Prostate Cancer. Contrast Media Mol. Imaging 2018, 2018, 110,  DOI: 10.1155/2018/5247153
  50. 50
    Abouzayed, A.; Yim, C.-B.; Mitran, B.; Rinne, S. S.; Tolmachev, V.; Larhed, M.; Rosenström, U.; Orlova, A. Synthesis and Preclinical Evaluation of Radio-Iodinated GRPR/PSMA Bispecific Heterodimers for the Theranostics Application in Prostate Cancer. Pharmaceutics 2019, 11 (7), 358,  DOI: 10.3390/pharmaceutics11070358
  51. 51
    Eltit, F.; Robinson, N.; Yu, P. L. I.; Pandey, M.; Lozada, J.; Guo, Y.; Sharma, M.; Ozturan, D.; Ganier, L.; Belanger, E.; Lack, N. A.; Perrin, D. M.; Cox, M. E.; Goldenberg, S. L. The “Ins and Outs” of Prostate Specific Membrane Antigen (PSMA) as Specific Target in Prostate Cancer Therapy. Adv. Exp. Med. Biol. 2023, 1408, 291308,  DOI: 10.1007/978-3-031-26163-3_16
  52. 52
    Lundmark, F.; Abouzayed, A.; Rinne, S. S.; Timofeev, V.; Sipkina, N.; Naan, M.; Kirichenko, A.; Vasyutina, M.; Ryzhkova, D.; Tolmachev, V.; Rosenström, U.; Orlova, A. Preclinical Characterisation of PSMA/GRPR-Targeting Heterodimer [68Ga]Ga-BQ7812 for PET Diagnostic Imaging of Prostate Cancer: A Step towards Clinical Translation. Cancers (Basel) 2023, 15 (2), 442,  DOI: 10.3390/cancers15020442
  53. 53
    Liolios, C.; Buchmuller, B.; Bauder-Wüst, U.; Schäfer, M.; Leotta, K.; Haberkorn, U.; Eder, M.; Kopka, K. Monomeric and Dimeric 68 Ga-Labeled Bombesin Analogues for Positron Emission Tomography (PET) Imaging of Tumors Expressing Gastrin-Releasing Peptide Receptors (GRPrs). J. Med. Chem. 2018, 61 (5), 20622074,  DOI: 10.1021/acs.jmedchem.7b01856
  54. 54
    Salvanou, E. A.; Kolokithas-Ntoukas, A.; Liolios, C.; Xanthopoulos, S.; Paravatou-Petsotas, M.; Tsoukalas, C.; Avgoustakis, K.; Bouziotis, P. Preliminary Evaluation of Iron Oxide Nanoparticles Radiolabeled with 68Ga and 177Lu as Potential Theranostic Agents. Nanomater. 2022, Vol. 12, Page 2490 2022, 12 (14), 2490,  DOI: 10.3390/nano12142490
  55. 55
    Barinka, C.; Hlouchova, K.; Rovenska, M.; Majer, P.; Dauter, M.; Hin, N.; Ko, Y.-S.; Tsukamoto, T.; Slusher, B. S.; Konvalinka, J.; Lubkowski, J. Structural Basis of Interactions between Human Glutamate Carboxypeptidase II and Its Substrate Analogs. J. Mol. Biol. 2008, 376 (5), 14381450,  DOI: 10.1016/j.jmb.2007.12.066
  56. 56
    Barinka, C.; Byun, Y.; Dusich, C. L.; Banerjee, S. R.; Chen, Y.; Castanares, M.; Kozikowski, A. P.; Mease, R. C.; Pomper, M. G.; Lubkowski, J. Interactions between Human Glutamate Carboxypeptidase II and Urea-Based Inhibitors: Structural Characterization. J. Med. Chem. 2008, 51 (24), 77377743,  DOI: 10.1021/jm800765e
  57. 57
    Peng, S.; Zhan, Y.; Zhang, D.; Ren, L.; Chen, A.; Chen, Z. F.; Zhang, H. Structures of Human Gastrin-Releasing Peptide Receptors Bound to Antagonist and Agonist for Cancer and Itch Therapy. Proc. Natl. Acad. Sci. U. S. A. 2023, 120 (6), e2216230120,  DOI: 10.1073/pnas.2216230120
  58. 58
    McDevitt, M. R.; Barendswaard, E.; Ma, D.; Lai, L.; Curcio, M. J.; Sgouros, G.; Ballangrud, A. M.; Yang, W.-H.; Finn, R. D.; Pellegrini, V.; Geerlings, M. W., Jr.; Lee, M.; Brechbiel, M. W.; Bander, N. H.; Cordon-Cardo, C.; Scheinberg, D. A. An {{alpha}}-Particle Emitting Antibody ([213 Bi]J591) for Radioimmunotherapy of Prostate Cancer. Cancer Res. 2000, 60 (21), 60956100
  59. 59
    Wang, X.; Ma, D.; Olson, W. C.; Heston, W. D. W. In Vitro and in Vivo Responses of Advanced Prostate Tumors to PSMA ADC, an Auristatin-Conjugated Antibody to Prostate-Specific Membrane Antigen. Mol. Cancer Ther. 2011, 10 (9), 17281739,  DOI: 10.1158/1535-7163.MCT-11-0191
  60. 60
    Schuhmacher, J.; Zhang, H.; Doll, J.; Mäcke, H. R.; Matys, R.; Hauser, H.; Henze, M.; Haberkorn, U.; Eisenhut, M. GRP Receptor-Targeted PET of a Rat Pancreas Carcinoma Xenograft in Nude Mice with a 68Ga-Labeled Bombesin(6–14) Analog. J. Nucl. Med. 2005, 46 (4), 691699

