ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Discovery of AG-120 (Ivosidenib): A First-in-Class Mutant IDH1 Inhibitor for the Treatment of IDH1 Mutant Cancers

  • Janeta Popovici-Muller
    Janeta Popovici-Muller
    Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
  • René M. Lemieux
    René M. Lemieux
    Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
  • Erin Artin
    Erin Artin
    Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
    More by Erin Artin
  • Jeffrey O. Saunders
    Jeffrey O. Saunders
    Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
  • Francesco G. Salituro
    Francesco G. Salituro
    Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
  • Jeremy Travins
    Jeremy Travins
    Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
  • Giovanni Cianchetta
    Giovanni Cianchetta
    Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
  • Zhenwei Cai
    Zhenwei Cai
    PharmaResources, Shanghai 201201, China
    More by Zhenwei Cai
  • Ding Zhou
    Ding Zhou
    PharmaResources, Shanghai 201201, China
    More by Ding Zhou
  • Dawei Cui
    Dawei Cui
    PharmaResources, Shanghai 201201, China
    More by Dawei Cui
  • Ping Chen
    Ping Chen
    PharmaResources, Shanghai 201201, China
    More by Ping Chen
  • Kimberly Straley
    Kimberly Straley
    Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
  • Erica Tobin
    Erica Tobin
    Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
    More by Erica Tobin
  • Fang Wang
    Fang Wang
    Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
    More by Fang Wang
  • Muriel D. David
    Muriel D. David
    INSERM U1170 and Gustave Roussy, Villejuif 94800, France
  • Virginie Penard-Lacronique
    Virginie Penard-Lacronique
    INSERM U1170 and Gustave Roussy, Villejuif 94800, France
  • Cyril Quivoron
    Cyril Quivoron
    INSERM U1170 and Gustave Roussy, Villejuif 94800, France
  • Véronique Saada
    Véronique Saada
    INSERM U1170 and Gustave Roussy, Villejuif 94800, France
  • Stéphane de Botton
    Stéphane de Botton
    INSERM U1170 and Gustave Roussy, Villejuif 94800, France
  • Stefan Gross
    Stefan Gross
    Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
    More by Stefan Gross
  • Lenny Dang
    Lenny Dang
    Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
    More by Lenny Dang
  • Hua Yang
    Hua Yang
    Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
    More by Hua Yang
  • Luke Utley
    Luke Utley
    Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
    More by Luke Utley
  • Yue Chen
    Yue Chen
    Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
    More by Yue Chen
  • Hyeryun Kim
    Hyeryun Kim
    Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
    More by Hyeryun Kim
  • Shengfang Jin
    Shengfang Jin
    Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
  • Zhiwei Gu
    Zhiwei Gu
    ChemPartner, Shanghai 201203, China
    More by Zhiwei Gu
  • Gui Yao
    Gui Yao
    ChemPartner, Shanghai 201203, China
    More by Gui Yao
  • Zhiyong Luo
    Zhiyong Luo
    ChemPartner, Shanghai 201203, China
    More by Zhiyong Luo
  • Xiaobing Lv
    Xiaobing Lv
    ChemPartner, Shanghai 201203, China
    More by Xiaobing Lv
  • Cheng Fang
    Cheng Fang
    ChemPartner, Shanghai 201203, China
    More by Cheng Fang
  • Liping Yan
    Liping Yan
    ChemPartner, Shanghai 201203, China
    More by Liping Yan
  • Andrew Olaharski
    Andrew Olaharski
    Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
  • Lee Silverman
    Lee Silverman
    Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
  • Scott Biller
    Scott Biller
    Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
    More by Scott Biller
  • Shin-San M. Su
    Shin-San M. Su
    Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
  • , and 
  • Katharine Yen*
    Katharine Yen
    Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
    *E-mail: [email protected]
Cite this: ACS Med. Chem. Lett. 2018, 9, 4, 300–305
Publication Date (Web):January 19, 2018
https://doi.org/10.1021/acsmedchemlett.7b00421

Copyright © 2018 American Chemical Society. This publication is licensed under these Terms of Use.

  • Open Access

Article Views

22954

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (1 MB)
Supporting Info (1)»

Abstract

Somatic point mutations at a key arginine residue (R132) within the active site of the metabolic enzyme isocitrate dehydrogenase 1 (IDH1) confer a novel gain of function in cancer cells, resulting in the production of d-2-hydroxyglutarate (2-HG), an oncometabolite. Elevated 2-HG levels are implicated in epigenetic alterations and impaired cellular differentiation. IDH1 mutations have been described in an array of hematologic malignancies and solid tumors. Here, we report the discovery of AG-120 (ivosidenib), an inhibitor of the IDH1 mutant enzyme that exhibits profound 2-HG lowering in tumor models and the ability to effect differentiation of primary patient AML samples ex vivo. Preliminary data from phase 1 clinical trials enrolling patients with cancers harboring an IDH1 mutation indicate that AG-120 has an acceptable safety profile and clinical activity.

Point mutations in isocitrate dehydrogenase (IDH) 1 and 2 are found in multiple tumors, including glioma, cholangiocarcinoma, chondrosarcoma, and acute myeloid leukemia (AML). (1) Mutant IDH (mIDH) enzymes have a gain-of-function activity that results in accumulation of the oncometabolite d-2-hydroxyglutatrate (2-HG), (2) which is structurally similar to α-ketoglutarate (α-KG). 2-HG competitively inhibits α-KG-dependent dioxygenases, which participate in many cellular processes such as histone and DNA demethylation, and adaption to hypoxia, and their inhibition leads to a block in normal cellular differentiation and oncogenic transformation. (1,3−5)

mIDH inhibitors represent a novel class of targeted cancer metabolism therapy that induces differentiation of proliferating cancer cells. The mIDH2 inhibitor enasidenib, recently approved by the FDA for relapsed/refractory AML, as well as all-trans retinoic acid for the treatment for acute promyelocytic leukemia, support the potential of such differentiation therapy. (6−8) We previously reported that the prototype mIDH1 inhibitor AGI-5198 inhibited both biochemical and cellular production of 2-HG. (9) AGI-5198 showed robust tumor 2-HG inhibition in an in vivo mIDH1 xenograft model, impaired growth of mIDH1 glioma cells in vivo, and induced epigenetic alterations leading to the expression of genes associated with gliogenic differentiation. (5) However, the poor pharmaceutical properties of AGI-5198 precluded its use in clinical studies. Although several additional mIDH1 inhibitors have been disclosed, (1,10,11) AG-120 is the first inhibitor of the mIDH1 enzyme to achieve clinical proof of concept in human trials. Lead optimization of AGI-5198 leading to the discovery of AG-120 is described here. The mIDH1-R132H enzyme was utilized for primary biochemical evaluation. Routine profiling in cells was done in the HT1080 chondrosarcoma cell line, which endogenously expresses mIDH1-R132C, and in our experience the potency for mIDH1-R132C is very similar to mIDH1-R132H, as previously reported. (9)

In vitro profiling of AGI-5198 in kinetic solubility and liver microsomal assays pointed to reasonable physicochemical properties but poor metabolic stability across species. Metabolite identification studies conducted in human liver microsomal S9 fraction revealed extensive NADPH-dependent oxidation of the cyclohexyl (R1) and imidazole ring (R4). The following strategies were therefore employed to decrease metabolic clearance (Table 1). At R4, the imidazole ring was replaced with moieties that emerged from broad structure–activity relationship profiling and had similar potency to AGI-5198, as previously described. (9) R1 modifications focused on blocking metabolism using fluorinated cycloalkyl groups, and to mitigate any potential oxidative metabolism at R2, the o-Me (X) group was replaced by an o-Cl group.

Table 1. Optimization of Microsome Stability and Potency Leading to AGI-14100
a

Enzymatic IC50 values for the mIDH1-R132H homodimer are the mean of at least two determinations performed as described in the Supporting Information.

b

Cellular IC50 from HT1080 chondrosarcoma cell line.

c

Microsome stability recorded as the hepatic extraction ratio in human liver microsomes.

d

Racemic.

e

Not determined.

Replacing the R4 imidazole group with glycine carbamate in 1 slightly improved the enzymatic potency but maintained the same high metabolic clearance. Simultaneously switching the o-Me group on R2 to o-Cl and the cyclohexyl in R1 to difluoro cyclobutyl in 2 incurred only a 5-fold potency loss, but brought the metabolic stability into the medium clearance range. Next, replacement of the glycine carbamate group at R4 with proline carbamate (3) restored the biochemical potency but lost the improvement in the hepatic extraction ratio (Eh). A metabolite identification study of 3 revealed that mono- and dioxidation of the proline carbamate moiety were the major metabolic pathways, allowing us to stabilize the R1 site of oxidative metabolism. Eliminating oxidative liabilities at R4 was the next focus. Replacing the methyl carbamate with a heterocyclic “mimic” gave the pyrimidine analog 4, which maintained biochemical potency but did not improve metabolic stability. Removal of the pyrimidine ring in 4 in concert with oxidation of the proline ring at the 2-position eliminated nearly all biochemical potency but resulted in much improved metabolic stability for 5, giving another important insight into stabilization of oxidative metabolism at R4. Addition of the pyrimidine ring on the oxidized proline moiety at R4 provided 6, which maintained low metabolic clearance and restored enzyme potency. Optimization then focused on improving the biochemical/cellular potency while maintaining low metabolic clearance.

A scan of heterocycles at R4 revealed that pyridines substituted with electron-withdrawing groups at the 4-position could achieve the desired potency and metabolic stability profile as shown for 7 and 8. Finally, additional fluorine substitution at the 5-position of the R3 aromatic group provided the compound AGI-14100, with a good balance of single-digit nM potency in enzyme and cell-based assays and desirable metabolic stability.

To further assess the suitability of AGI-14100 as a potential development candidate, additional pharmacokinetic (PK) properties were evaluated. Low clearance in liver microsomal incubations was observed across species, which was also observed in the rat, dog, and cynomolgus monkey in vivo (Table S1). However, assessment in the human pregnane X receptor (hPXR) screen indicated that AGI-14100 was potentially a cytochrome P450 (CYP) 3A4 inducer. hPXR activation by AGI-14100 was approximately 70% that of rifampicin, a known strong CYP 3A4 inducer. CYP induction studies using human hepatocytes confirmed the results (data not shown).

To mitigate the CYP induction liabilities, further medicinal chemistry optimization was conducted to eliminate hPXR activation (Table 2). Since the R1 and R2 substituents require hydrophobic character to maintain potency, our strategy focused on introducing polarity at R3 and R4 to decrease hPXR activation (12) while maintaining enzymatic and cellular potency, good metabolic stability, and avoiding efflux that may affect in vivo clearance.

Table 2. Reduction of hPXR Activation Leading to AG-120
a

Human pregnane X receptor activation was determined as the fold activation relative to reference compound (rifampicin).

b

The cell-permeability coefficient (Papp) was determined in both directions (apical to basolateral [A–B] and basolateral to apical [B–A]) across the Caco2 cell monolayer. The efflux ratio was estimated as Papp[B–A]/Papp[A–B].

c

Total polar surface area.

Starting from AGI-14100, the introduction of additional polarity (hydroxyl group) on the pyrrolidinone ring of R4 in 9 maintained similar potency, somewhat decreased hPXR activation at 1 μM, but also decreased overall permeability and increased the efflux ratio. Further increasing the polarity at R4 by transitioning from cyanopyridine to cyanopyrimidine heterocycle in 10 abolished the hPXR activation but led to poor cellular potency and decreased metabolic stability.

