ACS Publications. Most Trusted. Most Cited. Most Read
Identification of Imidazo[1,2-b]pyridazine Derivatives as Potent, Selective, and Orally Active Tyk2 JH2 Inhibitors
My Activity

Figure 1Loading Img
    Letter

    Identification of Imidazo[1,2-b]pyridazine Derivatives as Potent, Selective, and Orally Active Tyk2 JH2 Inhibitors
    Click to copy article linkArticle link copied!

    • Chunjian Liu*
      Chunjian Liu
      Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
      *Tel: +1 609 466 5101. E-mail: [email protected]
      More by Chunjian Liu
    • James Lin
      James Lin
      Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
      More by James Lin
    • Ryan Moslin
      Ryan Moslin
      Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
      More by Ryan Moslin
    • John S. Tokarski
      John S. Tokarski
      Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
    • Jodi Muckelbauer
      Jodi Muckelbauer
      Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
    • ChiehYing Chang
      ChiehYing Chang
      Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
    • Jeffrey Tredup
      Jeffrey Tredup
      Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
    • Dianlin Xie
      Dianlin Xie
      Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
      More by Dianlin Xie
    • Hyunsoo Park
      Hyunsoo Park
      Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
      More by Hyunsoo Park
    • Peng Li
      Peng Li
      Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
      More by Peng Li
    • Dauh-Rurng Wu
      Dauh-Rurng Wu
      Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
    • Joann Strnad
      Joann Strnad
      Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
      More by Joann Strnad
    • Adriana Zupa-Fernandez
      Adriana Zupa-Fernandez
      Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
    • Lihong Cheng
      Lihong Cheng
      Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
      More by Lihong Cheng
    • Charu Chaudhry
      Charu Chaudhry
      Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
    • Jing Chen
      Jing Chen
      Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
      More by Jing Chen
    • Cliff Chen
      Cliff Chen
      Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
      More by Cliff Chen
    • Huadong Sun
      Huadong Sun
      Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
      More by Huadong Sun
    • Paul Elzinga
      Paul Elzinga
      Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
      More by Paul Elzinga
    • Celia D’arienzo
      Celia D’arienzo
      Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
    • Kathleen Gillooly
      Kathleen Gillooly
      Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
    • Tracy L. Taylor
      Tracy L. Taylor
      Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
    • Kim W. McIntyre
      Kim W. McIntyre
      Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
    • Luisa Salter-Cid
      Luisa Salter-Cid
      Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
    • Louis J. Lombardo
      Louis J. Lombardo
      Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
    • Percy H. Carter
      Percy H. Carter
      Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
    • Nelly Aranibar
      Nelly Aranibar
      Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
    • James R. Burke
      James R. Burke
      Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
    • David S. Weinstein
      David S. Weinstein
      Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
    Other Access OptionsSupporting Information (1)

    ACS Medicinal Chemistry Letters

    Cite this: ACS Med. Chem. Lett. 2019, 10, 3, 383–388
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsmedchemlett.9b00035
    Published February 21, 2019
    Copyright © 2019 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    In sharp contrast to a previously reported series of 6-anilino imidazopyridazine based Tyk2 JH2 ligands, 6-((2-oxo-N1-substituted-1,2-dihydropyridin-3-yl)amino)imidazo[1,2-b]pyridazine analogs were found to display dramatically improved metabolic stability. The N1-substituent on 2-oxo-1,2-dihydropyridine ring can be a variety of alkyl, aryl, and heteroaryl groups, but among them, 2-pyridyl provided much enhanced Caco-2 permeability, attributed to its ability to form intramolecular hydrogen bonds. Further structure–activity relationship studies at the C3 position led to the identification of highly potent and selective Tyk2 JH2 inhibitor 6, which proved to be highly effective in inhibiting IFNγ production in a rat pharmacodynamics model and fully efficacious in a rat adjuvant arthritis model.

    Copyright © 2019 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsmedchemlett.9b00035.

    • Experimental procedures and characterization for all final compounds, as well as descriptions of in vitro and in vivo studies (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 44 publications.