Cited By

Click to copy section linkSection link copied!
Citation Statements
Explore this article's citation statements on scite.ai

This article is cited by 2 publications.

  1. Stanislav A. Petrov, Gleb P. Grigoriev, Grigory A. Orlov, Nikolay Y. Zyk, Yuri K. Grishin, Vitaly A. Roznyatovsky, Maria A. Beloglazkina, Juliana V. Petrova, Aleksei E. Machulkin, Mariia S. Larkina, Anastasia Prach, Ruslan Varvashenya, Vitalina Bodenko, Evgenii Plotnikov, Mekhman S. Yusubov, Elena K. Beloglazkina. Choice of an Optimal Modular Strategy for the Synthesis of DOTA-Containing Heterobivalent Agents Targeting PSMA and GRPr. Bioconjugate Chemistry 2025, 36 (4) , 748-761. https://doi.org/10.1021/acs.bioconjchem.5c00033
  2. Margarida C. Sobral, Sandra I. Mota, Paulo J. Oliveira, Ana M. Urbano, António Paulo. Two Targets, One Mission: Heterobivalent Metal‐Based Radiopharmaceuticals for Prostate Cancer Imaging and Therapy. ChemMedChem 2025, 20 (11) https://doi.org/10.1002/cmdc.202500128

ACS Medicinal Chemistry Letters

Cite this: ACS Med. Chem. Lett. 2024, 15, 11, 1970–1978
Click to copy citationCitation copied!
https://doi.org/10.1021/acsmedchemlett.4c00324
Published October 18, 2024

Copyright © 2024 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY 4.0 .

Article Views

2548

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Scheme 1

    Scheme 1. Chemical Structures of PSMA-617 (1), RM2 (2)m and Heterodimer 3

    Scheme 2

    Scheme 2. Chemical Synthesis of PSMA-Specific 1′, GRPR-Specific 2′ , and Heterodimeric Conjugate 3a

    a(a) Triphosgene, DIPEA, DCM (°C). (b) Pd(PPh3)4, morpholine, DCM (dry). (c) Amino acid (a.a.) and amino acid derivatives (6-azido-l-lysine, 4-pentynoic acid) coupling: a.a./DIPEA/HBTU (4.0:4.0:3.9 equiv). Fmoc deprotection: 40% piperidine in DMF. (d) Cleavage mixture: TFA/TIPS/H2O 95:2.5:2.5 (v/v/v). (e) CuAAC reaction (4 equiv of CuSO4, 4 equiv of Na-ascorbate). (f) DOTA-NHS, EDC, PBS (pH = 8.5). (g) [68Ga]Ga, Hepes buffer (0.25 M), pH = 4.0, 95 °C, 30 min. (h) [177Lu]LuCl3, Na–Ac buffer (400 nM), pH = 5.0, 98 °C, 25 min.

    Figure 1

    Figure 1. Results from docking calculations of heterodimer 3 (A, B) inside the PSMA receptor and (C, D) inside the BB2R. (A) Docked PSMA-617 part of 3 inside the PSMA funnel; the zoomed-in view shows the Glu-urea-Lys-linker-chelator binding. (C, D) Binding of RM2 peptide part of heterodimer 3 inside the GPCR BB2R (ligand carbons, green; oxygen, red; nitrogen, blue; polar hydrogen: white, the receptor is shown with a light blue cartoon representation).