Next, functional group changes at R3 (replacing one of the F atoms with a sulfonamide group in 11) dramatically increased the polarity of the molecule, leading to low hPXR activation values, but coupled with high microsomal clearance and efflux ratio. Lastly, changing one of the C–F bonds at R3 with an N atom embedded in the ring led to AG-120, with a balance of desirable properties: good enzyme and cellular potency, good stability in human liver microsomes, reduced hPXR activation, good permeability, and low efflux ratio. Synthesis of AG-120 and all related analogues was accomplished as described in Scheme S1 and the Supporting Information.

Biochemical and cell biology profiling revealed that AG-120 inhibited several IDH1-R132 mutants with potency similar to that seen for R132H (Table 3) and was highly selective for IDH1 isoforms, showing no inhibition of IDH2 (WT or mutant) isoforms at micromolar concentrations (Table S2). AG-120 at 100 μM did not inhibit multiple dehydrogenases tested (Table S3).

Table 3. Biochemical and Cell Biology Profiling of AG-120
assay typemutationaIC50b (nM)
enzymeIDH1-R132H12
IDH1-R132C13
IDH1-R132G8
IDH1-R132L13
IDH1-R132S12
IDH1-R132H/IDH1-WT heterodimer + NADP+/NADPH @ 1 h12
IDH1-R132H/IDH1-WT heterodimer + NADP+/NADPH @ 16 h5
IDH1-WT + NADP+ @ 1h71
IDH1-WT + NADP+ @ 16h24
cell-basedU87 MG (R132H)19
neurospheres (R132H)3
HT1080 (R132C)8
COR-L105 (R132C)15
HCCC-9810 (R132S)12
a

All cell lines described here express mIDH1 endogenously, except U87 MG, which is an overexpression system.

b

For activity against enzyme, the enzyme and compound were preincubated for 1 or 16 h either in the presence or absence of cofactor as described in the Supporting Information.

In vitro, AG-120 exhibited rapid-equilibrium inhibition against the mIDH1-R132 homodimer. Kinetic studies of binding to demonstrate mode of action were inconclusive due to persistent prebound NADP(H) in all soluble mIDH1 enzyme preparations (Supporting Information, Figures S1 and S2). Surprisingly, AG-120 demonstrated slow-tight binding inhibition against the IDH1-WT homodimer (Figure S3 and S4).

AG-120 also showed good cellular potency across multiple mIDH1-R132 endogenous and overexpressing cell lines (Table 3), indicating its potential for use across all mIDH1-R132 cancers. AG-120 has a low turnover rate in liver microsomes derived from multiple species, including humans. PK studies performed in Sprague–Dawley rats, beagle dogs, and cynomolgus monkeys showed rapid oral absorption, low total body plasma clearance (CLp) and moderate to long half-life (t1/2) (Table S4). Although moderate exposure reduction was observed in a repeat-dose study in rodents (data not shown), no exposure reduction occurred in cynomolgus monkeys, and in patients with cancer a long t1/2 and accumulation of AG-120 following multiple doses were observed. (13,14)

Following a single oral dose of 50 mg/kg to rats with an intact blood–brain barrier, AG-120 exhibited brain penetration of 4.1% (AUC0–8h [brain]/AUC0–8h [plasma]). However, brain penetration is likely to be higher in glioma patients who have a compromised blood–brain barrier. Given that AG-120 is very potent and well tolerated, it has the potential to achieve therapeutic concentration in the brain, and its therapeutic benefit in glioma is being evaluated in clinical trials.

AG-120 showed robust tumor 2-HG reduction in female nude BALB/c mice inoculated with HT1080 cells. Each mouse received a single oral dose of vehicle or AG-120 at 50 or 150 mg/kg by gavage. Tumor 2-HG concentration declined rapidly, with maximum inhibition (92.0% and 95.2% at the 50 mg/kg and 150 mg/kg doses, respectively) achieved at ∼12 h post dose. Tumor 2-HG concentrations approached baseline levels 48–72 h following a single dose of AG-120 (Figure 1), consistent with the reversible nature of AG-120 inhibition.

Figure 1

Figure 1. Mean ± SD concentrations of AG-120 in plasma and 2-HG in tumor after single oral administration of AG-120 at 50 or 150 mg/kg in a mouse HT1080 xenograft tumor model (n = 3 at each time point).

IDH mutations have been shown to block normal cellular differentiation via epigenetic and metabolic rewiring. (1,3−5) To determine the effect of mIDH1 inhibition in primary human AML blast cells, mIDH1-R132H, mIDH1-R132C, and IDH1-WT, bone marrow or peripheral blood samples from patients (Table S5) were treated with AG-120 in an ex vivo assay. Living blast cells were sorted and cultured in medium containing cytokines (at a density of 0.5 × 106 cells/mL) in the presence or absence of AG-120. In mIDH1 samples, AG-120 reduced the level of intracellular 2-HG by 96% at the lowest tested dose (0.5 μM) and by 98.6% and 99.7%, respectively, at 1 and 5 μM (Figure 2). 2-HG was not measurable in multiple IDH1-WT patient samples assessed. AG-120 induced differentiation of primary mIDH1-R132H and mIDH1-R132C (but not IDH1-WT) blast cells from patients with AML treated ex vivo, as shown by enhanced ability to form differentiated colonies in methylcellulose assays, increased levels of cell-surface markers of differentiation, and increases in the proportion of mature myeloid cells (Figure S5).

Figure 2

Figure 2. Percent intracellular 2-HG remaining relative to DMSO control after 6 days’ treatment with AG-120 in mIDH1-R132H or mIDH1-R132C patient samples (mean ± SEM from cells from four patients with mIDH1 AML).

Together, these compelling preclinical data provided the rationale to advance AG-120 into clinical development.

The discovery of enasidenib, which is active against mIDH2, and now AG-120 (ivosidenib) against mIDH1 as described here, presents a novel class of cancer therapy based on cellular differentiation. AG-120 is a potent mIDH1 inhibitor with favorable nonclinical and clinical safety profiles that has shown promising clinical activity in phase 1 clinical trials for both solid and hematologic malignancies. In patients with relapsed/refractory mIDH1 AML, interim results from the ongoing phase 1 trial have demonstrated an overall response rate of 42% and a complete response rate of 22% (median duration of complete response 9.3 months). (15) Long-term stable disease has been observed in patients with previously treated nonenhancing mIDH1 gliomas, (16) and in heavily pretreated patients with mIDH1 cholangiocarcinoma, where the median progression-free survival was 3.8 months and the 6-month progression-free survival rate was 40%. (17) In these two single arm, phase 1 studies, AG-120 has demonstrated an acceptable safety profile to date. (15−18) AG-120 is currently in late-stage clinical development in adults with mIDH1 AML (ClinicalTrials.gov NCT03173248), and with previously treated advanced mIDH1 cholangiocarcinoma (NCT02989857).

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsmedchemlett.7b00421.

  • Synthesis and profiling of AG-120, experimental procedures, synthetic details and characterization of compounds, and abbreviations (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Author
  • Authors
    • Janeta Popovici-Muller - Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United StatesPresent Address: (J.P.-M., S.-S.M.S.) Decibel Therapeutics, Cambridge, MA
    • René M. Lemieux - Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United StatesPresent Address: (R.L.M., E.A., E.T.) KSQ Therapeutics, Cambridge, MA
    • Erin Artin - Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United StatesPresent Address: (R.L.M., E.A., E.T.) KSQ Therapeutics, Cambridge, MA
    • Jeffrey O. Saunders - Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United StatesPresent Address: (J.O.S.) JOSC LLC Consulting, Lincoln, MA
    • Francesco G. Salituro - Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United StatesPresent Address: (F.G.S.) Sage Therapeutics, Cambridge, MAOrcidhttp://orcid.org/0000-0003-1172-7064
    • Jeremy Travins - Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United StatesPresent Address: (J.T.) Shire, Lexington, MA
    • Giovanni Cianchetta - Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
    • Zhenwei Cai - PharmaResources, Shanghai 201201, China
    • Ding Zhou - PharmaResources, Shanghai 201201, ChinaPresent Address: (D.Z.) GSK R&D Shanghai, Shanghai, China
    • Dawei Cui - PharmaResources, Shanghai 201201, China
    • Ping Chen - PharmaResources, Shanghai 201201, China
    • Kimberly Straley - Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United StatesPresent Address: (K.S.) Vertex Pharmaceuticals, Boston, MA
    • Erica Tobin - Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United StatesPresent Address: (R.L.M., E.A., E.T.) KSQ Therapeutics, Cambridge, MA
    • Fang Wang - Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
    • Muriel D. David - INSERM U1170 and Gustave Roussy, Villejuif 94800, France
    • Virginie Penard-Lacronique - INSERM U1170 and Gustave Roussy, Villejuif 94800, France
    • Cyril Quivoron - INSERM U1170 and Gustave Roussy, Villejuif 94800, France
    • Véronique Saada - INSERM U1170 and Gustave Roussy, Villejuif 94800, France
    • Stéphane de Botton - INSERM U1170 and Gustave Roussy, Villejuif 94800, France
    • Stefan Gross - Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
    • Lenny Dang - Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
    • Hua Yang - Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
    • Luke Utley - Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United StatesPresent Address: (L.U.) Spero Therapeutics, Cambridge, MA
    • Yue Chen - Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
    • Hyeryun Kim - Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
    • Shengfang Jin - Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
    • Zhiwei Gu - ChemPartner, Shanghai 201203, China
    • Gui Yao - ChemPartner, Shanghai 201203, China
    • Zhiyong Luo - ChemPartner, Shanghai 201203, China
    • Xiaobing Lv - ChemPartner, Shanghai 201203, China
    • Cheng Fang - ChemPartner, Shanghai 201203, China
    • Liping Yan - ChemPartner, Shanghai 201203, China
    • Andrew Olaharski - Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United StatesPresent Address: (A.O.) Akebia Therapeutics, Cambridge, MA
    • Lee Silverman - Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
    • Scott Biller - Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
    • Shin-San M. Su - Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United StatesPresent Address: (J.P.-M., S.-S.M.S.) Decibel Therapeutics, Cambridge, MA
  • Funding

    These studies were funded by Agios Pharmaceuticals Inc., the French National Institute of Health (INSERM-AVIESAN; to M.D. David and V. Penard-Lacronique), French National Cancer League (LNCC), the Institut National du Cancer (INCa-DGOS-Inserm_6043 and INCa 2012–1-RT- 09), and the Fondation Association pour la Recherche sur le Cancer (ARC, SL220130607089 Programme Labellisé to V. Penard-Lacronique and S. de Botton). M.D. David was funded by a fellowship from the Institut National du Cancer (INCa-DGOS_5733).

  • Notes
    The authors declare the following competing financial interest(s): S.d.B. serves on advisory boards for Agios and Celgene. S.S.M.S is a consultant for Agios.

Acknowledgments

ARTICLE SECTIONS
Jump To

Writing assistance was provided by Christine Ingleby, Ph.D., of Excel Scientific Solutions, Horsham, U.K., and supported by Agios Pharmaceuticals, Inc. We thank Jean-Baptiste Micol and Christophe Willekens for clinical specimens, Nathalie Auger for cytogenetic analyses, and Zenon Konteatis for insightful discussions during the optimization of hPXR activation.

References

ARTICLE SECTIONS
Jump To

This article references 18 other publications.

  1. 1
    Dang, L.; Su, S. M. Isocitrate Dehydrogenase Mutation and (R)-2-Hydroxyglutarate: From Basic Discovery to Therapeutics Development. Annu. Rev. Biochem. 2017, 86, 305331,  DOI: 10.1146/annurev-biochem-061516-044732
  2. 2
    Dang, L.; White, D. W.; Gross, S.; Bennett, B. D.; Bittinger, M. A.; Driggers, E. M.; Fantin, V. R.; Jang, H. G.; Jin, S.; Keenan, M. C.; Marks, K. M.; Prins, R. M.; Ward, P. S.; Yen, K. E.; Liau, L. M.; Rabinowitz, J. D.; Cantley, L. C.; Thompson, C. B.; Vander Heiden, M. G.; Su, S. M. Cancer-associated IDH1 Mutations Produce 2-Hydroxyglutarate. Nature 2009, 462 (7274), 739744,  DOI: 10.1038/nature08617
  3. 3
    Figueroa, M. E.; Abdel-Wahab, O.; Lu, C.; Ward, P. S.; Patel, J.; Shih, A.; Li, Y.; Bhagwat, N.; Vasanthakumar, A.; Fernandez, H. F.; Tallman, M. S.; Sun, Z.; Wolniak, K.; Peeters, J. K.; Liu, W.; Choe, S. E.; Fantin, V. R.; Paietta, E.; Lowenberg, B.; Licht, J. D.; Godley, L. A.; Delwel, R.; Valk, P. J.; Thompson, C. B.; Levine, R. L.; Melnick, A. Leukemic IDH1 and IDH2 Mutations Result in a Hypermethylation Phenotype, Disrupt TET2 Function, and Impair Hematopoietic Differentiation. Cancer Cell 2010, 18 (6), 553567,  DOI: 10.1016/j.ccr.2010.11.015
  4. 4
    Lu, C.; Ward, P. S.; Kapoor, G. S.; Rohle, D.; Turcan, S.; Abdel-Wahab, O.; Edwards, C. R.; Khanin, R.; Figueroa, M. E.; Melnick, A.; Wellen, K. E.; O’Rourke, D. M.; Berger, S. L.; Chan, T. A.; Levine, R. L.; Mellinghoff, I. K.; Thompson, C. B. IDH Mutation Impairs Histone Demethylation and Results in a Block to Cell Differentiation. Nature 2012, 483 (7390), 474478,  DOI: 10.1038/nature10860
  5. 5
    Rohle, D.; Popovici-Muller, J.; Palaskas, N.; Turcan, S.; Grommes, C.; Campos, C.; Tsoi, J.; Clark, O.; Oldrini, B.; Komisopoulou, E.; Kunii, K.; Pedraza, A.; Schalm, S.; Silverman, L.; Miller, A.; Wang, F.; Yang, H.; Chen, Y.; Kernytsky, A.; Rosenblum, M. K.; Liu, W.; Biller, S. A.; Su, S. M.; Brennan, C. W.; Chan, T. A.; Graeber, T. G.; Yen, K. E.; Mellinghoff, I. K. An Inhibitor of Mutant IDH1 Delays Growth and Promotes Differentiation of Glioma Cells. Science 2013, 340 (6132), 626630,  DOI: 10.1126/science.1236062
  6. 6
    Stein, E. M.; DiNardo, C. D.; Pollyea, D. A.; Fathi, A. T.; Roboz, G. J.; Altman, J. K.; Stone, R. M.; DeAngelo, D. J.; Levine, R. L.; Flinn, I. W.; Kantarjian, H. M.; Collins, R.; Patel, M. R.; Frankel, A. E.; Stein, A.; Sekeres, M. A.; Swords, R. T.; Medeiros, B. C.; Willekens, C.; Vyas, P.; Tosolini, A.; Xu, Q.; Knight, R. D.; Yen, K. E.; Agresta, S.; de Botton, S.; Tallman, M. S. Enasidenib in Mutant IDH2 Relapsed or Refractory Acute Myeloid Leukemia. Blood 2017, 130 (6), 722731,  DOI: 10.1182/blood-2017-04-779405
  7. 7
    Stein, E. M.; Yen, K. Targeted Differentiation Therapy with Mutant IDH Inhibitors: Early Experiences and Parallels with Other Differentiation Agents. Annu. Rev. Canc. Biol. 2017, 1, 379401,  DOI: 10.1146/annurev-cancerbio-050216-122051
  8. 8
    Amatangelo, M. D.; Quek, L.; Shih, A.; Stein, E. M.; Roshal, M.; David, M. D.; Marteyn, B.; Farnoud, N. R.; de Botton, S.; Bernard, O. A.; Wu, B.; Yen, K. E.; Tallman, M. S.; Papaemmanuil, E.; Penard-Lacronique, V.; Thakurta, A.; Vyas, P.; Levine, R. L. Enasidenib Induces Acute Myeloid Leukemia Cell Differentiation to Promote Clinical Response. Blood 2017, 130 (6), 732741,  DOI: 10.1182/blood-2017-04-779447
  9. 9
    Popovici-Muller, J.; Saunders, J. O.; Salituro, F. G.; Travins, J. M.; Yan, S.; Zhao, F.; Gross, S.; Dang, L.; Yen, K. E.; Yang, H.; Straley, K. S.; Jin, S.; Kunii, K.; Fantin, V. R.; Zhang, S.; Pan, Q.; Shi, D.; Biller, S. A.; Su, S. M. Discovery of the First Potent Inhibitors of Mutant IDH1 That Lower Tumor 2-HG in Vivo. ACS Med. Chem. Lett. 2012, 3 (10), 850855,  DOI: 10.1021/ml300225h
  10. 10
    Pusch, S.; Krausert, S.; Fischer, V.; Balss, J.; Ott, M.; Schrimpf, D.; Capper, D.; Sahm, F.; Eisel, J.; Beck, A. C.; Jugold, M.; Eichwald, V.; Kaulfuss, S.; Panknin, O.; Rehwinkel, H.; Zimmermann, K.; Hillig, R. C.; Guenther, J.; Toschi, L.; Neuhaus, R.; Haegebart, A.; Hess-Stumpp, H.; Bauser, M.; Wick, W.; Unterberg, A.; Herold-Mende, C.; Platten, M.; von Deimling, A. Pan-mutant IDH1 Inhibitor BAY 1436032 for Effective Treatment of IDH1 Mutant Astrocytoma In Vivo. Acta Neuropathol. 2017, 133 (4), 629644,  DOI: 10.1007/s00401-017-1677-y
  11. 11
    Cho, Y. S.; Levell, J. R.; Liu, G.; Caferro, T.; Sutton, J.; Shafer, C. M.; Costales, A.; Manning, J. R.; Zhao, Q.; Sendzik, M.; Shultz, M.; Chenail, G.; Dooley, J.; Villalba, B.; Farsidjani, A.; Chen, J.; Kulathila, R.; Xie, X.; Dodd, S.; Gould, T.; Liang, G.; Heimbach, T.; Slocum, K.; Firestone, B.; Pu, M.; Pagliarini, R.; Growney, J. D. Discovery and Evaluation of Clinical Candidate IDH305, a Brain Penetrant Mutant IDH1 Inhibitor. ACS Med. Chem. Lett. 2017, 8 (10), 11161121,  DOI: 10.1021/acsmedchemlett.7b00342
  12. 12
    Gao, Y. D.; Olson, S. H.; Balkovec, J. M.; Zhu, Y.; Royo, I.; Yabut, J.; Evers, R.; Tan, E. Y.; Tang, W.; Hartley, D. P.; Mosley, R. T. Attenuating Pregnane X Receptor (PXR) Activation: A Molecular Modelling Approach. Xenobiotica 2007, 37 (2), 124138,  DOI: 10.1080/00498250601050412
  13. 13
    Fan, B.; Goyal, L.; Lowery, M. A.; Pandya, S. S.; Manyak, E.; Le, K.; Jiang, L.; Auer, J.; Dai, D. Pharmacokinetic/pharmacodynamic (PK/PD) Profile of AG-120 in Patients with IDH1-Mutant Cholangiocarcinoma From a Phase 1 Study of Advanced Solid Tumors. J. Clin. Oncol. 2017, 35 (15 Suppl), Abstract 4082. DOI: 10.1200/JCO.2017.35.15_suppl.4082
  14. 14
    Fan, B.; Le, K.; Manyak, E.; Liu, H.; Prahl, M.; Bowden, C. J.; Biller, S.; Agresta, S.; Yang, H. Longitudinal Pharmacokinetic/Pharmacodynamic Profile of AG-120, a Potent Inhibitor of the IDH1 Mutant Protein, in a Phase 1 Study of IDH1-Mutant Advanced Hematologic Malignancies. Blood 2015, 126 (23), Abstract 1310.
  15. 15
    DiNardo, C. D.; de Botton, S.; Stein, E. M.; Roboz, G. J.; Mims, A. S.; Pollyea, D. A.; Swords, R. T.; Altman, J. K.; Collins, R. H.; Mannis, G. N.; Uy, G. L.; Donnellan, W.; Pigneux, A.; Fathi, A. T.; Stein, A. S.; Erba, H. P.; Prince, G. T.; Foran, J. M.; Traer, E.; Stuart, R. K.; Arellano, M. L.; Slack, J. L.; Sekeres, M. A.; Yen, K.; Kapsalis, S. M.; Liu, H.; Goldwasser, M.; Agresta, S.; Attar, E. C.; Tallman, M. S.; Stone, R. M.; Kantarjian, H. M. Ivosidenib (AG-120) in Mutant IDH1 AML and Advanced Hematologic Malignancies: Results of a Phase 1 Dose Escalation and Expansion Study. Blood 2017, 130 (Suppl), Abstract 725.
  16. 16
    Mellinghoff, I. K.; Touat, M.; Maher, E.; de la Fuente, M.; Cloughesy, T. F.; Holdhoff, M.; Cote, G. M.; Burris, H.; Janku, F.; Huang, R.; Young, R. J.; Ellingson, B.; Nimkar, T.; Jiang, L.; Ishii, Y.; Choe, S.; Fan, B.; Steelman, L.; Yen, K.; Bowden, C.; Pandya, S.; Wen, P. Y. AG-120, a First-In-Class Mutant IDH1 Inhibitor in Patients with Recurrent or Progressive IDH1 Mutant Glioma: Updated Results From the Phase 1 Non-Enhancing Glioma Population. Neuro-Oncology 2017, 19 (Suppl 6), vi10,  DOI: 10.1093/neuonc/nox168.037
  17. 17
    Lowery, M. A.; Abou-Alfa, G. K.; Burris, H. A.; Janku, F.; Shroff, R. T.; Cleary, J. M.; Azad, N. S.; Goyal, L.; Maher, E. A.; Gore, L.; Hollebecque, A.; Beeram, M.; Trent, J. C.; Jiang, L.; Ishii, Y.; Auer, J.; Gliser, C.; Agresta, S. V.; Pandya, S. S.; Zhu, A. X. Phase I Study of AG-120, an IDH1 Mutant Enzyme Inhibitor: Results From the Cholangiocarcinoma Dose Escalation and Expansion Cohorts. J. Clin. Oncol. 2017, 35 (15 Suppl), 4015,  DOI: 10.1200/JCO.2017.35.15_suppl.4015
  18. 18
    DiNardo, C. D.; de Botton, S.; Stein, E. M.; Roboz, G. J.; Swords, R. T.; Pollyea, D. A.; Fathi, A. T.; Collins, R.; Altman, J. K.; Flinn, I. W.; Mannis, G. N.; Mims, A. S.; Foran, J. M.; Pigneux, A.; Prince, G. T.; Uy, G. L.; Tallman, M. S.; Kantarjian, H. M.; Liu, H.; Attar, E. C.; Sacolick, J.; Yen, K.; Hurov, J. B.; Choe, S.; Wu, B.; Stone, R. M. Determination of IDH1 Mutational Burden and Clearance Via Next-Generation Sequencing in Patients with IDH1 Mutation-Positive Hematologic Malignancies Receiving AG-120, a First-in-Class Inhibitor of Mutant IDH1. Blood 2016, 128 (22), Abstract 1070.

Cited By

ARTICLE SECTIONS
Jump To

This article is cited by 257 publications.

  1. Alexander Dömling. Innovations and Inventions: Why Was the Ugi Reaction Discovered Only 37 Years after the Passerini Reaction?. The Journal of Organic Chemistry 2023, 88 (9) , 5242-5247. https://doi.org/10.1021/acs.joc.2c00792
  2. Shuang Liu, Martine Abboud, Victor Mikhailov, Xiao Liu, Raphael Reinbold, Christopher J. Schofield. Differentiating Inhibition Selectivity and Binding Affinity of Isocitrate Dehydrogenase 1 Variant Inhibitors. Journal of Medicinal Chemistry 2023, 66 (7) , 5279-5288. https://doi.org/10.1021/acs.jmedchem.3c00203
  3. Melissa J. Buskes, Aaron Coffin, Dawn M. Troast, Rachel Stein, Maria-Jesus Blanco. Accelerating Drug Discovery: Synthesis of Complex Chemotypes via Multicomponent Reactions. ACS Medicinal Chemistry Letters 2023, 14 (4) , 376-385. https://doi.org/10.1021/acsmedchemlett.3c00012
  4. Martin L. Stockley, Amanda Ferdinand, Giovanni Benedetti, Peter Blencowe, Susan M. Boyd, Mat Calder, Mark D. Charles, Lucy V. Edwardes, Tennyson Ekwuru, Harry Finch, Alessandro Galbiati, Lerin Geo, Diego Grande, Vera Grinkevich, Nicholas D. Holliday, Wojciech W. Krajewski, Ellen MacDonald, Jayesh B. Majithiya, Hollie McCarron, Claire L. McWhirter, Viral Patel, Chris Pedder, Eeson Rajendra, Marco Ranzani, Laurent J. M. Rigoreau, Helen M. R. Robinson, Theresia Schaedler, Julija Sirina, Graeme C. M. Smith, Martin E. Swarbrick, Andrew P. Turnbull, Simon Willis, Robert A. Heald. Discovery, Characterization, and Structure-Based Optimization of Small-Molecule In Vitro and In Vivo Probes for Human DNA Polymerase Theta. Journal of Medicinal Chemistry 2022, 65 (20) , 13879-13891. https://doi.org/10.1021/acs.jmedchem.2c01142
  5. Ryan A. Altman, Annalaura Brai, Jennifer Golden, Giuseppe La Regina, Zhengqiu Li, Terry W. Moore, William C. K. Pomerantz, Naomi S. Rajapaksa, Ashley M. Adams. An Innovation 10 Years in the Making: The Stories in the Pages of ACS Medicinal Chemistry Letters. ACS Medicinal Chemistry Letters 2022, 13 (4) , 540-545. https://doi.org/10.1021/acsmedchemlett.1c00623
  6. Chunhui Huang, Christian Fischer, Michelle R. Machacek, Stephane Bogen, Tesfaye Biftu, Xianhai Huang, Michael H. Reutershan, Ryan Otte, Qingmei Hong, Zhicai Wu, Yang Yu, Min Park, Lei Chen, Purakkattle Biju, Ian Knemeyer, Ping Lu, Christopher J. Kochansky, Michael Brendan Hicks, Yong Liu, Roy Helmy, Xavier Fradera, Anthony Donofrio, Josh Close, Matthew L. Maddess, Catherine White, David L. Sloman, Nunzio Sciammetta, Jun Lu, Craig Gibeau, Vladimir Simov, Hongjun Zhang, Peter Fuller, David Witter. Diminishing GSH-Adduct Formation of Tricyclic Diazepine-based Mutant IDH1 Inhibitors. ACS Medicinal Chemistry Letters 2022, 13 (4) , 734-741. https://doi.org/10.1021/acsmedchemlett.2c00089
  7. Feijun Wang, Kevin J. Frankowski. Divergent Electrochemical Carboamidation of Cyclic Amines. The Journal of Organic Chemistry 2022, 87 (2) , 1173-1193. https://doi.org/10.1021/acs.joc.1c02534
  8. Jinshan Li, Saimei Liu, Rong Zhong, Yaqi Yang, Yuru He, Jianguo Yang, Yongmin Ma, Zhiming Wang. Reversal of Regioselectivity in Nucleophilic Difluoroalkylation of α,β-Enones Employing In Situ-Formed Sterically Encumbered Silylium Catalyst. Organic Letters 2021, 23 (15) , 5859-5864. https://doi.org/10.1021/acs.orglett.1c01993
  9. Adrian Hall, Hugues Chanteux, Karelle Ménochet, Marie Ledecq, Monika-Sarah E. D. Schulze. Designing Out PXR Activity on Drug Discovery Projects: A Review of Structure-Based Methods, Empirical and Computational Approaches. Journal of Medicinal Chemistry 2021, 64 (10) , 6413-6522. https://doi.org/10.1021/acs.jmedchem.0c02245
  10. Peng-Peng Lin, Long-Ling Huang, Si-Xin Feng, Shuang Yang, Honggen Wang, Zhi-Shu Huang, Qingjiang Li. gem-Difluorination of Methylenecyclopropanes (MCPs) Featuring a Wagner–Meerwein Rearrangement: Synthesis of 2-Arylsubstituted gem-Difluorocyclobutanes. Organic Letters 2021, 23 (8) , 3088-3093. https://doi.org/10.1021/acs.orglett.1c00767
  11. Richard A. Ward, Stephen Fawell, Nicolas Floc’h, Vikki Flemington, Darren McKerrecher, Paul D. Smith. Challenges and Opportunities in Cancer Drug Resistance. Chemical Reviews 2021, 121 (6) , 3297-3351. https://doi.org/10.1021/acs.chemrev.0c00383
  12. Priyadeep Bhutani, Gaurav Joshi, Nivethitha Raja, Namrata Bachhav, Prabhakar K. Rajanna, Hemant Bhutani, Atish T. Paul, Raj Kumar. U.S. FDA Approved Drugs from 2015–June 2020: A Perspective. Journal of Medicinal Chemistry 2021, 64 (5) , 2339-2381. https://doi.org/10.1021/acs.jmedchem.0c01786
  13. Toufike Kanouni, Christophe Severin, Robert W. Cho, Natalie Y.-Y. Yuen, Jiangchun Xu, Lihong Shi, Chon Lai, Joselyn R. Del Rosario, Ryan K. Stansfield, Lee N. Lawton, David Hosfield, Shawn O’Connell, Matt M. Kreilein, Paula Tavares-Greco, Zhe Nie, Stephen W. Kaldor, James M. Veal, Jeffrey A. Stafford, Young K. Chen. Discovery of CC-90011: A Potent and Selective Reversible Inhibitor of Lysine Specific Demethylase 1 (LSD1). Journal of Medicinal Chemistry 2020, 63 (23) , 14522-14529. https://doi.org/10.1021/acs.jmedchem.0c00978
  14. Andrew C. Flick, Carolyn A. Leverett, Hong X. Ding, Emma McInturff, Sarah J. Fink, Christopher J. Helal, Jacob C. DeForest, Peter D. Morse, Subham Mahapatra, Christopher J. O’Donnell. Synthetic Approaches to New Drugs Approved during 2018. Journal of Medicinal Chemistry 2020, 63 (19) , 10652-10704. https://doi.org/10.1021/acs.jmedchem.0c00345
  15. Bingsong Han, Francesco G. Salituro, Maria-Jesus Blanco. Impact of Allosteric Modulation in Drug Discovery: Innovation in Emerging Chemical Modalities. ACS Medicinal Chemistry Letters 2020, 11 (10) , 1810-1819. https://doi.org/10.1021/acsmedchemlett.9b00655
  16. Zenon Konteatis, Erin Artin, Brandon Nicolay, Kimberly Straley, Anil K. Padyana, Lei Jin, Yue Chen, Rohini Narayaraswamy, Shuilong Tong, Feng Wang, Ding Zhou, Dawei Cui, Zhenwei Cai, Zhiyong Luo, Cheng Fang, Huachun Tang, Xiaobing Lv, Raj Nagaraja, Hua Yang, Shin-San M. Su, Zhihua Sui, Lenny Dang, Katharine Yen, Janeta Popovici-Muller, Paolo Codega, Carl Campos, Ingo K. Mellinghoff, Scott A. Biller. Vorasidenib (AG-881): A First-in-Class, Brain-Penetrant Dual Inhibitor of Mutant IDH1 and 2 for Treatment of Glioma. ACS Medicinal Chemistry Letters 2020, 11 (2) , 101-107. https://doi.org/10.1021/acsmedchemlett.9b00509
  17. Jennifer M. Chambers, Wade Miller, Giovanni Quichocho, Viraj Upadhye, Diego Avellaneda Matteo, Andrey A. Bobkov, Christal D. Sohl, Jamie M. Schiffer. Water Networks and Correlated Motions in Mutant Isocitrate Dehydrogenase 1 (IDH1) Are Critical for Allosteric Inhibitor Binding and Activity. Biochemistry 2020, 59 (4) , 479-490. https://doi.org/10.1021/acs.biochem.9b01023
  18. Joseph V. Roman, Trevor R. Melkonian, Nicholas R. Silvaggi, Graham R. Moran. Transient-State Analysis of Human Isocitrate Dehydrogenase I: Accounting for the Interconversion of Active and Non-Active Conformational States. Biochemistry 2019, 58 (52) , 5366-5380. https://doi.org/10.1021/acs.biochem.9b00518
  19. M. Cynthia Martin, Gashaw M. Goshu, Jeffery R. Hartnell, Collin D. Morris, Ying Wang, Noah P. Tu. Versatile Methods to Dispense Submilligram Quantities of Solids Using Chemical-Coated Beads for High-Throughput Experimentation. Organic Process Research & Development 2019, 23 (9) , 1900-1907. https://doi.org/10.1021/acs.oprd.9b00213
  20. Verena B. K. Kunig, Christiane Ehrt, Alexander Dömling, Andreas Brunschweiger. Isocyanide Multicomponent Reactions on Solid-Phase-Coupled DNA Oligonucleotides for Encoded Library Synthesis. Organic Letters 2019, 21 (18) , 7238-7243. https://doi.org/10.1021/acs.orglett.9b02448
  21. Jian Lin, Wei Lu, Justin A. Caravella, Ann Marie Campbell, R. Bruce Diebold, Anna Ericsson, Edward Fritzen, Gary R. Gustafson, David R. Lancia, Jr., Tatiana Shelekhin, Zhongguo Wang, Jennifer Castro, Andrea Clarke, Deepali Gotur, Helen R. Josephine, Marie Katz, Hien Diep, Mark Kershaw, Lili Yao, Goss Kauffman, Stephen E. Hubbs, George P. Luke, Angela V. Toms, Liann Wang, Kenneth W. Bair, Kenneth J. Barr, Christopher Dinsmore, Duncan Walker, Susan Ashwell. Discovery and Optimization of Quinolinone Derivatives as Potent, Selective, and Orally Bioavailable Mutant Isocitrate Dehydrogenase 1 (mIDH1) Inhibitors. Journal of Medicinal Chemistry 2019, 62 (14) , 6575-6596. https://doi.org/10.1021/acs.jmedchem.9b00362
  22. Anton V. Chernykh, Kostiantyn P. Melnykov, Nataliya A. Tolmacheva, Ivan S. Kondratov, Dmytro S. Radchenko, Constantin G. Daniliuc, Dmitriy M. Volochnyuk, Sergey V. Ryabukhin, Yuliya O. Kuchkovska, Oleksandr O. Grygorenko. Last of the gem-Difluorocycloalkanes: Synthesis and Characterization of 2,2-Difluorocyclobutyl-Substituted Building Blocks. The Journal of Organic Chemistry 2019, 84 (13) , 8487-8496. https://doi.org/10.1021/acs.joc.9b00719
  23. Minh Thanh La, Soosung Kang, Hee-Kwon Kim. Metal-Free Synthesis of N-Aryl-Substituted Azacycles from Cyclic Ethers Using POCl3. The Journal of Organic Chemistry 2019, 84 (11) , 6689-6696. https://doi.org/10.1021/acs.joc.9b00377
  24. Tryfon Zarganes-Tzitzikas, Constantinos G. Neochoritis, Alexander Dömling. Atorvastatin (Lipitor) by MCR. ACS Medicinal Chemistry Letters 2019, 10 (3) , 389-392. https://doi.org/10.1021/acsmedchemlett.8b00579
  25. Ahmed F. Khalil, Tarek F. El-Moselhy, Eman A. El-Bastawissy, Rasha Abdelhady, Nancy S. Younis, Mervat H. El-Hamamsy. Discovery of novel enasidenib analogues targeting inhibition of mutant isocitrate dehydrogenase 2 as antileukaemic agents. Journal of Enzyme Inhibition and Medicinal Chemistry 2023, 38 (1) https://doi.org/10.1080/14756366.2022.2157411
  26. Yu Lian, Juanjuan Ti, Liangming Ma, Jia Wei, Zhilin Gao. Analysis and clinical characteristics of acute myeloid leukemia developing with prior or concurrent tumors in non cyto- or radiotherapy exposure patients in a single center. Hematology 2023, 28 (1) https://doi.org/10.1080/16078454.2023.2230738
  27. Zhen-Xi Niu, Ya-Tao Wang, Jin-Feng Sun, Peng Nie, Piet Herdewijn. Recent advance of clinically approved small-molecule drugs for the treatment of myeloid leukemia. European Journal of Medicinal Chemistry 2023, 261 , 115827. https://doi.org/10.1016/j.ejmech.2023.115827
  28. Xinting Zhu, Juan Hao, Hong Zhang, Mengyi Chi, Yaxian Wang, Jinlu Huang, Rong Xu, Zhao Xincai, Bo Xin, Xipeng Sun, Jianping Zhang, Shumin Zhou, Dongdong Cheng, Ting Yuan, Jun Ding, Shuier Zheng, Cheng Guo, Quanjun Yang. Oncometabolite D-2-hydroxyglutarate—dependent metabolic reprogramming induces skeletal muscle atrophy during cancer cachexia. Communications Biology 2023, 6 (1) https://doi.org/10.1038/s42003-023-05366-0
  29. Sam Humphries, Danielle R. Bond, Zacary P. Germon, Simon Keely, Anoop K. Enjeti, Matthew D. Dun, Heather J. Lee. Crosstalk between DNA methylation and hypoxia in acute myeloid leukaemia. Clinical Epigenetics 2023, 15 (1) https://doi.org/10.1186/s13148-023-01566-x
  30. Mark Dalgetty, Christian Leurinda, Jorge Cortes. A comparative safety review of targeted therapies for acute myeloid leukemia. Expert Opinion on Drug Safety 2023, https://doi.org/10.1080/14740338.2023.2289176
  31. Thu Hang Lai, Barbara Wenzel, Sladjana Dukić-Stefanović, Rodrigo Teodoro, Lucie Arnaud, Aurélie Maisonial-Besset, Valérie Weber, Rareş-Petru Moldovan, Sebastian Meister, Jens Pietzsch, Klaus Kopka, Tareq A. Juratli, Winnie Deuther-Conrad, Magali Toussaint. Radiosynthesis and biological evaluation of [18F]AG-120 for PET imaging of the mutant isocitrate dehydrogenase 1 in glioma. European Journal of Nuclear Medicine and Molecular Imaging 2023, 19 https://doi.org/10.1007/s00259-023-06515-7
  32. Ajay Bhagwat, Rohit Doke Doke, Santosh Ghule, Bipin Gandhi. Development of nanoparticles for the Novel anticancer therapeutic agents for Acute Myeloid Leukemia. International Journal of Pharmaceutical Sciences and Nanotechnology(IJPSN) 2023, 16 (4) , 6894-6906. https://doi.org/10.37285/ijpsn.2023.16.4.7
  33. Zenglian Yue, Chaohsuan Pan, Siyuan Wang, Archie N. Tse, Yucheng Sheng. Clinical pharmacokinetics and pharmacodynamics of ivosidenib in Chinese patients with relapsed or refractory IDH1-mutated acute myeloid leukemia. European Journal of Clinical Pharmacology 2023, 35 https://doi.org/10.1007/s00228-023-03591-4
  34. María del Mar Álvarez‐Torres, Adolfo López‐Cerdán, Zoraida Andreu, Maria de la Iglesia Vayá, Elies Fuster‐Garcia, Francisco García‐García, Juan M. García‐Gómez. Vascular differences between IDH‐ wildtype glioblastoma and astrocytoma IDH ‐mutant grade 4 at imaging and transcriptomic levels. NMR in Biomedicine 2023, 36 (11) https://doi.org/10.1002/nbm.5004
  35. James E. Frampton. Ivosidenib: A Review in Advanced Cholangiocarcinoma. Targeted Oncology 2023, 18 (6) , 973-980. https://doi.org/10.1007/s11523-023-01002-3
  36. Bohdan Moroz, Kostiantyn P. Melnykov, Serhii Holovach, Andrey A. Filatov, Oleksii Raievskyi, Maksym Platonov, Oleksandr Liashuk, Dmytro M. Volochnyuk, Oleksandr O. Grygorenko. 6,6-Difluorobicyclo[3.1.0]hexane as a rigidified 4,4-difluorocyclohexane mimetic: Multigram synthesis, physicochemical characterization, and incorporation into Maraviroc analogs. Journal of Fluorine Chemistry 2023, 272 , 110215. https://doi.org/10.1016/j.jfluchem.2023.110215
  37. Mahdi Jafari, Tahereh Momeni Isfahani, Fatemeh Shafiei, Masumeh Abdoli Senejani. QSPR study to predict some of quantum chemical properties of anticancer imidazo[4,5‐b]pyridine derivatives using genetic algorithm multiple linear regression and molecular descriptors. International Journal of Quantum Chemistry 2023, 6 https://doi.org/10.1002/qua.27259
  38. Antonella Bruzzese, Caterina Labanca, Enrica Antonia Martino, Francesco Mendicino, Eugenio Lucia, Virginia Olivito, Antonino Neri, Annalisa Imovilli, Fortunato Morabito, Ernesto Vigna, Massimo Gentile. Ivosidenib in acute myeloid leukemia. Expert Opinion on Pharmacotherapy 2023, , 1-8. https://doi.org/10.1080/14656566.2023.2272659
  39. Ryan A. Herold, Christopher J. Schofield, Fraser A. Armstrong. Electrochemical Nanoreactor Provides a Comprehensive View of Isocitrate Dehydrogenase Cancer‐drug Kinetics. Angewandte Chemie 2023, 135 (42) https://doi.org/10.1002/ange.202309149
  40. Ryan A. Herold, Christopher J. Schofield, Fraser A. Armstrong. Electrochemical Nanoreactor Provides a Comprehensive View of Isocitrate Dehydrogenase Cancer‐drug Kinetics. Angewandte Chemie International Edition 2023, 62 (42) https://doi.org/10.1002/anie.202309149
  41. Kevin Gonthier, Cindy Weidmann, Line Berthiaume, Cynthia Jobin, Aurélie Lacouture, Camille Lafront, Mario Harvey, Bertrand Neveu, Jérémy Loehr, Alain Bergeron, Yves Fradet, Louis Lacombe, Julie Riopel, Éva Latulippe, Chantal Atallah, Michael Shum, Jean‐Philippe Lambert, Frédéric Pouliot, Martin Pelletier, Étienne Audet‐Walsh. Isocitrate dehydrogenase 1 sustains a hybrid cytoplasmic–mitochondrial tricarboxylic acid cycle that can be targeted for therapeutic purposes in prostate cancer. Molecular Oncology 2023, 17 (10) , 2109-2125. https://doi.org/10.1002/1878-0261.13441
  42. Le Li, Xing Zeng, Zheng Chao, Jing Luo, Wei Guan, Qiang Zhang, Yue Ge, Yanan Wang, Zezhong Xiong, Sheng Ma, Qiang Zhou, Junbiao Zhang, Jihua Tian, David Horne, Bertram Yuh, Zhiquan Hu, Gong‐Hong Wei, Baojun Wang, Xu Zhang, Peixiang Lan, Zhihua Wang. Targeting Alpha‐Ketoglutarate Disruption Overcomes Immunoevasion and Improves PD‐1 Blockade Immunotherapy in Renal Cell Carcinoma. Advanced Science 2023, 10 (27) https://doi.org/10.1002/advs.202301975
  43. Qing-Xin Wang, Peng-Yu Zhang, Qing-Qing Li, Zhen-Jiang Tong, Jia-Zhen Wu, Shao-Peng Yu, Yan-Cheng Yu, Ning Ding, Xue-Jiao Leng, Liang Chang, Jin-Guo Xu, Shan-Liang Sun, Ye Yang, Nian-Guang Li, Zhi-Hao Shi. Challenges for the development of mutant isocitrate dehydrogenases 1 inhibitors to treat glioma. European Journal of Medicinal Chemistry 2023, 257 , 115464. https://doi.org/10.1016/j.ejmech.2023.115464
  44. Sangeetha Venugopal, Justin Watts. Olutasidenib: from bench to bedside. Blood Advances 2023, 7 (16) , 4358-4365. https://doi.org/10.1182/bloodadvances.2023009854
  45. Qianmao Liang, Beilei Wang, Fengming Zou, Gongrui Guo, Wenliang Wang, Wei Wang, Qingwang Liu, Lijuan Shen, Chen Hu, Wenchao Wang, Aoli Wang, Tao Huang, Yuying He, Ruixiang Xia, Jian Ge, Jing Liu, Qingsong Liu. Structure-based discovery of IHMT-IDH1-053 as a potent irreversible IDH1 mutant selective inhibitor. European Journal of Medicinal Chemistry 2023, 256 , 115411. https://doi.org/10.1016/j.ejmech.2023.115411
  46. Moon Nyeo Park. The Therapeutic Potential of a Strategy to Prevent Acute Myeloid Leukemia Stem Cell Reprogramming in Older Patients. International Journal of Molecular Sciences 2023, 24 (15) , 12037. https://doi.org/10.3390/ijms241512037
  47. Reza Emadi, Abbas Bahrami Nekoo, Fatemeh Molaverdi, Zahra Khorsandi, Reza Sheibani, Hojjat Sadeghi-Aliabadi. Applications of palladium-catalyzed C–N cross-coupling reactions in pharmaceutical compounds. RSC Advances 2023, 13 (27) , 18715-18733. https://doi.org/10.1039/D2RA07412E
  48. Mahmoud Adel Bassal. The Interplay between Dysregulated Metabolism and Epigenetics in Cancer. Biomolecules 2023, 13 (6) , 944. https://doi.org/10.3390/biom13060944
  49. Georgios Solomou, Alina Finch, Asim Asghar, Chiara Bardella. Mutant IDH in Gliomas: Role in Cancer and Treatment Options. Cancers 2023, 15 (11) , 2883. https://doi.org/10.3390/cancers15112883
  50. Giovane de Jesus Gomes Ribeiro, Sun Liu Rei Yan, Giuseppe Palmisano, Carsten Wrenger. Plant Extracts as a Source of Natural Products with Potential Antimalarial Effects: An Update from 2018 to 2022. Pharmaceutics 2023, 15 (6) , 1638. https://doi.org/10.3390/pharmaceutics15061638
  51. Sinthu Pathmanapan, Raymond Poon, Tomasa Barrientos De Renshaw, Puviindran Nadesan, Makoto Nakagawa, Gireesh A. Seesankar, Adrian Kwan Ho Loe, Hongyuan H. Zhang, Joan J. Guinovart, Jordi Duran, Christopher B. Newgard, Jay S. Wunder, Benjamin A. Alman. Mutant IDH regulates glycogen metabolism from early cartilage development to malignant chondrosarcoma formation. Cell Reports 2023, 42 (6) , 112578. https://doi.org/10.1016/j.celrep.2023.112578
  52. Ruham Alshiekh Nasany, Macarena Ines de la Fuente. Therapies for IDH-Mutant Gliomas. Current Neurology and Neuroscience Reports 2023, 23 (5) , 225-233. https://doi.org/10.1007/s11910-023-01265-3
  53. Carla Rizzo, Sara Amata, Ivana Pibiri, Andrea Pace, Silvestre Buscemi, Antonio Palumbo Piccionello. FDA-Approved Fluorinated Heterocyclic Drugs from 2016 to 2022. International Journal of Molecular Sciences 2023, 24 (9) , 7728. https://doi.org/10.3390/ijms24097728
  54. Yang Liu, Wei Xu, Mingxue Li, Yueying Yang, Dejuan Sun, Lidian Chen, Hua Li, Lixia Chen. The regulatory mechanisms and inhibitors of isocitrate dehydrogenase 1 in cancer. Acta Pharmaceutica Sinica B 2023, 13 (4) , 1438-1466. https://doi.org/10.1016/j.apsb.2022.12.019
  55. Marcello Moro Queiroz, Nildevande Firmino Lima, Tiago Biachi de Castria. Immunotherapy and Targeted Therapy for Advanced Biliary Tract Cancer: Adding New Flavors to the Pizza. Cancers 2023, 15 (7) , 1970. https://doi.org/10.3390/cancers15071970
  56. Nan Niu, Jinfeng Ye, Zhangli Hu, Junbin Zhang, Yun Wang. Regulative Roles of Metabolic Plasticity Caused by Mitochondrial Oxidative Phosphorylation and Glycolysis on the Initiation and Progression of Tumorigenesis. International Journal of Molecular Sciences 2023, 24 (8) , 7076. https://doi.org/10.3390/ijms24087076
  57. Felix Neumaier, Boris D. Zlatopolskiy, Bernd Neumaier. Mutated Isocitrate Dehydrogenase (mIDH) as Target for PET Imaging in Gliomas. Molecules 2023, 28 (7) , 2890. https://doi.org/10.3390/molecules28072890
  58. Courtney D. DiNardo, Andreas Hochhaus, Mark G. Frattini, Karen Yee, Thomas Zander, Alwin Krämer, Xueying Chen, Yan Ji, Nehal S. Parikh, Joanne Choi, Andrew H. Wei. A phase 1 study of IDH305 in patients with IDH1R132-mutant acute myeloid leukemia or myelodysplastic syndrome. Journal of Cancer Research and Clinical Oncology 2023, 149 (3) , 1145-1158. https://doi.org/10.1007/s00432-022-03983-6
  59. Ingo K. Mellinghoff, Min Lu, Patrick Y. Wen, Jennie W. Taylor, Elizabeth A. Maher, Isabel Arrillaga-Romany, Katherine B. Peters, Benjamin M. Ellingson, Marc K. Rosenblum, Saewon Chun, Kha Le, Ania Tassinari, Sung Choe, Youssef Toubouti, Steven Schoenfeld, Shuchi S. Pandya, Islam Hassan, Lori Steelman, Jennifer L. Clarke, Timothy F. Cloughesy. Vorasidenib and ivosidenib in IDH1-mutant low-grade glioma: a randomized, perioperative phase 1 trial. Nature Medicine 2023, 29 (3) , 615-622. https://doi.org/10.1038/s41591-022-02141-2
  60. Masthan Thamim, Ashish Kumar Agrahari, Pawan Gupta, Krishnan Thirumoorthy. Rational Computational Approaches in Drug Discovery: Potential Inhibitors for Allosteric Regulation of Mutant Isocitrate Dehydrogenase-1 Enzyme in Cancers. Molecules 2023, 28 (5) , 2315. https://doi.org/10.3390/molecules28052315
  61. Xin Li, Tryfon Zarganes-Tzitzikas, Katarzyna Kurpiewska, Alexander Dömling. Amenamevir by Ugi-4CR. Green Chemistry 2023, 25 (4) , 1322-1325. https://doi.org/10.1039/D2GC04869H
  62. Xiao Liu, Raphael Reinbold, Shuang Liu, Ryan A. Herold, Patrick Rabe, Stéphanie Duclos, Rahul B. Yadav, Martine I. Abboud, Sandrine Thieffine, Fraser A. Armstrong, Lennart Brewitz, Christopher J. Schofield. Natural and synthetic 2-oxoglutarate derivatives are substrates for oncogenic variants of human isocitrate dehydrogenase 1 and 2. Journal of Biological Chemistry 2023, 299 (2) , 102873. https://doi.org/10.1016/j.jbc.2023.102873
  63. Ahmad Ozair, Vivek Bhat, Reid S. Alisch, Atulya A. Khosla, Rupesh R. Kotecha, Yazmin Odia, Michael W. McDermott, Manmeet S. Ahluwalia. DNA Methylation and Histone Modification in Low-Grade Gliomas: Current Understanding and Potential Clinical Targets. Cancers 2023, 15 (4) , 1342. https://doi.org/10.3390/cancers15041342
  64. Junhua Lyu, Yuxuan Liu, Lihu Gong, Mingyi Chen, Yazan F. Madanat, Yuannyu Zhang, Feng Cai, Zhimin Gu, Hui Cao, Pranita Kaphle, Yoon Jung Kim, Fatma N. Kalkan, Helen Stephens, Kathryn E. Dickerson, Min Ni, Weina Chen, Prapti Patel, Alice S. Mims, Uma Borate, Amy Burd, Sheng F. Cai, C. Cameron Yin, M. James You, Stephen S. Chung, Robert H. Collins, Ralph J. DeBerardinis, Xin Liu, Jian Xu. Disabling Uncompetitive Inhibition of Oncogenic IDH Mutations Drives Acquired Resistance. Cancer Discovery 2023, 13 (1) , 170-193. https://doi.org/10.1158/2159-8290.CD-21-1661
  65. Zong-Shin Lin, Chiao-Chen Chung, Yu-Chia Liu, Chu-Han Chang, Hui-Chia Liu, Yung-Yi Liang, Teng-Le Huang, Tsung-Ming Chen, Che-Hsin Lee, Chih-Hsin Tang, Mien-Chie Hung, Ya-Huey Chen. EZH2/hSULF1 axis mediates receptor tyrosine kinase signaling to shape cartilage tumor progression. eLife 2023, 12 https://doi.org/10.7554/eLife.79432
  66. Amr Elagamy, Laila K. Elghoneimy, Reem K. Arafa. Pyridine ring as an important scaffold in anticancer drugs. 2023, 375-410. https://doi.org/10.1016/B978-0-323-91221-1.00004-X
  67. Surya K. De. Targeted therapy. 2023, 205-411. https://doi.org/10.1016/B978-0-443-13312-1.00002-7
  68. Yingjie Chang, Xuben Hou, Hao Fang. Cyanopyridine as a privileged scaffold in drug discovery. 2023, 163-198. https://doi.org/10.1016/B978-0-443-18611-0.00021-8
  69. Amit Kumar, Luni Emdad, Paul B. Fisher, Swadesh K. Das. Targeting epigenetic regulation for cancer therapy using small molecule inhibitors. 2023, 73-161. https://doi.org/10.1016/bs.acr.2023.01.001
  70. Sophie Steinhäuser, Patricia Silva, Lennart Lenk, Thomas Beder, Alina Hartmann, Sonja Hänzelmann, Lars Fransecky, Martin Neumann, Lorenz Bastian, Simone Lipinski, Kathrin Richter, Miriam Bultmann, Emely Hübner, Shuli Xia, Christoph Röllig, Fotini Vogiatzi, Denis Martin Schewe, Veronica Yumiceba, Kristin Schultz, Malte Spielmann, Claudia Dorothea Baldus. Isocitrate dehydrogenase 1 mutation drives leukemogenesis by PDGFRA activation due to insulator disruption in acute myeloid leukemia (AML). Leukemia 2023, 37 (1) , 134-142. https://doi.org/10.1038/s41375-022-01751-6
  71. Oleksandr V Kolomiiets, Alexander V Tsygankov, Maryna N Kornet, Aleksander A Brazhko, Vladimir I Musatov, Valentyn A Chebanov. Synthesis of imidazo[1,2- a ]pyridine-containing peptidomimetics by tandem of Groebke–Blackburn–Bienaymé and Ugi reactions. Beilstein Journal of Organic Chemistry 2023, 19 , 727-735. https://doi.org/10.3762/bjoc.19.53
  72. Alla I. Vaskevych, Mykhailo Vovk. Thiofunctionalized γ-Lactams. HETEROCYCLES 2023, 106 (9) , 1478. https://doi.org/10.3987/REV-23-1010
  73. Maria-Jesus Blanco. New Therapeutic Modalities: Transforming Drug Discovery and Development. 2023, 1-21. https://doi.org/10.1007/978-3-030-73317-9_135-1
  74. Alex C.H. Liu, Severine Cathelin, Yitong Yang, David L. Dai, Dhanoop Manikoth Ayyathan, Mohsen Hosseini, Mark D. Minden, Anne Tierens, Steven M. Chan. Targeting STAT5 Signaling Overcomes Resistance to IDH Inhibitors in Acute Myeloid Leukemia through Suppression of Stemness. Cancer Research 2022, 82 (23) , 4325-4339. https://doi.org/10.1158/0008-5472.CAN-22-1293
  75. Jinying Gu, Qiuyu Wu, Qiuyue Zhang, Qidong You, Lei Wang. A decade of approved first-in-class small molecule orphan drugs: Achievements, challenges and perspectives. European Journal of Medicinal Chemistry 2022, 243 , 114742. https://doi.org/10.1016/j.ejmech.2022.114742
  76. James M. Cleary, Betty Rouaisnel, Antoine Daina, Srivatsan Raghavan, Lauren A. Roller, Brandon M. Huffman, Harshabad Singh, Patrick Y. Wen, Nabeel Bardeesy, Vincent Zoete, Brian M. Wolpin, Julie-Aurore Losman. Secondary IDH1 resistance mutations and oncogenic IDH2 mutations cause acquired resistance to ivosidenib in cholangiocarcinoma. npj Precision Oncology 2022, 6 (1) https://doi.org/10.1038/s41698-022-00304-5
  77. Haiyan Lv, Hantao Jiang, Minge Zhang, Huarong Luo, Zhenghua Hong, Hai Yang, Weiming Xu, Bo Shen, Wei Zhang, Hao Qiu, Rangteng Zhu. Maffucci syndrome complicated by giant chondrosarcoma in the left ankle with an IDH1 R132C mutation: a case report. World Journal of Surgical Oncology 2022, 20 (1) https://doi.org/10.1186/s12957-022-02686-z
  78. Mehrdad Zarei, Omid Hajihassani, Jonathan J. Hue, Hallie J. Graor, Alexander W. Loftus, Moeez Rathore, Ali Vaziri-Gohar, John M. Asara, Jordan M. Winter, Luke D. Rothermel. Wild-type IDH1 inhibition enhances chemotherapy response in melanoma. Journal of Experimental & Clinical Cancer Research 2022, 41 (1) https://doi.org/10.1186/s13046-022-02489-w
  79. Sri Harsha Tella, Amit Mahipal. An evaluation of ivosidenib for the treatment of IDH1 -mutant cholangiocarcinoma. Expert Opinion on Pharmacotherapy 2022, 23 (17) , 1879-1885. https://doi.org/10.1080/14656566.2022.2138331
  80. Oleksandr O. Grygorenko, Kostiantyn P. Melnykov, Serhii Holovach, Oleksandr Demchuk. Fluorinated Cycloalkyl Building Blocks for Drug Discovery. ChemMedChem 2022, 17 (21) https://doi.org/10.1002/cmdc.202200365
  81. Stephen Y. C. Choi, Caroline Fidalgo Ribeiro, Yuzhuo Wang, Massimo Loda, Stephen R. Plymate, Takuma Uo. Druggable Metabolic Vulnerabilities Are Exposed and Masked during Progression to Castration Resistant Prostate Cancer. Biomolecules 2022, 12 (11) , 1590. https://doi.org/10.3390/biom12111590
  82. Janine Cossy, Peter Polàk, Paul C. Ruer. Incorporation of a cyclobutyl substituent in molecules by transition metal-catalyzed cross-coupling reactions. Organic & Biomolecular Chemistry 2022, 20 (38) , 7529-7553. https://doi.org/10.1039/D2OB01045C
  83. David C. Swinney. Why medicines work. Pharmacology & Therapeutics 2022, 238 , 108175. https://doi.org/10.1016/j.pharmthera.2022.108175
  84. Chujiao Hu, Zhirui Zeng, Dan Ma, Zhixin Yin, Shanshan Zhao, Tengxiang Chen, Lei Tang, Shi Zuo. Discovery of novel IDH1-R132C inhibitors through structure-based virtual screening. Frontiers in Pharmacology 2022, 13 https://doi.org/10.3389/fphar.2022.982375
  85. Feng Tang, Zhiyong Pan, Yi Wang, Tian Lan, Mengyue Wang, Fengping Li, Wei Quan, Zhenyuan Liu, Zefen Wang, Zhiqiang Li. Advances in the Immunotherapeutic Potential of Isocitrate Dehydrogenase Mutations in Glioma. Neuroscience Bulletin 2022, 38 (9) , 1069-1084. https://doi.org/10.1007/s12264-022-00866-1
  86. Daniele Lavacchi, Enrico Caliman, Gemma Rossi, Eleonora Buttitta, Cristina Botteri, Sara Fancelli, Elisa Pellegrini, Giandomenico Roviello, Serena Pillozzi, Lorenzo Antonuzzo. Ivosidenib in IDH1-mutated cholangiocarcinoma: Clinical evaluation and future directions. Pharmacology & Therapeutics 2022, 237 , 108170. https://doi.org/10.1016/j.pharmthera.2022.108170
  87. Wangqi Tian, Weitong Zhang, Yifan Wang, Ruyi Jin, Yuwei Wang, Hui Guo, Yuping Tang, Xiaojun Yao. Recent advances of IDH1 mutant inhibitor in cancer therapy. Frontiers in Pharmacology 2022, 13 https://doi.org/10.3389/fphar.2022.982424
  88. Siddharth K. Deepake, Manish Kumar, Pawan Kumar, Utpal Das. α‐Angelica Lactone Catalyzed Oxidation of Pyrrolidines to Lactams. European Journal of Organic Chemistry 2022, 2022 (31) https://doi.org/10.1002/ejoc.202200712
  89. Yu’e Liu, Chao Chen, Xinye Wang, Yihong Sun, Jin Zhang, Juxiang Chen, Yufeng Shi. An Epigenetic Role of Mitochondria in Cancer. Cells 2022, 11 (16) , 2518. https://doi.org/10.3390/cells11162518
  90. Ángel Cores, José Clerigué, Emmanuel Orocio-Rodríguez, J. Carlos Menéndez. Multicomponent Reactions for the Synthesis of Active Pharmaceutical Ingredients. Pharmaceuticals 2022, 15 (8) , 1009. https://doi.org/10.3390/ph15081009
  91. Takahiro Yamada, Yoshimitsu Hashimoto, Kosaku Tanaka, Nobuyoshi Morita, Osamu Tamura. Cationic palladium( ii )-catalyzed synthesis of substituted pyridines from α,β-unsaturated oxime ethers. RSC Advances 2022, 12 (33) , 21548-21557. https://doi.org/10.1039/D2RA03875G
  92. Elisabeth Speckmeier, Antje Pommereau, Kay-Christoph Grosser, Hartmut Mors, Thomas C. Maier, Thomas Licher, Felix Bärenz. A high-throughput screening assay for mutant isocitrate dehydrogenase 1 using acoustic droplet ejection mass spectrometry. SLAS Discovery 2022, 27 (5) , 298-305. https://doi.org/10.1016/j.slasd.2022.04.002
  93. Sharvari Dharmaiah, Jason T. Huse. The epigenetic dysfunction underlying malignant glioma pathogenesis. Laboratory Investigation 2022, 102 (7) , 682-690. https://doi.org/10.1038/s41374-022-00741-7
  94. Ali Vaziri-Gohar, Joel Cassel, Farheen S. Mohammed, Mehrdad Zarei, Jonathan J. Hue, Omid Hajihassani, Hallie J. Graor, Yellamelli V. V. Srikanth, Saadia A. Karim, Ata Abbas, Erin Prendergast, Vanessa Chen, Erryk S. Katayama, Katerina Dukleska, Imran Khokhar, Anthony Andren, Li Zhang, Chunying Wu, Bernadette Erokwu, Chris A. Flask, Mahsa Zarei, Rui Wang, Luke D. Rothermel, Andrea M. P. Romani, Jessica Bowers, Robert Getts, Curtis Tatsuoka, Jennifer P. Morton, Ilya Bederman, Henri Brunengraber, Costas A. Lyssiotis, Joseph M. Salvino, Jonathan R. Brody, Jordan M. Winter. Limited nutrient availability in the tumor microenvironment renders pancreatic tumors sensitive to allosteric IDH1 inhibitors. Nature Cancer 2022, 3 (7) , 852-865. https://doi.org/10.1038/s43018-022-00393-y
  95. Nadia Senhaji, Asmae Squalli Houssaini, Salma Lamrabet, Sara Louati, Sanae Bennis. Molecular and Circulating Biomarkers in Patients with Glioblastoma. International Journal of Molecular Sciences 2022, 23 (13) , 7474. https://doi.org/10.3390/ijms23137474
  96. Yutaka Midorikawa. Treatment of biliary tract carcinoma over the last 30 years. BioScience Trends 2022, 16 (3) , 189-197. https://doi.org/10.5582/bst.2022.01267
  97. Xiaomei Zhuang, Han Zhong Pei, Tianwen Li, Junbin Huang, Yao Guo, Yuming Zhao, Ming Yang, Dengyang Zhang, Zhiguang Chang, Qi Zhang, Liuting Yu, Chunxiao He, Liqing Zhang, Yihang Pan, Chun Chen, Yun Chen. The Molecular Mechanisms of Resistance to IDH Inhibitors in Acute Myeloid Leukemia. Frontiers in Oncology 2022, 12 https://doi.org/10.3389/fonc.2022.931462
  98. Ryosuke Kita, Takashi Osawa, Satoshi Obika. Conjugation of oligonucleotides with activated carbamate reagents prepared by the Ugi reaction for oligonucleotide library synthesis. RSC Chemical Biology 2022, 3 (6) , 728-738. https://doi.org/10.1039/D1CB00240F
  99. Van Hieu Tran, Wan Pyo Hong, Hee‐Kwon Kim. Facile titanium( IV ) chloride and TBD‐mediated synthesis of N ‐aryl‐substituted azacycles from arylhydrazines. Bulletin of the Korean Chemical Society 2022, 43 (6) , 777-783. https://doi.org/10.1002/bkcs.12530
  100. Vittoria Raimondi, Giulia Ciotti, Michele Gottardi, Francesco Ciccarese. 2-Hydroxyglutarate in Acute Myeloid Leukemia: A Journey from Pathogenesis to Therapies. Biomedicines 2022, 10 (6) , 1359. https://doi.org/10.3390/biomedicines10061359
Load more citations
  • Abstract

    Figure 1

    Figure 1. Mean ± SD concentrations of AG-120 in plasma and 2-HG in tumor after single oral administration of AG-120 at 50 or 150 mg/kg in a mouse HT1080 xenograft tumor model (n = 3 at each time point).

    Figure 2

    Figure 2. Percent intracellular 2-HG remaining relative to DMSO control after 6 days’ treatment with AG-120 in mIDH1-R132H or mIDH1-R132C patient samples (mean ± SEM from cells from four patients with mIDH1 AML).

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 18 other publications.

    1. 1
      Dang, L.; Su, S. M. Isocitrate Dehydrogenase Mutation and (R)-2-Hydroxyglutarate: From Basic Discovery to Therapeutics Development. Annu. Rev. Biochem. 2017, 86, 305331,  DOI: 10.1146/annurev-biochem-061516-044732
    2. 2
      Dang, L.; White, D. W.; Gross, S.; Bennett, B. D.; Bittinger, M. A.; Driggers, E. M.; Fantin, V. R.; Jang, H. G.; Jin, S.; Keenan, M. C.; Marks, K. M.; Prins, R. M.; Ward, P. S.; Yen, K. E.; Liau, L. M.; Rabinowitz, J. D.; Cantley, L. C.; Thompson, C. B.; Vander Heiden, M. G.; Su, S. M. Cancer-associated IDH1 Mutations Produce 2-Hydroxyglutarate. Nature 2009, 462 (7274), 739744,  DOI: 10.1038/nature08617
    3. 3
      Figueroa, M. E.; Abdel-Wahab, O.; Lu, C.; Ward, P. S.; Patel, J.; Shih, A.; Li, Y.; Bhagwat, N.; Vasanthakumar, A.; Fernandez, H. F.; Tallman, M. S.; Sun, Z.; Wolniak, K.; Peeters, J. K.; Liu, W.; Choe, S. E.; Fantin, V. R.; Paietta, E.; Lowenberg, B.; Licht, J. D.; Godley, L. A.; Delwel, R.; Valk, P. J.; Thompson, C. B.; Levine, R. L.; Melnick, A. Leukemic IDH1 and IDH2 Mutations Result in a Hypermethylation Phenotype, Disrupt TET2 Function, and Impair Hematopoietic Differentiation. Cancer Cell 2010, 18 (6), 553567,  DOI: 10.1016/j.ccr.2010.11.015
    4. 4
      Lu, C.; Ward, P. S.; Kapoor, G. S.; Rohle, D.; Turcan, S.; Abdel-Wahab, O.; Edwards, C. R.; Khanin, R.; Figueroa, M. E.; Melnick, A.; Wellen, K. E.; O’Rourke, D. M.; Berger, S. L.; Chan, T. A.; Levine, R. L.; Mellinghoff, I. K.; Thompson, C. B. IDH Mutation Impairs Histone Demethylation and Results in a Block to Cell Differentiation. Nature 2012, 483 (7390), 474478,  DOI: 10.1038/nature10860
    5. 5
      Rohle, D.; Popovici-Muller, J.; Palaskas, N.; Turcan, S.; Grommes, C.; Campos, C.; Tsoi, J.; Clark, O.; Oldrini, B.; Komisopoulou, E.; Kunii, K.; Pedraza, A.; Schalm, S.; Silverman, L.; Miller, A.; Wang, F.; Yang, H.; Chen, Y.; Kernytsky, A.; Rosenblum, M. K.; Liu, W.; Biller, S. A.; Su, S. M.; Brennan, C. W.; Chan, T. A.; Graeber, T. G.; Yen, K. E.; Mellinghoff, I. K. An Inhibitor of Mutant IDH1 Delays Growth and Promotes Differentiation of Glioma Cells. Science 2013, 340 (6132), 626630,  DOI: 10.1126/science.1236062
    6. 6
      Stein, E. M.; DiNardo, C. D.; Pollyea, D. A.; Fathi, A. T.; Roboz, G. J.; Altman, J. K.; Stone, R. M.; DeAngelo, D. J.; Levine, R. L.; Flinn, I. W.; Kantarjian, H. M.; Collins, R.; Patel, M. R.; Frankel, A. E.; Stein, A.; Sekeres, M. A.; Swords, R. T.; Medeiros, B. C.; Willekens, C.; Vyas, P.; Tosolini, A.; Xu, Q.; Knight, R. D.; Yen, K. E.; Agresta, S.; de Botton, S.; Tallman, M. S. Enasidenib in Mutant IDH2 Relapsed or Refractory Acute Myeloid Leukemia. Blood 2017, 130 (6), 722731,  DOI: 10.1182/blood-2017-04-779405
    7. 7
      Stein, E. M.; Yen, K. Targeted Differentiation Therapy with Mutant IDH Inhibitors: Early Experiences and Parallels with Other Differentiation Agents. Annu. Rev. Canc. Biol. 2017, 1, 379401,  DOI: 10.1146/annurev-cancerbio-050216-122051
    8. 8
      Amatangelo, M. D.; Quek, L.; Shih, A.; Stein, E. M.; Roshal, M.; David, M. D.; Marteyn, B.; Farnoud, N. R.; de Botton, S.; Bernard, O. A.; Wu, B.; Yen, K. E.; Tallman, M. S.; Papaemmanuil, E.; Penard-Lacronique, V.; Thakurta, A.; Vyas, P.; Levine, R. L. Enasidenib Induces Acute Myeloid Leukemia Cell Differentiation to Promote Clinical Response. Blood 2017, 130 (6), 732741,  DOI: 10.1182/blood-2017-04-779447
    9. 9
      Popovici-Muller, J.; Saunders, J. O.; Salituro, F. G.; Travins, J. M.; Yan, S.; Zhao, F.; Gross, S.; Dang, L.; Yen, K. E.; Yang, H.; Straley, K. S.; Jin, S.; Kunii, K.; Fantin, V. R.; Zhang, S.; Pan, Q.; Shi, D.; Biller, S. A.; Su, S. M. Discovery of the First Potent Inhibitors of Mutant IDH1 That Lower Tumor 2-HG in Vivo. ACS Med. Chem. Lett. 2012, 3 (10), 850855,  DOI: 10.1021/ml300225h
    10. 10
      Pusch, S.; Krausert, S.; Fischer, V.; Balss, J.; Ott, M.; Schrimpf, D.; Capper, D.; Sahm, F.; Eisel, J.; Beck, A. C.; Jugold, M.; Eichwald, V.; Kaulfuss, S.; Panknin, O.; Rehwinkel, H.; Zimmermann, K.; Hillig, R. C.; Guenther, J.; Toschi, L.; Neuhaus, R.; Haegebart, A.; Hess-Stumpp, H.; Bauser, M.; Wick, W.; Unterberg, A.; Herold-Mende, C.; Platten, M.; von Deimling, A. Pan-mutant IDH1 Inhibitor BAY 1436032 for Effective Treatment of IDH1 Mutant Astrocytoma In Vivo. Acta Neuropathol. 2017, 133 (4), 629644,  DOI: 10.1007/s00401-017-1677-y
    11. 11
      Cho, Y. S.; Levell, J. R.; Liu, G.; Caferro, T.; Sutton, J.; Shafer, C. M.; Costales, A.; Manning, J. R.; Zhao, Q.; Sendzik, M.; Shultz, M.; Chenail, G.; Dooley, J.; Villalba, B.; Farsidjani, A.; Chen, J.; Kulathila, R.; Xie, X.; Dodd, S.; Gould, T.; Liang, G.; Heimbach, T.; Slocum, K.; Firestone, B.; Pu, M.; Pagliarini, R.; Growney, J. D. Discovery and Evaluation of Clinical Candidate IDH305, a Brain Penetrant Mutant IDH1 Inhibitor. ACS Med. Chem. Lett. 2017, 8 (10), 11161121,  DOI: 10.1021/acsmedchemlett.7b00342
    12. 12
      Gao, Y. D.; Olson, S. H.; Balkovec, J. M.; Zhu, Y.; Royo, I.; Yabut, J.; Evers, R.; Tan, E. Y.; Tang, W.; Hartley, D. P.; Mosley, R. T. Attenuating Pregnane X Receptor (PXR) Activation: A Molecular Modelling Approach. Xenobiotica 2007, 37 (2), 124138,  DOI: 10.1080/00498250601050412
    13. 13
      Fan, B.; Goyal, L.; Lowery, M. A.; Pandya, S. S.; Manyak, E.; Le, K.; Jiang, L.; Auer, J.; Dai, D. Pharmacokinetic/pharmacodynamic (PK/PD) Profile of AG-120 in Patients with IDH1-Mutant Cholangiocarcinoma From a Phase 1 Study of Advanced Solid Tumors. J. Clin. Oncol. 2017, 35 (15 Suppl), Abstract 4082. DOI: 10.1200/JCO.2017.35.15_suppl.4082
    14. 14
      Fan, B.; Le, K.; Manyak, E.; Liu, H.; Prahl, M.; Bowden, C. J.; Biller, S.; Agresta, S.; Yang, H. Longitudinal Pharmacokinetic/Pharmacodynamic Profile of AG-120, a Potent Inhibitor of the IDH1 Mutant Protein, in a Phase 1 Study of IDH1-Mutant Advanced Hematologic Malignancies. Blood 2015, 126 (23), Abstract 1310.
    15. 15
      DiNardo, C. D.; de Botton, S.; Stein, E. M.; Roboz, G. J.; Mims, A. S.; Pollyea, D. A.; Swords, R. T.; Altman, J. K.; Collins, R. H.; Mannis, G. N.; Uy, G. L.; Donnellan, W.; Pigneux, A.; Fathi, A. T.; Stein, A. S.; Erba, H. P.; Prince, G. T.; Foran, J. M.; Traer, E.; Stuart, R. K.; Arellano, M. L.; Slack, J. L.; Sekeres, M. A.; Yen, K.; Kapsalis, S. M.; Liu, H.; Goldwasser, M.; Agresta, S.; Attar, E. C.; Tallman, M. S.; Stone, R. M.; Kantarjian, H. M. Ivosidenib (AG-120) in Mutant IDH1 AML and Advanced Hematologic Malignancies: Results of a Phase 1 Dose Escalation and Expansion Study. Blood 2017, 130 (Suppl), Abstract 725.
    16. 16
      Mellinghoff, I. K.; Touat, M.; Maher, E.; de la Fuente, M.; Cloughesy, T. F.; Holdhoff, M.; Cote, G. M.; Burris, H.; Janku, F.; Huang, R.; Young, R. J.; Ellingson, B.; Nimkar, T.; Jiang, L.; Ishii, Y.; Choe, S.; Fan, B.; Steelman, L.; Yen, K.; Bowden, C.; Pandya, S.; Wen, P. Y. AG-120, a First-In-Class Mutant IDH1 Inhibitor in Patients with Recurrent or Progressive IDH1 Mutant Glioma: Updated Results From the Phase 1 Non-Enhancing Glioma Population. Neuro-Oncology 2017, 19 (Suppl 6), vi10,  DOI: 10.1093/neuonc/nox168.037
    17. 17
      Lowery, M. A.; Abou-Alfa, G. K.; Burris, H. A.; Janku, F.; Shroff, R. T.; Cleary, J. M.; Azad, N. S.; Goyal, L.; Maher, E. A.; Gore, L.; Hollebecque, A.; Beeram, M.; Trent, J. C.; Jiang, L.; Ishii, Y.; Auer, J.; Gliser, C.; Agresta, S. V.; Pandya, S. S.; Zhu, A. X. Phase I Study of AG-120, an IDH1 Mutant Enzyme Inhibitor: Results From the Cholangiocarcinoma Dose Escalation and Expansion Cohorts. J. Clin. Oncol. 2017, 35 (15 Suppl), 4015,  DOI: 10.1200/JCO.2017.35.15_suppl.4015
    18. 18
      DiNardo, C. D.; de Botton, S.; Stein, E. M.; Roboz, G. J.; Swords, R. T.; Pollyea, D. A.; Fathi, A. T.; Collins, R.; Altman, J. K.; Flinn, I. W.; Mannis, G. N.; Mims, A. S.; Foran, J. M.; Pigneux, A.; Prince, G. T.; Uy, G. L.; Tallman, M. S.; Kantarjian, H. M.; Liu, H.; Attar, E. C.; Sacolick, J.; Yen, K.; Hurov, J. B.; Choe, S.; Wu, B.; Stone, R. M. Determination of IDH1 Mutational Burden and Clearance Via Next-Generation Sequencing in Patients with IDH1 Mutation-Positive Hematologic Malignancies Receiving AG-120, a First-in-Class Inhibitor of Mutant IDH1. Blood 2016, 128 (22), Abstract 1070.
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsmedchemlett.7b00421.

    • Synthesis and profiling of AG-120, experimental procedures, synthetic details and characterization of compounds, and abbreviations (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect