ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Cytotoxic Activity of Salicylic Acid-Containing Drug Models with Ionic and Covalent Binding

View Author Information
N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, Moscow 119334, Russia
§ D. Rogachev Federal Scientific Clinical Centre of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russian Federation, Samory Mashela str., Moscow 117198, Russia
Peoples’ Friendship University of Russia, 6 Miklukho-Maklay Street, Moscow 117198, Russian Federation
A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow 119991, Russian Federation
# Saint Petersburg State University, Universitetsky Prospekt 26, Stary Petergof 198504, Russia
Cite this: ACS Med. Chem. Lett. 2015, 6, 11, 1099–1104
Publication Date (Web):September 28, 2015
https://doi.org/10.1021/acsmedchemlett.5b00258
Copyright © 2015 American Chemical Society

    Article Views

    1820

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (780 KB)
    Supporting Info (2)»

    Abstract

    Abstract Image

    Three different types of drug delivery platforms based on imidazolium ionic liquids (ILs) were synthesized in high preparative yields, namely, the models involving (i) ionic binding of drug and IL; (ii) covalent binding of drug and IL; and (iii) dual binding using both ionic and covalent approaches. Seven ionic liquids containing salicylic acid (SA-ILs) in the cation or/and in the anion were prepared, and their cytotoxicity toward the human cell lines CaCo-2 (colorectal adenocarcinoma) and 3215 LS (normal fibroblasts) was evaluated. Cytotoxicity of SA-ILs was significantly higher than that of conventional imidazolium-based ILs and was comparable to the pure salicylic acid. It is important to note that the obtained SA-ILs dissolved in water more readily than salicylic acid, suggesting benefits of possible usage of traditional nonsoluble active pharmaceutical ingredients in an ionic liquid form.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsmedchemlett.5b00258.

    • Structural data for [PrMIM-OSal][Cl] (CIF)

    • Materials, experimental procedures, and details on X-ray, MS, and NMR studies (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 63 publications.