    Figure 2

    Figure 2. Competitive binding curves plotted using various concentrations (C = 0–5000 nM) of 3 and controls (A) PSMA-617 (1) against [68Ga]Ga-PSMA-10 (standard, IC50 = 3.8 ± 1.8 nM, C = 0.75 nM) and (b) RM2 (2) against 125I-bombesin (standard, IC50 = 0.4 nM, C = 50 pM). Each value was measured in quadruplicate.

    Figure 3

    Figure 3. Specific cell-bound radioactivity (surface, internalized, and total) for [68Ga]Ga-3 at 37 and 4 °C in (A) LNCaP and (B) PC-3 cells. Results are expressed as the percentage of the added radioactivity for 106 cells (mean values % ID/g ± SD, N = 3–4).

    Figure 4

    Figure 4. Comparison of [68Ga]Ga-3 with the controls (A) [68Ga]Ga-PSMA-617 and (B) [68Ga]Ga-RM2. Results are expressed as the percentage of the added radioactivity for 106 cells (mean values % ID/g ± SD, N = 3–4). Statistical differences are noted with * above the bars (one-way Anova, α = 0.1, *p < 0.05, **p < 0.01).

    Figure 5

    Figure 5. Biodistribution results expressed as % IA/g for [68Ga]Ga-3 in nude mice bearing (A) LNCaP and (B) PC-3 tumors at three different time points 30, 60, and 120 min pi.

    Figure 6

    Figure 6. Tumor/tissue ratios for [68Ga]Ga-3 in nude mice bearing (A) LNCaP and (B) PC-3 tumors at three different time points 30, 60, and 120 min pi.

  • References


    This article references 60 other publications.

    1. 1
      Center, M. M.; Jemal, A.; Lortet-Tieulent, J.; Ward, E.; Ferlay, J.; Brawley, O.; Bray, F. International Variation in Prostate Cancer Incidence and Mortality Rates. Eur. Urol. 2012, 61 (6), 10791092,  DOI: 10.1016/j.eururo.2012.02.054
    2. 2
      Jemal, A.; Siegel, R.; Xu, J.; Ward, E. Cancer Statistics, 2010. CA. Cancer J. Clin. 2010, 60 (5), 277300,  DOI: 10.3322/caac.20073
    3. 3
      Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer Statistics, 2020. CA. Cancer J. Clin. 2020, 70 (1), 730,  DOI: 10.3322/caac.21590
    4. 4
      Wolf, P. Prostate Specific Membrane Antigen as Biomarker and Therapeutic Target for Prostate Cancer. In Prostate Cancer - Diagnostic and Therapeutic Advances; Spiess, P. E., Ed.; InTech, 2011; pp 81100.  DOI: 10.5772/26951 .
    5. 5
      Davis, M. I.; Bennett, M. J.; Thomas, L. M.; Bjorkman, P. J. Crystal Structure of Prostate-Specific Membrane Antigen, a Tumor Marker and Peptidase. Proc. Natl. Acad. Sci. U. S. A. 2005, 102 (17), 59815986,  DOI: 10.1073/pnas.0502101102
    6. 6
      Bacich, D. J.; Pinto, J. T.; Tong, W. P.; Heston, W. D. W. Cloning, Expression, Genomic Localization, and Enzymatic Activities of the Mouse Homolog of Prostate-Specific Membrane Antigen/NAALADase/Folate Hydrolase. Mamm. Genome 2001, 12 (2), 117123,  DOI: 10.1007/s003350010240
    7. 7
      Israeli, R. S.; Powell, C. T.; Corr, J. G.; Fair, W. R.; Heston, W. D. Expression of the Prostate-Specific Membrane Antigen. Cancer Res. 1994, 54 (7), 18071811
    8. 8
      Patel, O.; Shulkes, A.; Baldwin, G. S. Gastrin-Releasing Peptide and Cancer. Biochim. Biophys. Acta 2006, 1766, 2341,  DOI: 10.1016/j.bbcan.2006.01.003
    9. 9
      Cornelio, D. B.; Roesler, R.; Schwartsmann, G. Gastrin-Releasing Peptide Receptor as a Molecular Target in Experimental Anticancer Therapy. Ann. Oncol. 2007, 18 (9), 14571466,  DOI: 10.1093/annonc/mdm058
    10. 10
      Dumont, R. a; Tamma, M.; Braun, F.; Borkowski, S.; Reubi, J. C.; Maecke, H.; Weber, W. a; Mansi, R. Targeted Radiotherapy of Prostate Cancer with a Gastrin-Releasing Peptide Receptor Antagonist Is Effective as Monotherapy and in Combination with Rapamycin. J. Nucl. Med. 2013, 54 (5), 762769,  DOI: 10.2967/jnumed.112.112169
    11. 11
      Biddlecombe, G. B.; Rogers, B. E.; de Visser, M.; Parry, J. J.; de Jong, M.; Erion, J. L.; Lewis, J. S. Molecular Imaging of Gastrin-Releasing Peptide Receptor-Positive Tumors in Mice Using 64Cu- and 86Y-DOTA-(Pro1,Tyr4)-Bombesin(1–14). Bioconjugate Chem. 2007, 18 (3), 724730,  DOI: 10.1021/bc060281l
    12. 12
      Veerendra, B.; Sieckman, G.; Hoffman, T.; Rold, T.; Retzloff, L.; McCrate, J.; Prasanphanich, A.; Smith, C. Synthesis, Radiolabeling and In Vitro GRP Receptor Targeting Studies of 99mTc-Triaza-X-BBN[7–14]NH 2 (X = Serylserylserine, Glycylglycylglycine, Glycylserylglycine, or Beta Alanine). Synth. React. Inorganic, Met. Nano-Metal Chem. (formerly Synth. React. Inorg. Met. Chem. 2006, 36 (6), 481491,  DOI: 10.1080/15533170600778075
    13. 13
      Sancho, V.; Di Florio, A.; Moody, T. W.; Jensen, R. T. Bombesin Receptor-Mediated Imaging and Cytotoxicity: Review and Current Status. Curr. Drug Delivery 2011, 8 (1), 79134,  DOI: 10.2174/156720111793663624
    14. 14
      Iagaru, A. Will GRPR Compete with PSMA as a Target in Prostate Cancer?. J. Nucl. Med. 2017, 58 (12), 18831884,  DOI: 10.2967/jnumed.117.198192
    15. 15
      Dadachova, E. Cancer Therapy with Alpha-Emitters Labeled Peptides. Semin. Nucl. Med. 2010, 40 (3), 204208,  DOI: 10.1053/j.semnuclmed.2010.01.002
    16. 16
      Yao, V.; Parwani, A.; Maier, C.; Heston, W. D.; Bacich, D. J. Moderate Expression of Prostate-Specific Membrane Antigen, a Tissue Differentiation Antigen and Folate Hydrolase, Facilitates Prostate Carcinogenesis. Cancer Res. 2008, 68 (21), 90709077,  DOI: 10.1158/0008-5472.CAN-08-2328
    17. 17
      Bařinka, C.; Rojas, C.; Slusher, B.; Pomper, M. Glutamate Carboxypeptidase II in Diagnosis and Treatment of Neurologic Disorders and Prostate Cancer. Curr. Med. Chem. 2012, 19 (6), 856870,  DOI: 10.2174/092986712799034888
    18. 18
      Evans, M. J.; Smith-Jones, P. M.; Wongvipat, J.; Navarro, V.; Kim, S.; Bander, N. H.; Larson, S. M.; Sawyers, C. L. Noninvasive Measurement of Androgen Receptor Signaling with a Positron-Emitting Radiopharmaceutical That Targets Prostate-Specific Membrane Antigen. Proc. Natl. Acad. Sci. U. S. A. 2011, 108 (23), 95789582,  DOI: 10.1073/pnas.1106383108
    19. 19
      Kranzbühler, B.; Salemi, S.; Umbricht, C. A.; Müller, C.; Burger, I. A.; Sulser, T.; Eberli, D. Pharmacological Upregulation of Prostate-Specific Membrane Antigen (PSMA) Expression in Prostate Cancer Cells. Prostate 2018, 78 (10), 758765,  DOI: 10.1002/pros.23522
    20. 20
      Neels, O. C.; Kopka, K.; Liolios, C.; Afshar-Oromieh, A. Radiolabeled PSMA Inhibitors. Cancers (Basel) 2021, 13 (24), 6255,  DOI: 10.3390/cancers13246255
    21. 21
      Benešová, M.; Schäfer, M.; Bauder-Wüst, U.; Afshar-Oromieh, A.; Kratochwil, C.; Mier, W.; Haberkorn, U.; Kopka, K.; Eder, M. Preclinical Evaluation of a Tailor-Made DOTA-Conjugated PSMA Inhibitor with Optimized Linker Moiety for Imaging and Endoradiotherapy of Prostate Cancer. J. Nucl. Med. 2015, 56 (6), 914920,  DOI: 10.2967/jnumed.114.147413
    22. 22
      Afshar-Oromieh, A.; Hetzheim, H.; Kratochwil, C.; Benesova, M.; Eder, M.; Neels, O. C.; Eisenhut, M.; Kübler, W.; Holland-Letz, T.; Giesel, F. L.; Mier, W.; Kopka, K.; Haberkorn, U. The Novel Theranostic PSMA-Ligand PSMA-617 in the Diagnosis of Prostate Cancer by PET/CT: Biodistribution in Humans, Radiation Dosimetry and First Evaluation of Tumor Lesions. J. Nucl. Med. 2015, 56, 1697,  DOI: 10.2967/jnumed.115.161299
    23. 23
      Kopka, K.; Benešová, M.; Bařinka, C.; Haberkorn, U.; Babich, J. Glu-Ureido–Based Inhibitors of Prostate-Specific Membrane Antigen: Lessons Learned During the Development of a Novel Class of Low-Molecular-Weight Theranostic Radiotracers. J. Nucl. Med. 2017, 58 (Supplement 2), 17S26S,  DOI: 10.2967/jnumed.116.186775
    24. 24
      Ristau, B. T.; O’Keefe, D. S.; Bacich, D. J. The Prostate-Specific Membrane Antigen: Lessons and Current Clinical Implications from 20 Years of Research. Urol. Oncol. 2014, 32 (3), 272279,  DOI: 10.1016/j.urolonc.2013.09.003
    25. 25
      Smith, J. C.; Sieckman, G. L.; Owen, N. K.; Hayes, D. L.; Mazuru, D. G.; Volkert, W. A.; Hoffman, T. J. Radiochemical Investigations of [188Re(H2O)(CO)3-Diaminopropionic Acid-SSS-Bombesin(7–14)NH2]: Syntheses, Radiolabeling and in Vitro/in Vivo GRP Receptor Targeting Studies. Anticancer Res. 2003, 23 (1A), 6370
    26. 26
      Reubi, J. C.; Maecke, H. R. Peptide-Based Probes for Cancer Imaging. J. Nucl. Med. 2008, 49 (11), 17351738,  DOI: 10.2967/jnumed.108.053041
    27. 27
      Maecke, H.; Hofmann, M.; Haberkorn, U. 68Ga-Labeled Peptides in Tumor Imaging. J. Nucl. Med. 2005, 46 (1 (Suppl)), 172S178S
    28. 28
      Nagasaki, S.; Nakamura, Y.; Maekawa, T.; Akahira, J.; Miki, Y.; Suzuki, T.; Ishidoya, S.; Arai, Y.; Sasano, H. Immunohistochemical Analysis of Gastrin-Releasing Peptide Receptor (GRPR) and Possible Regulation by Estrogen Receptor Bcx in Human Prostate Carcinoma. Neoplasma 2012, 59 (2), 224232,  DOI: 10.4149/neo_2012_029
    29. 29
      Liolios, C.; Patsis, C.; Bauder-Wuest, U.; Scholl, C.; Eder, M.; Kopka, K. Relations between PSMA and GRP Receptor Expression in Prostate and Breast Cancer Cell Lines for Tumor Imaging. J. Nucl. Med. 2017, 58 (Supplement 1), 929929
    30. 30
      Mansi, R.; Wang, X.; Forrer, F.; Waser, B.; Cescato, R.; Graham, K.; Borkowski, S.; Reubi, J. C.; Maecke, H. R. Development of a Potent DOTA-Conjugated Bombesin Antagonist for Targeting GRPr-Positive Tumours. Eur. J. Nucl. Med. Mol. Imaging 2011, 38 (1), 97107,  DOI: 10.1007/s00259-010-1596-9
    31. 31
      Stoykow, C.; Erbes, T.; Maecke, H. R.; Bulla, S.; Bartholomä, M.; Mayer, S.; Drendel, V.; Bronsert, P.; Werner, M.; Gitsch, G.; Weber, W. A.; Stickeler, E.; Meyer, P. T. Gastrin-Releasing Peptide Receptor Imaging in Breast Cancer Using the Receptor Antagonist 68 Ga-RM2 And PET. Theranostics 2016, 6 (10), 16411650,  DOI: 10.7150/thno.14958
    32. 32
      Marusyk, A.; Polyak, K. Tumor Heterogeneity: Causes and Consequences. Biochim. Biophys. Acta - Rev. Cancer 2010, 1805 (1), 105117,  DOI: 10.1016/j.bbcan.2009.11.002
    33. 33
      Ciccarese, C.; Massari, F.; Iacovelli, R.; Fiorentino, M.; Montironi, R.; Di Nunno, V.; Giunchi, F.; Brunelli, M.; Tortora, G. Prostate Cancer Heterogeneity: Discovering Novel Molecular Targets for Therapy. Cancer Treat. Rev. 2017, 54, 6873,  DOI: 10.1016/j.ctrv.2017.02.001
    34. 34
      Rybalov, M.; Ananias, H. J. K.; Hoving, H. D.; van der Poel, H. G.; Rosati, S.; de Jong, I. J. PSMA, EpCAM, VEGF and GRPR as Imaging Targets in Locally Recurrent Prostate Cancer after Radiotherapy. Int. J. Mol. Sci. 2014, 15 (4), 60466061,  DOI: 10.3390/ijms15046046
    35. 35
      Liolios, C.; Sachpekidis, C.; Schäfer, M.; Kopka, K. Bispecific Radioligands Targeting Prostate-Specific Membrane Antigen and Gastrin-Releasing Peptide Receptors on the Surface of Prostate Cancer Cells. J. Label. Compd. Radiopharm. 2019, 62 (8), 510522,  DOI: 10.1002/jlcr.3749
    36. 36
      Liolios, C. C.; Fragogeorgi, E. A.; Zikos, C.; Loudos, G.; Xanthopoulos, S.; Bouziotis, P.; Paravatou-Petsotas, M.; Livaniou, E.; Varvarigou, A. D.; Sivolapenko, G. B. Structural Modifications of 99mTc-Labelled Bombesin-like Peptides for Optimizing Pharmacokinetics in Prostate Tumor Targeting. Int. J. Pharm. 2012, 430 (1–2), 117,  DOI: 10.1016/j.ijpharm.2012.02.049
    37. 37
      Reubi, J. C.; Maecke, H. R. Approaches to Multireceptor Targeting: Hybrid Radioligands, Radioligand Cocktails, and Sequential Radioligand Applications. J. Nucl. Med. 2017, 58 (Supplement 2), 10S16S,  DOI: 10.2967/jnumed.116.186882
    38. 38
      Handl, H. L.; Vagner, J.; Han, H.; Mash, E.; Hruby, V. J.; Gillies, R. J. Hitting Multiple Targets with Multimeric Ligands. Expert Opin. Ther. Targets 2004, 8 (6), 565586,  DOI: 10.1517/14728222.8.6.565
    39. 39
      Eder, M.; Schäfer, M.; Bauder-Wüst, U.; Haberkorn, U.; Eisenhut, M.; Kopka, K. Preclinical Evaluation of a Bispecific Low-Molecular Heterodimer Targeting Both PSMA and GRPR for Improved PET Imaging and Therapy of Prostate Cancer. Prostate 2014, 74 (6), 659668,  DOI: 10.1002/pros.22784
    40. 40
      Liolios, C.; Schäfer, M.; Haberkorn, U.; Eder, M.; Kopka, K. Novel Bispecific PSMA/GRPr Targeting Radioligands with Optimized Pharmacokinetics for Improved PET Imaging of Prostate Cancer. Bioconjugate Chem. 2016, 27 (3), 737751,  DOI: 10.1021/acs.bioconjchem.5b00687
    41. 41
      Mitran, B.; Varasteh, Z.; Abouzayed, A.; Rinne, S. S.; Puuvuori, E.; De Rosa, M.; Larhed, M.; Tolmachev, V.; Orlova, A.; Rosenström, U. Bispecific GRPR-Antagonistic Anti-PSMA/GRPR Heterodimer for PET and SPECT Diagnostic Imaging of Prostate Cancer. Cancers (Basel) 2019, 11 (9), 1371,  DOI: 10.3390/cancers11091371
    42. 42
      Lundmark, F.; Abouzayed, A.; Mitran, B.; Rinne, S. S.; Varasteh, Z.; Larhed, M.; Tolmachev, V.; Rosenström, U.; Orlova, A. Heterodimeric Radiotracer Targeting PSMA and GRPR for Imaging of Prostate Cancer─Optimization of the Affinity towards PSMA by Linker Modification in Murine Model. Pharmaceutics 2020, 12 (7), 614,  DOI: 10.3390/pharmaceutics12070614
    43. 43
      Mendoza-Figueroa, M. J.; Escudero-Castellanos, A.; Ramirez-Nava, G. J.; Ocampo-García, B. E.; Santos-Cuevas, C. L.; Ferro-Flores, G.; Pedraza-Lopez, M.; Avila-Rodriguez, M. A. Preparation and Preclinical Evaluation of 68Ga-IPSMA-BN as a Potential Heterodimeric Radiotracer for PET-Imaging of Prostate Cancer. J. Radioanal. Nucl. Chem. 2018, 318 (3), 20972105,  DOI: 10.1007/s10967-018-6285-3
    44. 44
      Bandari, R. P.; Carmack, T. L.; Malhotra, A.; Watkinson, L.; Fergason Cantrell, E. A.; Lewis, M. R.; Smith, C. J. Development of Heterobivalent Theranostic Probes Having High Affinity/Selectivity for the GRPR/PSMA. J. Med. Chem. 2021, 64 (4), 21512166,  DOI: 10.1021/acs.jmedchem.0c01785
    45. 45
      Yan, Y.; Chen, X. Peptide Heterodimers for Molecular Imaging. Amino Acids 2011, 41, 10811092,  DOI: 10.1007/s00726-010-0546-y
    46. 46
      Cheng, C.; Pan, L.; Dimitrakopoulou-Strauss, A.; Schäfer, M.; Wängler, C.; Wängler, B.; Haberkorn, U.; Strauss, L. G. Comparison between 68Ga-Bombesin (68Ga-BZH3) and the CRGD Tetramer 68Ga-RGD4 Studies in an Experimental Nude Rat Model with a Neuroendocrine Pancreatic Tumor Cell Line. EJNMMI Res. 2011, 1, 34,  DOI: 10.1186/2191-219X-1-34
    47. 47
      Strauss, L. G.; Koczan, D.; Seiz, M.; Tuettenberg, J.; Schmieder, K.; Pan, L.; Cheng, C.; Dimitrakopoulou-Strauss, A. Correlation of the Ga-68-Bombesin Analog Ga-68-BZH3 with Receptors Expression in Gliomas as Measured by Quantitative Dynamic Positron Emission Tomography (DPET) and Gene Arrays. Mol. Imaging Biol. 2012, 14 (3), 376383,  DOI: 10.1007/s11307-011-0508-0
    48. 48
      Escudero-Castellanos, A.; Ocampo-García, B.; Ferro-Flores, G.; Santos-Cuevas, C.; Morales-Ávila, E.; Luna-Gutiérrez, M.; Isaac-Olivé, K. Synthesis and Preclinical Evaluation of the 177Lu-DOTA-PSMA(Inhibitor)-Lys 3 -Bombesin Heterodimer Designed as a Radiotheranostic Probe for Prostate Cancer. Nucl. Med. Commun. 2019, 40 (3), 278286,  DOI: 10.1097/MNM.0000000000000966
    49. 49
      Santos-Cuevas, C.; Ferro-Flores, G.; García-Pérez, F. O.; Jiménez-Mancilla, N.; Ramírez-Nava, G.; Ocampo-García, B.; Luna-Gutiérrez, M.; Azorín-Vega, E.; Davanzo, J.; Soldevilla-Gallardo, I. 177Lu-DOTA-HYNIC-Lys(Nal)-Urea-Glu: Biokinetics, Dosimetry, and Evaluation in Patients with Advanced Prostate Cancer. Contrast Media Mol. Imaging 2018, 2018, 110,  DOI: 10.1155/2018/5247153
    50. 50
      Abouzayed, A.; Yim, C.-B.; Mitran, B.; Rinne, S. S.; Tolmachev, V.; Larhed, M.; Rosenström, U.; Orlova, A. Synthesis and Preclinical Evaluation of Radio-Iodinated GRPR/PSMA Bispecific Heterodimers for the Theranostics Application in Prostate Cancer. Pharmaceutics 2019, 11 (7), 358,  DOI: 10.3390/pharmaceutics11070358
    51. 51
      Eltit, F.; Robinson, N.; Yu, P. L. I.; Pandey, M.; Lozada, J.; Guo, Y.; Sharma, M.; Ozturan, D.; Ganier, L.; Belanger, E.; Lack, N. A.; Perrin, D. M.; Cox, M. E.; Goldenberg, S. L. The “Ins and Outs” of Prostate Specific Membrane Antigen (PSMA) as Specific Target in Prostate Cancer Therapy. Adv. Exp. Med. Biol. 2023, 1408, 291308,  DOI: 10.1007/978-3-031-26163-3_16
    52. 52
      Lundmark, F.; Abouzayed, A.; Rinne, S. S.; Timofeev, V.; Sipkina, N.; Naan, M.; Kirichenko, A.; Vasyutina, M.; Ryzhkova, D.; Tolmachev, V.; Rosenström, U.; Orlova, A. Preclinical Characterisation of PSMA/GRPR-Targeting Heterodimer [68Ga]Ga-BQ7812 for PET Diagnostic Imaging of Prostate Cancer: A Step towards Clinical Translation. Cancers (Basel) 2023, 15 (2), 442,  DOI: 10.3390/cancers15020442
    53. 53
      Liolios, C.; Buchmuller, B.; Bauder-Wüst, U.; Schäfer, M.; Leotta, K.; Haberkorn, U.; Eder, M.; Kopka, K. Monomeric and Dimeric 68 Ga-Labeled Bombesin Analogues for Positron Emission Tomography (PET) Imaging of Tumors Expressing Gastrin-Releasing Peptide Receptors (GRPrs). J. Med. Chem. 2018, 61 (5), 20622074,  DOI: 10.1021/acs.jmedchem.7b01856
    54. 54
      Salvanou, E. A.; Kolokithas-Ntoukas, A.; Liolios, C.; Xanthopoulos, S.; Paravatou-Petsotas, M.; Tsoukalas, C.; Avgoustakis, K.; Bouziotis, P. Preliminary Evaluation of Iron Oxide Nanoparticles Radiolabeled with 68Ga and 177Lu as Potential Theranostic Agents. Nanomater. 2022, Vol. 12, Page 2490 2022, 12 (14), 2490,  DOI: 10.3390/nano12142490
    55. 55
      Barinka, C.; Hlouchova, K.; Rovenska, M.; Majer, P.; Dauter, M.; Hin, N.; Ko, Y.-S.; Tsukamoto, T.; Slusher, B. S.; Konvalinka, J.; Lubkowski, J. Structural Basis of Interactions between Human Glutamate Carboxypeptidase II and Its Substrate Analogs. J. Mol. Biol. 2008, 376 (5), 14381450,  DOI: 10.1016/j.jmb.2007.12.066
    56. 56
      Barinka, C.; Byun, Y.; Dusich, C. L.; Banerjee, S. R.; Chen, Y.; Castanares, M.; Kozikowski, A. P.; Mease, R. C.; Pomper, M. G.; Lubkowski, J. Interactions between Human Glutamate Carboxypeptidase II and Urea-Based Inhibitors: Structural Characterization. J. Med. Chem. 2008, 51 (24), 77377743,  DOI: 10.1021/jm800765e
    57. 57
      Peng, S.; Zhan, Y.; Zhang, D.; Ren, L.; Chen, A.; Chen, Z. F.; Zhang, H. Structures of Human Gastrin-Releasing Peptide Receptors Bound to Antagonist and Agonist for Cancer and Itch Therapy. Proc. Natl. Acad. Sci. U. S. A. 2023, 120 (6), e2216230120,  DOI: 10.1073/pnas.2216230120
    58. 58
      McDevitt, M. R.; Barendswaard, E.; Ma, D.; Lai, L.; Curcio, M. J.; Sgouros, G.; Ballangrud, A. M.; Yang, W.-H.; Finn, R. D.; Pellegrini, V.; Geerlings, M. W., Jr.; Lee, M.; Brechbiel, M. W.; Bander, N. H.; Cordon-Cardo, C.; Scheinberg, D. A. An {{alpha}}-Particle Emitting Antibody ([213 Bi]J591) for Radioimmunotherapy of Prostate Cancer. Cancer Res. 2000, 60 (21), 60956100
    59. 59
      Wang, X.; Ma, D.; Olson, W. C.; Heston, W. D. W. In Vitro and in Vivo Responses of Advanced Prostate Tumors to PSMA ADC, an Auristatin-Conjugated Antibody to Prostate-Specific Membrane Antigen. Mol. Cancer Ther. 2011, 10 (9), 17281739,  DOI: 10.1158/1535-7163.MCT-11-0191
    60. 60
      Schuhmacher, J.; Zhang, H.; Doll, J.; Mäcke, H. R.; Matys, R.; Hauser, H.; Henze, M.; Haberkorn, U.; Eisenhut, M. GRP Receptor-Targeted PET of a Rat Pancreas Carcinoma Xenograft in Nude Mice with a 68Ga-Labeled Bombesin(6–14) Analog. J. Nucl. Med. 2005, 46 (4), 691699
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsmedchemlett.4c00324.

    • General materials and methods, compound preparation, radiolabeling, determination of lipophilicity, general cell culture and cell assays, determination of binding affinity in PC-3 and LNCaP cells, time kinetic cell binding, internalization in PC-3 and LNCAP cells, biodistribution, and docking calculations (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.