    1. Stephen T. Wrobleski Daniel S. Treitler Eric M. Simmons . Discovery and Development of Deucravacitinib (BMS-986165), a Small Molecule TYK2 Inhibitor for the Treatment of Autoimmune Diseases. , 137-195. https://doi.org/10.1021/bk-2025-1505.ch004
    2. Silvana LeitBhaskar SrivastavaNathan E. GenungJoshua J. McElweeDenise LevasseurScott D. Edmondson. TARGETING SELECTIVE TYROSINE KINASE 2 (TYK2) INHIBITORS FOR THE TREATMENT OF AUTOIMMUNE DISEASES. , 157-185. https://doi.org/10.1021/mc-2023-vol58.ch07
    3. Sean P. Henry, William L. Jorgensen. Progress on the Pharmacological Targeting of Janus Pseudokinases. Journal of Medicinal Chemistry 2023, 66 (16) , 10959-10990. https://doi.org/10.1021/acs.jmedchem.3c00926
    4. Silvana Leit, Jeremy Greenwood, Samantha Carriero, Sayan Mondal, Robert Abel, Mark Ashwell, Heather Blanchette, Nicholas A. Boyles, Mark Cartwright, Alan Collis, Shulu Feng, Phani Ghanakota, Geraldine C. Harriman, Vinayak Hosagrahara, Neelu Kaila, Rosanna Kapeller, Salma B. Rafi, Donna L. Romero, Paul M. Tarantino, Jignesh Timaniya, Angela V. Toms, Ronald T. Wester, William Westlin, Bhaskar Srivastava, Wenyan Miao, Peter Tummino, Joshua J. McElwee, Scott D. Edmondson, Craig E. Masse. Discovery of a Potent and Selective Tyrosine Kinase 2 Inhibitor: TAK-279. Journal of Medicinal Chemistry 2023, 66 (15) , 10473-10496. https://doi.org/10.1021/acs.jmedchem.3c00600
    5. Kuojun Zhang, Ke Ye, He Tang, Zhihao Qi, Tianyu Wang, Jie Mao, Xiangyu Zhang, Sheng Jiang. Development and Therapeutic Implications of Tyrosine Kinase 2 Inhibitors. Journal of Medicinal Chemistry 2023, 66 (7) , 4378-4416. https://doi.org/10.1021/acs.jmedchem.2c01800
    6. Fei Liu, Bin Wang, Yanlong Liu, Wei Shi, Xujing Tang, Xiaojin Wang, Zhongyuan Hu, Ying Zhang, Yahui Guo, Xiayun Chang, Xiangyi He, Hongjiang Xu, Ying He. Novel TYK2 Inhibitors with an N-(Methyl-d3)pyridazine-3-carboxamide Skeleton for the Treatment of Autoimmune Diseases. ACS Medicinal Chemistry Letters 2022, 13 (11) , 1730-1738. https://doi.org/10.1021/acsmedchemlett.2c00334
    7. Chunjian Liu, James Lin, Charles Langevine, Daniel Smith, Jianqing Li, John S. Tokarski, Javed Khan, Max Ruzanov, Joann Strnad, Adriana Zupa-Fernandez, Lihong Cheng, Kathleen M. Gillooly, David Shuster, Yifan Zhang, Anil Thankappan, Kim W. McIntyre, Charu Chaudhry, Paul A. Elzinga, Manoj Chiney, Anjaneya Chimalakonda, Louis J. Lombardo, John E. Macor, Percy H. Carter, James R. Burke, David S. Weinstein. Discovery of BMS-986202: A Clinical Tyk2 Inhibitor that Binds to Tyk2 JH2. Journal of Medicinal Chemistry 2021, 64 (1) , 677-694. https://doi.org/10.1021/acs.jmedchem.0c01698
    8. Janis Veliks, Melita Videja, Artis Kinens, Raitis Bobrovs, Martins Priede, Janis Kuka. trans-Fluorine Effect in Cyclopropane: Diastereoselective Synthesis of Fluorocyclopropyl Cabozantinib Analogs. ACS Medicinal Chemistry Letters 2020, 11 (11) , 2146-2150. https://doi.org/10.1021/acsmedchemlett.0c00220
    9. Muthalagu Vetrichelvan, Souvik Rakshit, Sathishkumar Chandrasekaran, Karthikeyan Chinnakalai, Chetan Padmakar Darne, Dyamanna Doddalingappa, Indasi Gopikumar, Anuradha Gupta, Arun Kumar Gupta, Ananta Karmakar, Thirumalai Lakshminarasimhan, David K. Leahy, Senthil Palani, Vignesh Radhakrishnan, Richard Rampulla, Antony Savarimuthu, Varadharajan Subramanian, Upender Velaparthi, Jayakumar Warrier, Martin D. Eastgate, Robert M. Borzilleri, Arvind Mathur, Rajappa Vaidyanathan. Development of a Scalable Synthesis of the Small Molecule TGFβR1 Inhibitor BMS-986260. Organic Process Research & Development 2020, 24 (7) , 1310-1320. https://doi.org/10.1021/acs.oprd.0c00232
    10. Ryan Moslin, Yanlei Zhang, Stephen T. Wrobleski, Shuqun Lin, Michael Mertzman, Steven Spergel, John S. Tokarski, Joann Strnad, Kathleen Gillooly, Kim W. McIntyre, Adriana Zupa-Fernandez, Lihong Cheng, Huadong Sun, Charu Chaudhry, Christine Huang, Celia D’Arienzo, Elizabeth Heimrich, Xiaoxia Yang, Jodi K. Muckelbauer, ChiehYing Chang, Jeffrey Tredup, Dawn Mulligan, Dianlin Xie, Nelly Aranibar, Manoj Chiney, James R. Burke, Louis Lombardo, Percy H. Carter, David S. Weinstein. Identification of N-Methyl Nicotinamide and N-Methyl Pyridazine-3-Carboxamide Pseudokinase Domain Ligands as Highly Selective Allosteric Inhibitors of Tyrosine Kinase 2 (TYK2). Journal of Medicinal Chemistry 2019, 62 (20) , 8953-8972. https://doi.org/10.1021/acs.jmedchem.9b00443
    11. Renate Melngaile, Arturs Sperga, Kim K. Baldridge, Janis Veliks. Diastereoselective Monofluorocyclopropanation Using Fluoromethylsulfonium Salts. Organic Letters 2019, 21 (17) , 7174-7178. https://doi.org/10.1021/acs.orglett.9b02867
    12. Jimin Wang, Ivan B. Lomakin, Victor S. Batista, Christopher G. Bunick. A triple-action inhibitory mechanism of allosteric TYK2-specific inhibitors. Journal of Investigative Dermatology 2025, 394 https://doi.org/10.1016/j.jid.2025.04.025
    13. Lin Pan, Juan Xu, Hongming Xie, Yingjun Zhang, Huanfeng Jiang, Yongqi Yao, Wanqing Wu. Tyrosine kinase 2 inhibitors: Synthesis and applications in the treatment of autoimmune diseases. European Journal of Medicinal Chemistry 2025, 283 , 117114. https://doi.org/10.1016/j.ejmech.2024.117114
    14. Łukasz Zadka, Adam Ustaszewski, Natalia Glatzel-Plucińska, Agnieszka Rusak, Izabela Łaczmańska, Katarzyna Ratajczak-Wielgomas, Alicja Kmiecik, Aleksandra Piotrowska, Katarzyna Haczkiewicz-Leśniak, Agnieszka Gomułkiewicz, Magdalena Kostrzewska-Poczekaj, Piotr Dzięgiel. TYK2 Protein Expression and Its Potential as a Tissue-Based Biomarker for the Diagnosis of Colorectal Cancer. Cancers 2024, 16 (21) , 3665. https://doi.org/10.3390/cancers16213665
    15. Pei-Pei Huang, Ting-Ting Wu, Meng-Qi Tuo, Jing Ge, Pei Huang, Wen-Quan Wang, Jun-Peng Yang, Hui-Bin Pan, Jiu-Fu Lu. Supramolecular complexes of Co(II), Zn(II) and Mn(II) based on a pyridazine dicarboxylic derivative: Synthesis, crystal structures and properties. Journal of Molecular Structure 2024, 1307 , 138061. https://doi.org/10.1016/j.molstruc.2024.138061
    16. Ankita Thakral, Monika Verma, Ajay Thakur, Ruchi Bharti, Renu Sharma. Comprehensive Review on One-pot Green Synthesis of Pyran and Chromene Fused Benzo[α]phenazines. Polycyclic Aromatic Compounds 2024, 44 (3) , 1697-1721. https://doi.org/10.1080/10406638.2023.2203506
    17. Tian‐Hua Wei, Meng‐Yi Lu, Si‐Hui Yao, Yu‐Qi Hong, Jin Yang, Meng‐Yuan Zhang, Yu‐Qi Yin, Yu‐Jie Han, Qing‐Qing Li, Zi‐Xuan Wang, Yi‐Bo Wang, Zhen‐Jiang Tong, Yun Zhou, Wei‐Chen Dai, Yan‐Cheng Yu, Shan‐Liang Sun, Ye Yang, Nian‐Guang Li, Zhi‐Hao Shi. Insight into Janus kinases specificity: From molecular architecture to cancer therapeutics. MedComm – Oncology 2024, 3 (1) https://doi.org/10.1002/mog2.69
    18. Jinbao Xiang, Yuji Wang, Wanhe Wang, Jianxin Yu, Lianyou Zheng, Yuan Hong, Lingling Shi, Chunling Zhang, Na Chen, Jia Xu, Xuelian Gong, Zhuoqi Zhang, Hongming Cui, Qian Zhou, Dapeng Zhang, Yanjun Liu, Ying Ke, Jingkang Shen, Guangxin Xia, Xu Bai. Design, synthesis, and pharmacological evaluation of quinazoline derivatives as novel and potent pan-JAK inhibitors. Bioorganic Chemistry 2023, 140 , 106765. https://doi.org/10.1016/j.bioorg.2023.106765
    19. Lise Torp Jensen, Kathrine E. Attfield, Marc Feldmann, Lars Fugger. Allosteric TYK2 inhibition: redefining autoimmune disease therapy beyond JAK1-3 inhibitors. eBioMedicine 2023, 97 , 104840. https://doi.org/10.1016/j.ebiom.2023.104840
    20. . Allosteric TYK2 Inhibitors. 2023, 187-194. https://doi.org/10.1002/9781394207145.ch8
    21. Nicholas A. Meanwell. The pyridazine heterocycle in molecular recognition and drug discovery. Medicinal Chemistry Research 2023, 32 (9) , 1853-1921. https://doi.org/10.1007/s00044-023-03035-9
    22. Zili Xiao, Michael G. Yang, Chunjian Liu, Trevor Sherwood, John L. Gilmore, James Lin, Peng Li, Dauh-Rurng Wu, John Tokarski, Sha Li, Lihong Cheng, Chunshan Xie, Jingsong Fan, Elizabeth Dierks, Joann Strnad, Mary Ellen Cvijic, Javed Khan, Max Ruzanov, Michael Galella, Purnima Khandelwal, Alaric J. Dyckman, Arvind Mathur, Louis J. Lombardo, John E Macor, Percy H. Carter, Nelly Aranibar, James R. Burke, David S. Weinstein. Structure–activity relationship study of central pyridine-derived TYK2 JH2 inhibitors: Optimization of the PK profile through C4′ and C6 variations. Bioorganic & Medicinal Chemistry Letters 2023, 91 , 129373. https://doi.org/10.1016/j.bmcl.2023.129373
    23. Y.-Y. Hou, W.-J. Ye, S.-S. Wang, F. Wu, C.-S. Zhao, Z.-X. Zhou. Synthesis, Crystal Structure, and DFT Study of Ethyl 6-Chloro-3-fluoroimidazo[1,2-b]pyridazine-2-carboxylate. Russian Journal of General Chemistry 2023, 93 (5) , 1193-1200. https://doi.org/10.1134/S1070363223050201
    24. Fei Liu, Bin Wang, Yanlong Liu, Wei Shi, Zhongyuan Hu, Xiayun Chang, Xujing Tang, Ying Zhang, Hongjiang Xu, Ying He. Design, synthesis and biological evaluation of novel N-(methyl-d) pyridazine-3-carboxamide derivatives as TYK2 inhibitors. Bioorganic & Medicinal Chemistry Letters 2023, 86 , 129235. https://doi.org/10.1016/j.bmcl.2023.129235
    25. Oleksandr O. Grygorenko, Kostiantyn P. Melnykov, Serhii Holovach, Oleksandr Demchuk. Fluorinated Cycloalkyl Building Blocks for Drug Discovery. ChemMedChem 2022, 17 (21) https://doi.org/10.1002/cmdc.202200365
    26. Bin Guo, Wencai Zhang, Lin Pei, Xiaowei Zhu, Pingping Luo, Weili Duan. Remote Sensing Evidence for Significant Variations in the Global Gross Domestic Product during the COVID-19 Epidemic. Sustainability 2022, 14 (22) , 15201. https://doi.org/10.3390/su142215201
    27. Yu Cao, Qiyuan Shi, Kai Gao, Jiaan Shao, Huajian Zhu, Linghui Zeng, Chong Zhang, Jianjun Xi, Rangxiao Zhuang, Jiankang Zhang. Self-[3+2] annulation reaction of pyridinium salts: synthesis of N -indolizine-substituted pyridine-2(1 H )-ones. New Journal of Chemistry 2022, 46 (35) , 16651-16655. https://doi.org/10.1039/D2NJ03232E
    28. Binbin Zhou, . Building a Smart Education Ecosystem from a Metaverse Perspective. Mobile Information Systems 2022, 2022 , 1-10. https://doi.org/10.1155/2022/1938329
    29. Yu Zhou, Xin Li, Ru Shen, Xiangzhu Wang, Fan Zhang, Suxing Liu, Di Li, Jian Liu, Puhui Li, Yinfa Yan, Ping Dong, Zhigao Zhang, Heping Wu, Linghang Zhuang, Rasheduzzaman Chowdhury, Matthew Miller, Mena Issa, Yuchang Mao, Hongli Chen, Jun Feng, Jing Li, Chang Bai, Feng He, Weikang Tao. Novel Small Molecule Tyrosine Kinase 2 Pseudokinase Ligands Block Cytokine-Induced TYK2-Mediated Signaling Pathways. Frontiers in Immunology 2022, 13 https://doi.org/10.3389/fimmu.2022.884399
    30. Felix Gonzalez Lopez de Turiso, Kevin Guckian. Selective TYK2 inhibitors as potential therapeutic agents: a patent review (2019–2021). Expert Opinion on Therapeutic Patents 2022, 32 (4) , 365-379. https://doi.org/10.1080/13543776.2022.2026927
    31. Gregory A. Locke, Jodi Muckelbauer, John S. Tokarski, Christopher M. Barbieri, Stefan Belić, Bradley Falk, Jeffrey Tredup, Ying-Kai Wang. Identification and characterization of TYK2 pseudokinase domain stabilizers that allosterically inhibit TYK2 signaling. 2022, 685-727. https://doi.org/10.1016/bs.mie.2022.03.051
    32. Amanda Garrido, Gonzalo Vera, Pierre-Olivier Delaye, Cécile Enguehard-Gueiffier. Imidazo[1,2-b]pyridazine as privileged scaffold in medicinal chemistry: An extensive review. European Journal of Medicinal Chemistry 2021, 226 , 113867. https://doi.org/10.1016/j.ejmech.2021.113867
    33. Heather S. Hain, Rahul Pandey, Marina Bakay, Bryan P. Strenkowski, Danielle Harrington, Micah Romer, William W. Motley, Jian Li, Eunjoo Lancaster, Lindsay Roth, Judith B. Grinspan, Steven S. Scherer, Hakon Hakonarson. Inducible knockout of Clec16a in mice results in sensory neurodegeneration. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-88895-0
    34. Ahmed El Akkaoui, Jamal Koubachi, Gérald Guillaumet, Saïd El Kazzouli. Synthesis and Functionalization of Imidazo[1,2‐ b ]Pyridazine by Means of Metal‐Catalyzed Cross‐Coupling Reactions. ChemistrySelect 2021, 6 (34) , 8985-9011. https://doi.org/10.1002/slct.202101636
    35. Rakesh Kumar Sharma, Manisha Singh, Khagendra Ghimeray, Pinky Juneja, Gagan Dev, Sridhar Pulavarthi, Sabbasani Rajasekhara Reddy, Ravi Shankar Akundi. Imidazopyridazine Acetylcholinesterase Inhibitors Display Potent Anti-Proliferative Effects in the Human Neuroblastoma Cell-Line, IMR-32. Molecules 2021, 26 (17) , 5319. https://doi.org/10.3390/molecules26175319
    36. Giang Le-Nhat-Thuy, Tuyet Anh Dang Thi, Quynh Giang Nguyen Thi, Phuong Hoang Thi, Tuan Anh Nguyen, Ha Thanh Nguyen, Thu Ha Nguyen Thi, Hoang Sa Nguyen, Tuyen Van Nguyen. Synthesis and biological evaluation of novel benzo[a]pyridazino[3,4-c]phenazine derivatives. Bioorganic & Medicinal Chemistry Letters 2021, 43 , 128054. https://doi.org/10.1016/j.bmcl.2021.128054
    37. Robert M. Borzilleri, Amy C. Hart, Ryan Moslin, John S. Tokarski, Stephen T. Wrobleski. JAK Family Inhibitors for Autoimmune Diseases. 2021, 1-86. https://doi.org/10.1002/0471266949.bmc279
    38. K. Alison Rinderspacher. Six-membered ring systems: diazines and benzo derivatives. 2021, 431-466. https://doi.org/10.1016/B978-0-323-89812-6.00013-4
    39. Zhang-Xu He, Yun-Peng Gong, Xin Zhang, Li-Ying Ma, Wen Zhao. Pyridazine as a privileged structure: An updated review on anticancer activity of pyridazine containing bioactive molecules. European Journal of Medicinal Chemistry 2021, 209 , 112946. https://doi.org/10.1016/j.ejmech.2020.112946
    40. Wen‐Zhu Bi, Wen‐Jie Zhang, Zi‐Jie Li, Su‐Xiang Feng, Xiao‐Lan Chen, Ling‐Bo Qu. A Practical Synthesis of 1‐Azine‐pyridin‐2(1H)‐ones from Azine N ‐oxides and Pyridin‐2(1H)‐ones under Mild Reaction Conditions. ChemistrySelect 2020, 5 (45) , 14320-14323. https://doi.org/10.1002/slct.202003792
    41. Pengfei Xu, Pei Shen, Bin Yu, Xi Xu, Raoling Ge, Xinying Cheng, Qiuyu Chen, Jinlei Bian, Zhiyu Li, JuBo Wang. Janus kinases (JAKs): The efficient therapeutic targets for autoimmune diseases and myeloproliferative disorders. European Journal of Medicinal Chemistry 2020, 192 , 112155. https://doi.org/10.1016/j.ejmech.2020.112155
    42. Armands Kazia, Renate Melngaile, Anatoly Mishnev, Janis Veliks. Johnson–Corey–Chaykovsky fluorocyclopropanation of double activated alkenes: scope and limitations. Organic & Biomolecular Chemistry 2020, 18 (7) , 1384-1388. https://doi.org/10.1039/C9OB02712B
    43. Katharina Wöss, Natalija Simonović, Birgit Strobl, Sabine Macho-Maschler, Mathias Müller. TYK2: An Upstream Kinase of STATs in Cancer. Cancers 2019, 11 (11) , 1728. https://doi.org/10.3390/cancers11111728
    44. Qi Wu, Pan-Lin Shao, Yun He. Synthesis of 1,4,5,6-tetrahydropyridazines and pyridazines via transition-metal-free (4 + 2) cycloaddition of alkoxyallenes with 1,2-diaza-1,3-dienes. RSC Advances 2019, 9 (37) , 21507-21512. https://doi.org/10.1039/C9RA02712B

    ACS Medicinal Chemistry Letters

    Cite this: ACS Med. Chem. Lett. 2019, 10, 3, 383–388
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsmedchemlett.9b00035
    Published February 21, 2019
    Copyright © 2019 American Chemical Society

    Article Views

    3686

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.