    1. Witold Stachowiak, Damian Krystian Kaczmarek, Tomasz Rzemieniecki, Michał Niemczak. Sustainable Design of New Ionic Forms of Vitamin B3 and Their Utilization as Plant Protection Agents. Journal of Agricultural and Food Chemistry 2022, 70 (27) , 8222-8232. https://doi.org/10.1021/acs.jafc.2c01807
    2. Marina M. Seitkalieva, Anna V. Vavina, Alexandra V. Posvyatenko, Ksenia S. Egorova, Alexey S. Kashin, Evgeniy G. Gordeev, Elena N. Strukova, Leonid V. Romashov, Valentine P. Ananikov. Biomass-Derived Ionic Liquids Based on a 5-HMF Platform Chemical: Synthesis, Characterization, Biological Activity, and Tunable Interactions at the Molecular Level. ACS Sustainable Chemistry & Engineering 2021, 9 (9) , 3552-3570. https://doi.org/10.1021/acssuschemeng.0c08790
    3. Ana Teresa Silva, Maria João Cerqueira, Cristina Prudêncio, Maria Helena Fernandes, João Costa-Rodrigues, Cátia Teixeira, Paula Gomes, Ricardo Ferraz. Antiproliferative Organic Salts Derived from Betulinic Acid: Disclosure of an Ionic Liquid Selective Against Lung and Liver Cancer Cells. ACS Omega 2019, 4 (3) , 5682-5689. https://doi.org/10.1021/acsomega.8b03691
    4. Shreya Pramanik, Saikat Chakraborty, Malavika Sivan, Birija S. Patro, Sucheta Chatterjee, Dibakar Goswami. Cell Permeable Imidazole-Desferrioxamine Conjugates: Synthesis and In Vitro Evaluation. Bioconjugate Chemistry 2019, 30 (3) , 841-852. https://doi.org/10.1021/acs.bioconjchem.8b00924
    5. Hemayat Shekaari, Mohammed Taghi Zafarani-Moattar, Seyyedeh Narjes Mirheydari, Saeid Faraji. Thermophysical Properties of 1-Hexyl-3-methylimidazolium Salicylate as an Active Pharmaceutical Ingredient Ionic Liquid (API-IL) in Aqueous Solutions of Glycine and l-Alanine. Journal of Chemical & Engineering Data 2019, 64 (1) , 124-134. https://doi.org/10.1021/acs.jced.8b00644
    6. Fedor A. Kucherov, Ksenia S. Egorova, Alexandra V. Posvyatenko, Dmitry B. Eremin, and Valentine P. Ananikov . Investigation of Cytotoxic Activity of Mitoxantrone at the Individual Cell Level by Using Ionic-Liquid-Tag-Enhanced Mass Spectrometry. Analytical Chemistry 2017, 89 (24) , 13374-13381. https://doi.org/10.1021/acs.analchem.7b03568
    7. Ksenia S. Egorova, Evgeniy G. Gordeev, and Valentine P. Ananikov . Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine. Chemical Reviews 2017, 117 (10) , 7132-7189. https://doi.org/10.1021/acs.chemrev.6b00562
    8. Azzurra Agostini, Simone Gatti, Alberto Cesana, and Davide Moscatelli . Synthesis and Degradation Study of Cationic Polycaprolactone-Based Nanoparticles for Biomedical and Industrial Applications. Industrial & Engineering Chemistry Research 2017, 56 (20) , 5872-5880. https://doi.org/10.1021/acs.iecr.7b00426
    9. Zijun Zhang, Qiuyang Zhang, Shuna Gao, Hui Xu, Jiangna Guo, Feng Yan. Antibacterial, anti-inflammatory and wet-adhesive poly(ionic liquid)-based oral patch for the treatment of oral ulcers with bacterial infection. Acta Biomaterialia 2023, 166 , 254-265. https://doi.org/10.1016/j.actbio.2023.05.017
    10. A. V. Sedanova, L. G. P’yanova, N. V. Kornienko, M. S. Delyagina, V. A. Drozdov, A. V. Vasilevich, N. N. Leont’eva, M. S. Mel’gunov, A. V. Lavrenov. Adsorption of organic dyes in mesoporous carbon sorbent modified with salicylic acid. Journal of Materials Science 2023, 58 (28) , 11469-11485. https://doi.org/10.1007/s10853-023-08660-8
    11. Lilya U. Dzhemileva, Regina A. Tuktarova, Usein M. Dzhemilev, Vladimir A. D’yakonov. Pentacyclic Triterpenoids-Based Ionic Compounds: Synthesis, Study of Structure–Antitumor Activity Relationship, Effects on Mitochondria and Activation of Signaling Pathways of Proliferation, Genome Reparation and Early Apoptosis. Cancers 2023, 15 (3) , 756. https://doi.org/10.3390/cancers15030756
    12. Maasomeh Maarfavi, Morteza Zare, Siamak Noorizadeh. Structural, electronic, and thermochemical properties of salicylic acid-containing ionic liquids as active pharmaceutical ingredients. Journal of Molecular Liquids 2023, 369 , 120824. https://doi.org/10.1016/j.molliq.2022.120824
    13. Sepideh Kalhor, Alireza Fattahi. Design of ionic liquids containing glucose and choline as drug carriers, finding the link between QM and MD studies. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-25963-z
    14. Kirti Mishra, Nishu Devi, Samarjeet Singh Siwal, Qibo Zhang, Walaa F. Alsanie, Fabrizio Scarpa, Vijay Kumar Thakur. Ionic Liquid‐Based Polymer Nanocomposites for Sensors, Energy, Biomedicine, and Environmental Applications: Roadmap to the Future. Advanced Science 2022, 9 (26) https://doi.org/10.1002/advs.202202187
    15. Anna V. Vavina, Marina M. Seitkalieva, Alexandra V. Posvyatenko, Evgeniy G. Gordeev, Elena N. Strukova, Ksenia S. Egorova, Valentine P. Ananikov. Merging structural frameworks of imidazolium, pyridinium, and cholinium ionic liquids with cinnamic acid to tune solution state behavior and properties. Journal of Molecular Liquids 2022, 352 , 118673. https://doi.org/10.1016/j.molliq.2022.118673
    16. M. Sevindik, C. Bal. Chemical Characterization, Antibacterial, Antifungal, Antioxidant and Oxidant Activities of Wild Mushrooms Rhizopogon luteolus and Rhizopogon roseolus. Biology Bulletin 2022, 49 (S1) , S101-S108. https://doi.org/10.1134/S1062359022130180
    17. Joanna Klebeko, Paula Ossowicz-Rupniewska, Ewelina Świątek, Joanna Szachnowska, Ewa Janus, Stefka G. Taneva, Elena Krachmarova, Maya Guncheva. Salicylic Acid as Ionic Liquid Formulation May Have Enhanced Potency to Treat Some Chronic Skin Diseases. Molecules 2022, 27 (1) , 216. https://doi.org/10.3390/molecules27010216
    18. Belen Altava, Santiago V. Luis, Eduardo García-Verdugo, Raul Porcar. Application of ionic liquids in pharmaceutics and medicine. 2022, 317-375. https://doi.org/10.1016/B978-0-323-91306-5.00008-X
    19. Meng Sun, Zhenning Yan, Wenwen Chu. Physicochemical study on molecular interactions of the active pharmaceutical ingredient ionic liquid domiphen salicylate with amino acids at different temperatures. Journal of Molecular Liquids 2022, 346 , 117072. https://doi.org/10.1016/j.molliq.2021.117072
    20. Ksenia S. Egorova, Valentine P. Ananikov. Biological Activity of Ionic Liquids Involving Ionic and Covalent Binding: Tunable Drug Development Platform. 2022, 151-158. https://doi.org/10.1007/978-981-33-4221-7_1
    21. Marco Saedtler, Lorenz Meinel. Amorphous Ionic Liquid Strategies for Pharmaceutical Application. 2022, 62-72. https://doi.org/10.1007/978-981-33-4221-7_2
    22. Marina M. Seitkalieva, Dmitriy E. Samoylenko, Kristina A. Lotsman, Konstantin S. Rodygin, Valentine P. Ananikov. Metal nanoparticles in ionic liquids: Synthesis and catalytic applications. Coordination Chemistry Reviews 2021, 445 , 213982. https://doi.org/10.1016/j.ccr.2021.213982
    23. Xiying Wu, Quangang Zhu, Zhongjian Chen, Wei Wu, Yi Lu, Jianping Qi. Ionic liquids as a useful tool for tailoring active pharmaceutical ingredients. Journal of Controlled Release 2021, 338 , 268-283. https://doi.org/10.1016/j.jconrel.2021.08.032
    24. Daniela Maria Correia, Liliana Correia Fernandes, Margarida Macedo Fernandes, Bruno Hermenegildo, Rafaela Marques Meira, Clarisse Ribeiro, Sylvie Ribeiro, Javier Reguera, Senentxu Lanceros-Méndez. Ionic Liquid-Based Materials for Biomedical Applications. Nanomaterials 2021, 11 (9) , 2401. https://doi.org/10.3390/nano11092401
    25. Dorota Dobler, Thomas Schmidts, Michael Merzhäuser, Peggy Schlupp, Frank Runkel. Salicylate-Based Ionic Liquids as Innovative Ingredients in Dermal Formulations. Journal of Pharmaceutical Sciences 2021, 297 https://doi.org/10.1016/j.xphs.2021.09.028
    26. Lilya U. Dzhemileva, Vladimir A. D'yakonov, Marina M. Seitkalieva, Natalia S. Kulikovskaya, Ksenia S. Egorova, Valentine P. Ananikov. A large-scale study of ionic liquids employed in chemistry and energy research to reveal cytotoxicity mechanisms and to develop a safe design guide. Green Chemistry 2021, 23 (17) , 6414-6430. https://doi.org/10.1039/D1GC01520F
    27. Ksenia S Egorova, Alexandra V Posvyatenko, Sergey S Larin, Valentine P Ananikov. Ionic liquids: prospects for nucleic acid handling and delivery. Nucleic Acids Research 2021, 49 (3) , 1201-1234. https://doi.org/10.1093/nar/gkaa1280
    28. Erum Akbar Hussain. Green solvents for drug synthesis. 2021, 55-86. https://doi.org/10.1016/B978-0-12-821885-3.00011-6
    29. Rahman Md Moshikur, Masahiro Goto. Ionic Liquids as Active Pharmaceutical Ingredients (APIs). 2021, 13-33. https://doi.org/10.1007/978-981-16-4365-1_2
    30. Rahman Md Moshikur, Md. Raihan Chowdhury, Muhammad Moniruzzaman, Masahiro Goto. Biocompatible ionic liquids and their applications in pharmaceutics. Green Chemistry 2020, 22 (23) , 8116-8139. https://doi.org/10.1039/D0GC02387F
    31. Daria M. Arkhipova, Vadim V. Ermolaev, Vasily A. Miluykov, Aidar T. Gubaidullin, Daut R. Islamov, Olga N. Kataeva, Valentine P. Ananikov. Sterically Hindered Phosphonium Salts: Structure, Properties and Palladium Nanoparticle Stabilization. Nanomaterials 2020, 10 (12) , 2457. https://doi.org/10.3390/nano10122457
    32. Daniela A.S. Agostinho, Ana I. Paninho, Teresa Cordeiro, Ana V.M. Nunes, Isabel M. Fonseca, Carolina Pereira, Ana Matias, Márcia G. Ventura. Properties of κ-carrageenan aerogels prepared by using different dissolution media and its application as drug delivery systems. Materials Chemistry and Physics 2020, 253 , 123290. https://doi.org/10.1016/j.matchemphys.2020.123290
    33. Tikai Zhang, Bin Sun, Jiangna Guo, Mengyao Wang, Hengqing Cui, Hailei Mao, Bin Wang, Feng Yan. Active pharmaceutical ingredient poly(ionic liquid)-based microneedles for the treatment of skin acne infection. Acta Biomaterialia 2020, 115 , 136-147. https://doi.org/10.1016/j.actbio.2020.08.023
    34. Martin Brehm, Julian Radicke, Martin Pulst, Farzaneh Shaabani, Daniel Sebastiani, Jörg Kressler. Dissolving Cellulose in 1,2,3-Triazolium- and Imidazolium-Based Ionic Liquids with Aromatic Anions. Molecules 2020, 25 (15) , 3539. https://doi.org/10.3390/molecules25153539
    35. Simran K. Zandu, Hitesh Chopra, Inderbir Singh. Ionic Liquids for Therapeutic and Drug Delivery Applications. Current Drug Research Reviews 2020, 12 (1) , 26-41. https://doi.org/10.2174/2589977511666191125103338
    36. Weizi Huang, Xiying Wu, Jianping Qi, Quangang Zhu, Wei Wu, Yi Lu, Zhongjian Chen. Ionic liquids: green and tailor-made solvents in drug delivery. Drug Discovery Today 2020, 25 (5) , 901-908. https://doi.org/10.1016/j.drudis.2019.09.018
    37. Sefa Celik, Ali Tugrul Albayrak, Sevim Akyuz, Aysen E. Ozel. Synthesis, molecular docking and ADMET study of ionic liquid as anticancer inhibitors of DNA and COX-2, TOPII enzymes. Journal of Biomolecular Structure and Dynamics 2020, 38 (5) , 1354-1364. https://doi.org/10.1080/07391102.2019.1604263
    38. Shoaib Muhammad, Muhammad Naveed Javed, Firdous Imran Ali, Ahmed Bari, Imran Ali Hashmi. Supramolecular polymeric aggregation behavior and its impact on catalytic properties of imidazolium based hydrophilic ionic liquids. Journal of Molecular Liquids 2020, 300 , 112372. https://doi.org/10.1016/j.molliq.2019.112372
    39. Ana Rita Dias, João Costa-Rodrigues, Cátia Teixeira, Cristina Prudêncio, Paula Gomes, Ricardo Ferraz. Ionic Liquids for Topical Delivery in Cancer. Current Medicinal Chemistry 2020, 26 (41) , 7520-7532. https://doi.org/10.2174/0929867325666181026110227
    40. Magaret Sivapragasam, Cecilia Devi Wilfred. Biological Applications of Ionic Liquids-Based Surfactants: A Review of the Current Scenario. 2020, 137-152. https://doi.org/10.1007/978-3-030-44995-7_8
    41. Rafał Bielas, Anna Mielańczyk, Magdalena Skonieczna, Łukasz Mielańczyk, Dorota Neugebauer. Choline supported poly(ionic liquid) graft copolymers as novel delivery systems of anionic pharmaceuticals for anti-inflammatory and anti-coagulant therapy. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-50896-5
    42. Nannan Xing, Kaixuan Niu, Kefeng Liu, Dawei Fang, Xiaoxue Ma, Wei Guan, Jiazhen Yang. The molar surface quasi-Gibbs energy and its application to the binary mixtures of 1-(2-methoxyethyl)-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide [MOEMIM][NTf2] with methanol and ethanol. The Journal of Chemical Thermodynamics 2019, 138 , 116-126. https://doi.org/10.1016/j.jct.2019.06.005
    43. Inês C. B. Martins, Dominik Al-Sabbagh, Klas Meyer, Michael Maiwald, Gudrun Scholz, Franziska Emmerling. Insight into the Structure and Properties of Novel Imidazole-Based Salts of Salicylic Acid. Molecules 2019, 24 (22) , 4144. https://doi.org/10.3390/molecules24224144
    44. Catarina M. S. S. Neves, Marcos Figueiredo, Patrícia M. Reis, Ana C. A. Sousa, Ana C. Cristóvão, Mariana B. Fiadeiro, Luís Paulo N. Rebelo, João A. P. Coutinho, José M. S. S. Esperança, Mara G. Freire. Simultaneous Separation of Antioxidants and Carbohydrates From Food Wastes Using Aqueous Biphasic Systems Formed by Cholinium-Derived Ionic Liquids. Frontiers in Chemistry 2019, 7 https://doi.org/10.3389/fchem.2019.00459
    45. M. A. Brusina, D. N. Nikolaev, L. B. Piotrovskiy. Synthesis of substituted imidazole-4,5-dicarboxylic acids. Russian Chemical Bulletin 2019, 68 (4) , 671-680. https://doi.org/10.1007/s11172-019-2474-7
    46. Hemayat Shekaari, Mohammed Taghi Zafarani-Moattar, Seyyedeh Narjes Mirheydari. Study of interactions between l-alanine and 1-octyl-3-methylimidazolium salicylate or 1-octyl-3-methylimidazolium ibuprofenate using the thermophysical properties at T = 298.15 K. Journal of Molecular Liquids 2019, 278 , 105-114. https://doi.org/10.1016/j.molliq.2019.01.030
    47. Ksenia S. Egorova, Valentine P. Ananikov. Biological Activity of Ionic Liquids Involving Ionic and Covalent Binding: Tunable Drug Development Platform. 2019, 1-8. https://doi.org/10.1007/978-981-10-6739-6_1-1
    48. Marco Saedtler, Lorenz Meinel. Amorphous Ionic Liquid Strategies for Pharmaceutical Application. 2019, 1-11. https://doi.org/10.1007/978-981-10-6739-6_2-1
    49. Robert Löwe, Thomas Hanemann, Andreas Hofmann. Polymerizable Ionic Liquids for Solid-State Polymer Electrolytes. Molecules 2019, 24 (2) , 324. https://doi.org/10.3390/molecules24020324
    50. Rajni Vashishat, Reshu Sanan, Debes Ray, Vinod Kumar Aswal, Rakesh Kumar Mahajan. Biamphiphilic Ionic Liquids‐Drug Mixtures: Interactional and Morphological Aspects. ChemistrySelect 2018, 3 (25) , 7089-7099. https://doi.org/10.1002/slct.201801296
    51. Rahman Md. Moshikur, Md. Raihan Chowdhury, Rie Wakabayashi, Yoshiro Tahara, Muhammad Moniruzzaman, Masahiro Goto. Characterization and cytotoxicity evaluation of biocompatible amino acid esters used to convert salicylic acid into ionic liquids. International Journal of Pharmaceutics 2018, 546 (1-2) , 31-38. https://doi.org/10.1016/j.ijpharm.2018.05.021
    52. Pratap Chandra Acharya, Clara Fernandes, Divya Suares, Saritha Shetty, Rakesh K. Tekade. Solubility and Solubilization Approaches in Pharmaceutical Product Development. 2018, 513-547. https://doi.org/10.1016/B978-0-12-814423-7.00015-0
    53. Yuliya V. Yushkova, Elena I. Chernyak, Yuriy V. Gatilov, Vladimir G. Vasil'ev, Sergey V. Morozov, Igor A. Grigor'ev. Synthesis, structure, antioxidant activity, and water solubility of trolox ion conjugates. Saudi Pharmaceutical Journal 2018, 26 (1) , 84-92. https://doi.org/10.1016/j.jsps.2017.10.008
    54. Nannan Xing, Lili Yang, Jie Wei, Chuang Gu, Zhe Li, Wei Guan. Excess molar volume and excess Gibbs energy of activation for viscous flow for the binary mixtures of N -ethylpyridinium dicyanamide [C 2 py][DCA] with alcohols. The Journal of Chemical Thermodynamics 2017, 115 , 171-179. https://doi.org/10.1016/j.jct.2017.07.022
    55. A. N. Vereshchagin. Classical and interdisciplinary approaches to the design of organic and hybrid molecular systems. Russian Chemical Bulletin 2017, 66 (10) , 1765-1796. https://doi.org/10.1007/s11172-017-1950-1
    56. Ricardo Ferraz, Cátia Teixeira, Paula Gomes, Cristina Prudêncio. Bioactivity of Ionic Liquids. 2017, 404-422. https://doi.org/10.1039/9781788011839-00404
    57. Onkar Singh, Pankaj Singla, Rajwinder Kaur, Rakesh Kumar Mahajan. Tailoring the interfacial and bulk behavior of ionic-liquids with non surface active drug diclofenac sodium. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2017, 523 , 43-53. https://doi.org/10.1016/j.colsurfa.2017.04.012
    58. Vladimir A. D’yakonov, Aleksey A. Makarov, Alfiya R. Salimova, Evgeny N. Andreev, Usein M. Dzhemilev. A new stereoselective synthesis of biologically active di- and trienoic acids containing a (1 Z ,5 Z )-diene moiety. Mendeleev Communications 2017, 27 (3) , 234-236. https://doi.org/10.1016/j.mencom.2017.05.005
    59. Oleksandra Zavgorodnya, Julia L. Shamshina, Max Mittenthal, Parker D. McCrary, Giovanni P. Rachiero, Hatem M. Titi, Robin D. Rogers. Polyethylene glycol derivatization of the non-active ion in active pharmaceutical ingredient ionic liquids enhances transdermal delivery. New Journal of Chemistry 2017, 41 (4) , 1499-1508. https://doi.org/10.1039/C6NJ03709G
    60. J. Gravel, A. R. Schmitzer. Imidazolium and benzimidazolium-containing compounds: from simple toxic salts to highly bioactive drugs. Organic & Biomolecular Chemistry 2017, 15 (5) , 1051-1071. https://doi.org/10.1039/C6OB02293F
    61. N. V. Orlov. Rational design of complex molecular structures starting from readily available precursors. Russian Chemical Bulletin 2016, 65 (6) , 1418-1440. https://doi.org/10.1007/s11172-016-1470-4
    62. Noorul Adawiyah, Muhammad Moniruzzaman, Siti Hawatulaila, Masahiro Goto. Ionic liquids as a potential tool for drug delivery systems. MedChemComm 2016, 7 (10) , 1881-1897. https://doi.org/10.1039/C6MD00358C
    63. M. Vraneš, A. Tot, S. Jovanović-Šanta, M. Karaman, S. Dožić, K. Tešanović, V. Kojić, S. Gadžurić. Toxicity reduction of imidazolium-based ionic liquids by the oxygenation of the alkyl substituent. RSC Advances 2016, 6 (98) , 96289-96295. https://doi.org/10.1039/C6RA16182K

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect