Identification of Imidazo[1,2-b]pyridazine Derivatives as Potent, Selective, and Orally Active Tyk2 JH2 InhibitorsClick to copy article linkArticle link copied!
- Chunjian Liu*Chunjian Liu*Tel: +1 609 466 5101. E-mail: [email protected]Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United StatesMore by Chunjian Liu
- James LinJames LinResearch & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United StatesMore by James Lin
- Ryan MoslinRyan MoslinResearch & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United StatesMore by Ryan Moslin
- John S. TokarskiJohn S. TokarskiResearch & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United StatesMore by John S. Tokarski
- Jodi MuckelbauerJodi MuckelbauerResearch & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United StatesMore by Jodi Muckelbauer
- ChiehYing ChangChiehYing ChangResearch & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United StatesMore by ChiehYing Chang
- Jeffrey TredupJeffrey TredupResearch & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United StatesMore by Jeffrey Tredup
- Dianlin XieDianlin XieResearch & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United StatesMore by Dianlin Xie
- Hyunsoo ParkHyunsoo ParkResearch & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United StatesMore by Hyunsoo Park
- Peng LiPeng LiResearch & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United StatesMore by Peng Li
- Dauh-Rurng WuDauh-Rurng WuResearch & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United StatesMore by Dauh-Rurng Wu
- Joann StrnadJoann StrnadResearch & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United StatesMore by Joann Strnad
- Adriana Zupa-FernandezAdriana Zupa-FernandezResearch & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United StatesMore by Adriana Zupa-Fernandez
- Lihong ChengLihong ChengResearch & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United StatesMore by Lihong Cheng
- Charu ChaudhryCharu ChaudhryResearch & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United StatesMore by Charu Chaudhry
- Jing ChenJing ChenResearch & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United StatesMore by Jing Chen
- Cliff ChenCliff ChenResearch & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United StatesMore by Cliff Chen
- Huadong SunHuadong SunResearch & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United StatesMore by Huadong Sun
- Paul ElzingaPaul ElzingaResearch & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United StatesMore by Paul Elzinga
- Celia D’arienzoCelia D’arienzoResearch & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United StatesMore by Celia D’arienzo
- Kathleen GilloolyKathleen GilloolyResearch & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United StatesMore by Kathleen Gillooly
- Tracy L. TaylorTracy L. TaylorResearch & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United StatesMore by Tracy L. Taylor
- Kim W. McIntyreKim W. McIntyreResearch & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United StatesMore by Kim W. McIntyre
- Luisa Salter-CidLuisa Salter-CidResearch & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United StatesMore by Luisa Salter-Cid
- Louis J. LombardoLouis J. LombardoResearch & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United StatesMore by Louis J. Lombardo
- Percy H. CarterPercy H. CarterResearch & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United StatesMore by Percy H. Carter
- Nelly AranibarNelly AranibarResearch & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United StatesMore by Nelly Aranibar
- James R. BurkeJames R. BurkeResearch & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United StatesMore by James R. Burke
- David S. WeinsteinDavid S. WeinsteinResearch & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United StatesMore by David S. Weinstein
Abstract

In sharp contrast to a previously reported series of 6-anilino imidazopyridazine based Tyk2 JH2 ligands, 6-((2-oxo-N1-substituted-1,2-dihydropyridin-3-yl)amino)imidazo[1,2-b]pyridazine analogs were found to display dramatically improved metabolic stability. The N1-substituent on 2-oxo-1,2-dihydropyridine ring can be a variety of alkyl, aryl, and heteroaryl groups, but among them, 2-pyridyl provided much enhanced Caco-2 permeability, attributed to its ability to form intramolecular hydrogen bonds. Further structure–activity relationship studies at the C3 position led to the identification of highly potent and selective Tyk2 JH2 inhibitor 6, which proved to be highly effective in inhibiting IFNγ production in a rat pharmacodynamics model and fully efficacious in a rat adjuvant arthritis model.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 44 publications.
- Stephen T. Wrobleski Daniel S. Treitler Eric M. Simmons . Discovery and Development of Deucravacitinib (BMS-986165), a Small Molecule TYK2 Inhibitor for the Treatment of Autoimmune Diseases. , 137-195. https://doi.org/10.1021/bk-2025-1505.ch004
- Silvana LeitBhaskar SrivastavaNathan E. GenungJoshua J. McElweeDenise LevasseurScott D. Edmondson. TARGETING SELECTIVE TYROSINE KINASE 2 (TYK2) INHIBITORS FOR THE TREATMENT OF AUTOIMMUNE DISEASES. , 157-185. https://doi.org/10.1021/mc-2023-vol58.ch07
- Sean P. Henry, William L. Jorgensen. Progress on the Pharmacological Targeting of Janus Pseudokinases. Journal of Medicinal Chemistry 2023, 66
(16)
, 10959-10990. https://doi.org/10.1021/acs.jmedchem.3c00926
- Silvana Leit, Jeremy Greenwood, Samantha Carriero, Sayan Mondal, Robert Abel, Mark Ashwell, Heather Blanchette, Nicholas A. Boyles, Mark Cartwright, Alan Collis, Shulu Feng, Phani Ghanakota, Geraldine C. Harriman, Vinayak Hosagrahara, Neelu Kaila, Rosanna Kapeller, Salma B. Rafi, Donna L. Romero, Paul M. Tarantino, Jignesh Timaniya, Angela V. Toms, Ronald T. Wester, William Westlin, Bhaskar Srivastava, Wenyan Miao, Peter Tummino, Joshua J. McElwee, Scott D. Edmondson, Craig E. Masse. Discovery of a Potent and Selective Tyrosine Kinase 2 Inhibitor: TAK-279. Journal of Medicinal Chemistry 2023, 66
(15)
, 10473-10496. https://doi.org/10.1021/acs.jmedchem.3c00600
- Kuojun Zhang, Ke Ye, He Tang, Zhihao Qi, Tianyu Wang, Jie Mao, Xiangyu Zhang, Sheng Jiang. Development and Therapeutic Implications of Tyrosine Kinase 2 Inhibitors. Journal of Medicinal Chemistry 2023, 66
(7)
, 4378-4416. https://doi.org/10.1021/acs.jmedchem.2c01800
- Fei Liu, Bin Wang, Yanlong Liu, Wei Shi, Xujing Tang, Xiaojin Wang, Zhongyuan Hu, Ying Zhang, Yahui Guo, Xiayun Chang, Xiangyi He, Hongjiang Xu, Ying He. Novel TYK2 Inhibitors with an N-(Methyl-d3)pyridazine-3-carboxamide Skeleton for the Treatment of Autoimmune Diseases. ACS Medicinal Chemistry Letters 2022, 13
(11)
, 1730-1738. https://doi.org/10.1021/acsmedchemlett.2c00334
- Chunjian Liu, James Lin, Charles Langevine, Daniel Smith, Jianqing Li, John S. Tokarski, Javed Khan, Max Ruzanov, Joann Strnad, Adriana Zupa-Fernandez, Lihong Cheng, Kathleen M. Gillooly, David Shuster, Yifan Zhang, Anil Thankappan, Kim W. McIntyre, Charu Chaudhry, Paul A. Elzinga, Manoj Chiney, Anjaneya Chimalakonda, Louis J. Lombardo, John E. Macor, Percy H. Carter, James R. Burke, David S. Weinstein. Discovery of BMS-986202: A Clinical Tyk2 Inhibitor that Binds to Tyk2 JH2. Journal of Medicinal Chemistry 2021, 64
(1)
, 677-694. https://doi.org/10.1021/acs.jmedchem.0c01698
- Janis Veliks, Melita Videja, Artis Kinens, Raitis Bobrovs, Martins Priede, Janis Kuka. trans-Fluorine Effect in Cyclopropane: Diastereoselective Synthesis of Fluorocyclopropyl Cabozantinib Analogs. ACS Medicinal Chemistry Letters 2020, 11
(11)
, 2146-2150. https://doi.org/10.1021/acsmedchemlett.0c00220
- Muthalagu Vetrichelvan, Souvik Rakshit, Sathishkumar Chandrasekaran, Karthikeyan Chinnakalai, Chetan Padmakar Darne, Dyamanna Doddalingappa, Indasi Gopikumar, Anuradha Gupta, Arun Kumar Gupta, Ananta Karmakar, Thirumalai Lakshminarasimhan, David K. Leahy, Senthil Palani, Vignesh Radhakrishnan, Richard Rampulla, Antony Savarimuthu, Varadharajan Subramanian, Upender Velaparthi, Jayakumar Warrier, Martin D. Eastgate, Robert M. Borzilleri, Arvind Mathur, Rajappa Vaidyanathan. Development of a Scalable Synthesis of the Small Molecule TGFβR1 Inhibitor BMS-986260. Organic Process Research & Development 2020, 24
(7)
, 1310-1320. https://doi.org/10.1021/acs.oprd.0c00232
- Ryan Moslin, Yanlei Zhang, Stephen T. Wrobleski, Shuqun Lin, Michael Mertzman, Steven Spergel, John S. Tokarski, Joann Strnad, Kathleen Gillooly, Kim W. McIntyre, Adriana Zupa-Fernandez, Lihong Cheng, Huadong Sun, Charu Chaudhry, Christine Huang, Celia D’Arienzo, Elizabeth Heimrich, Xiaoxia Yang, Jodi K. Muckelbauer, ChiehYing Chang, Jeffrey Tredup, Dawn Mulligan, Dianlin Xie, Nelly Aranibar, Manoj Chiney, James R. Burke, Louis Lombardo, Percy H. Carter, David S. Weinstein. Identification of N-Methyl Nicotinamide and N-Methyl Pyridazine-3-Carboxamide Pseudokinase Domain Ligands as Highly Selective Allosteric Inhibitors of Tyrosine Kinase 2 (TYK2). Journal of Medicinal Chemistry 2019, 62
(20)
, 8953-8972. https://doi.org/10.1021/acs.jmedchem.9b00443
- Renate Melngaile, Arturs Sperga, Kim K. Baldridge, Janis Veliks. Diastereoselective Monofluorocyclopropanation Using Fluoromethylsulfonium Salts. Organic Letters 2019, 21
(17)
, 7174-7178. https://doi.org/10.1021/acs.orglett.9b02867
- Jimin Wang, Ivan B. Lomakin, Victor S. Batista, Christopher G. Bunick. A triple-action inhibitory mechanism of allosteric TYK2-specific inhibitors. Journal of Investigative Dermatology 2025, 394 https://doi.org/10.1016/j.jid.2025.04.025
- Lin Pan, Juan Xu, Hongming Xie, Yingjun Zhang, Huanfeng Jiang, Yongqi Yao, Wanqing Wu. Tyrosine kinase 2 inhibitors: Synthesis and applications in the treatment of autoimmune diseases. European Journal of Medicinal Chemistry 2025, 283 , 117114. https://doi.org/10.1016/j.ejmech.2024.117114
- Łukasz Zadka, Adam Ustaszewski, Natalia Glatzel-Plucińska, Agnieszka Rusak, Izabela Łaczmańska, Katarzyna Ratajczak-Wielgomas, Alicja Kmiecik, Aleksandra Piotrowska, Katarzyna Haczkiewicz-Leśniak, Agnieszka Gomułkiewicz, Magdalena Kostrzewska-Poczekaj, Piotr Dzięgiel. TYK2 Protein Expression and Its Potential as a Tissue-Based Biomarker for the Diagnosis of Colorectal Cancer. Cancers 2024, 16
(21)
, 3665. https://doi.org/10.3390/cancers16213665
- Pei-Pei Huang, Ting-Ting Wu, Meng-Qi Tuo, Jing Ge, Pei Huang, Wen-Quan Wang, Jun-Peng Yang, Hui-Bin Pan, Jiu-Fu Lu. Supramolecular complexes of Co(II), Zn(II) and Mn(II) based on a pyridazine dicarboxylic derivative: Synthesis, crystal structures and properties. Journal of Molecular Structure 2024, 1307 , 138061. https://doi.org/10.1016/j.molstruc.2024.138061
- Ankita Thakral, Monika Verma, Ajay Thakur, Ruchi Bharti, Renu Sharma. Comprehensive Review on One-pot Green Synthesis of Pyran and Chromene Fused Benzo[α]phenazines. Polycyclic Aromatic Compounds 2024, 44
(3)
, 1697-1721. https://doi.org/10.1080/10406638.2023.2203506
- Tian‐Hua Wei, Meng‐Yi Lu, Si‐Hui Yao, Yu‐Qi Hong, Jin Yang, Meng‐Yuan Zhang, Yu‐Qi Yin, Yu‐Jie Han, Qing‐Qing Li, Zi‐Xuan Wang, Yi‐Bo Wang, Zhen‐Jiang Tong, Yun Zhou, Wei‐Chen Dai, Yan‐Cheng Yu, Shan‐Liang Sun, Ye Yang, Nian‐Guang Li, Zhi‐Hao Shi. Insight into Janus kinases specificity: From molecular architecture to cancer therapeutics. MedComm – Oncology 2024, 3
(1)
https://doi.org/10.1002/mog2.69
- Jinbao Xiang, Yuji Wang, Wanhe Wang, Jianxin Yu, Lianyou Zheng, Yuan Hong, Lingling Shi, Chunling Zhang, Na Chen, Jia Xu, Xuelian Gong, Zhuoqi Zhang, Hongming Cui, Qian Zhou, Dapeng Zhang, Yanjun Liu, Ying Ke, Jingkang Shen, Guangxin Xia, Xu Bai. Design, synthesis, and pharmacological evaluation of quinazoline derivatives as novel and potent pan-JAK inhibitors. Bioorganic Chemistry 2023, 140 , 106765. https://doi.org/10.1016/j.bioorg.2023.106765
- Lise Torp Jensen, Kathrine E. Attfield, Marc Feldmann, Lars Fugger. Allosteric TYK2 inhibition: redefining autoimmune disease therapy beyond JAK1-3 inhibitors. eBioMedicine 2023, 97 , 104840. https://doi.org/10.1016/j.ebiom.2023.104840
- . Allosteric TYK2 Inhibitors. 2023, 187-194. https://doi.org/10.1002/9781394207145.ch8
- Nicholas A. Meanwell. The pyridazine heterocycle in molecular recognition and drug discovery. Medicinal Chemistry Research 2023, 32
(9)
, 1853-1921. https://doi.org/10.1007/s00044-023-03035-9
- Zili Xiao, Michael G. Yang, Chunjian Liu, Trevor Sherwood, John L. Gilmore, James Lin, Peng Li, Dauh-Rurng Wu, John Tokarski, Sha Li, Lihong Cheng, Chunshan Xie, Jingsong Fan, Elizabeth Dierks, Joann Strnad, Mary Ellen Cvijic, Javed Khan, Max Ruzanov, Michael Galella, Purnima Khandelwal, Alaric J. Dyckman, Arvind Mathur, Louis J. Lombardo, John E Macor, Percy H. Carter, Nelly Aranibar, James R. Burke, David S. Weinstein. Structure–activity relationship study of central pyridine-derived TYK2 JH2 inhibitors: Optimization of the PK profile through C4′ and C6 variations. Bioorganic & Medicinal Chemistry Letters 2023, 91 , 129373. https://doi.org/10.1016/j.bmcl.2023.129373
- Y.-Y. Hou, W.-J. Ye, S.-S. Wang, F. Wu, C.-S. Zhao, Z.-X. Zhou. Synthesis, Crystal Structure, and DFT Study of Ethyl 6-Chloro-3-fluoroimidazo[1,2-b]pyridazine-2-carboxylate. Russian Journal of General Chemistry 2023, 93
(5)
, 1193-1200. https://doi.org/10.1134/S1070363223050201
- Fei Liu, Bin Wang, Yanlong Liu, Wei Shi, Zhongyuan Hu, Xiayun Chang, Xujing Tang, Ying Zhang, Hongjiang Xu, Ying He. Design, synthesis and biological evaluation of novel N-(methyl-d) pyridazine-3-carboxamide derivatives as TYK2 inhibitors. Bioorganic & Medicinal Chemistry Letters 2023, 86 , 129235. https://doi.org/10.1016/j.bmcl.2023.129235
- Oleksandr O. Grygorenko, Kostiantyn P. Melnykov, Serhii Holovach, Oleksandr Demchuk. Fluorinated Cycloalkyl Building Blocks for Drug Discovery. ChemMedChem 2022, 17
(21)
https://doi.org/10.1002/cmdc.202200365
- Bin Guo, Wencai Zhang, Lin Pei, Xiaowei Zhu, Pingping Luo, Weili Duan. Remote Sensing Evidence for Significant Variations in the Global Gross Domestic Product during the COVID-19 Epidemic. Sustainability 2022, 14
(22)
, 15201. https://doi.org/10.3390/su142215201
- Yu Cao, Qiyuan Shi, Kai Gao, Jiaan Shao, Huajian Zhu, Linghui Zeng, Chong Zhang, Jianjun Xi, Rangxiao Zhuang, Jiankang Zhang. Self-[3+2] annulation reaction of pyridinium salts: synthesis of
N
-indolizine-substituted pyridine-2(1
H
)-ones. New Journal of Chemistry 2022, 46
(35)
, 16651-16655. https://doi.org/10.1039/D2NJ03232E
- Binbin Zhou, . Building a Smart Education Ecosystem from a Metaverse Perspective. Mobile Information Systems 2022, 2022 , 1-10. https://doi.org/10.1155/2022/1938329
- Yu Zhou, Xin Li, Ru Shen, Xiangzhu Wang, Fan Zhang, Suxing Liu, Di Li, Jian Liu, Puhui Li, Yinfa Yan, Ping Dong, Zhigao Zhang, Heping Wu, Linghang Zhuang, Rasheduzzaman Chowdhury, Matthew Miller, Mena Issa, Yuchang Mao, Hongli Chen, Jun Feng, Jing Li, Chang Bai, Feng He, Weikang Tao. Novel Small Molecule Tyrosine Kinase 2 Pseudokinase Ligands Block Cytokine-Induced TYK2-Mediated Signaling Pathways. Frontiers in Immunology 2022, 13 https://doi.org/10.3389/fimmu.2022.884399
- Felix Gonzalez Lopez de Turiso, Kevin Guckian. Selective TYK2 inhibitors as potential therapeutic agents: a patent review (2019–2021). Expert Opinion on Therapeutic Patents 2022, 32
(4)
, 365-379. https://doi.org/10.1080/13543776.2022.2026927
- Gregory A. Locke, Jodi Muckelbauer, John S. Tokarski, Christopher M. Barbieri, Stefan Belić, Bradley Falk, Jeffrey Tredup, Ying-Kai Wang. Identification and characterization of TYK2 pseudokinase domain stabilizers that allosterically inhibit TYK2 signaling. 2022, 685-727. https://doi.org/10.1016/bs.mie.2022.03.051
- Amanda Garrido, Gonzalo Vera, Pierre-Olivier Delaye, Cécile Enguehard-Gueiffier. Imidazo[1,2-b]pyridazine as privileged scaffold in medicinal chemistry: An extensive review. European Journal of Medicinal Chemistry 2021, 226 , 113867. https://doi.org/10.1016/j.ejmech.2021.113867
- Heather S. Hain, Rahul Pandey, Marina Bakay, Bryan P. Strenkowski, Danielle Harrington, Micah Romer, William W. Motley, Jian Li, Eunjoo Lancaster, Lindsay Roth, Judith B. Grinspan, Steven S. Scherer, Hakon Hakonarson. Inducible knockout of Clec16a in mice results in sensory neurodegeneration. Scientific Reports 2021, 11
(1)
https://doi.org/10.1038/s41598-021-88895-0
- Ahmed El Akkaoui, Jamal Koubachi, Gérald Guillaumet, Saïd El Kazzouli. Synthesis and Functionalization of Imidazo[1,2‐
b
]Pyridazine by Means of Metal‐Catalyzed Cross‐Coupling Reactions. ChemistrySelect 2021, 6
(34)
, 8985-9011. https://doi.org/10.1002/slct.202101636
- Rakesh Kumar Sharma, Manisha Singh, Khagendra Ghimeray, Pinky Juneja, Gagan Dev, Sridhar Pulavarthi, Sabbasani Rajasekhara Reddy, Ravi Shankar Akundi. Imidazopyridazine Acetylcholinesterase Inhibitors Display Potent Anti-Proliferative Effects in the Human Neuroblastoma Cell-Line, IMR-32. Molecules 2021, 26
(17)
, 5319. https://doi.org/10.3390/molecules26175319
- Giang Le-Nhat-Thuy, Tuyet Anh Dang Thi, Quynh Giang Nguyen Thi, Phuong Hoang Thi, Tuan Anh Nguyen, Ha Thanh Nguyen, Thu Ha Nguyen Thi, Hoang Sa Nguyen, Tuyen Van Nguyen. Synthesis and biological evaluation of novel benzo[a]pyridazino[3,4-c]phenazine derivatives. Bioorganic & Medicinal Chemistry Letters 2021, 43 , 128054. https://doi.org/10.1016/j.bmcl.2021.128054
- Robert M. Borzilleri, Amy C. Hart, Ryan Moslin, John S. Tokarski, Stephen T. Wrobleski. JAK
Family Inhibitors for Autoimmune Diseases. 2021, 1-86. https://doi.org/10.1002/0471266949.bmc279
- K. Alison Rinderspacher. Six-membered ring systems: diazines and benzo derivatives. 2021, 431-466. https://doi.org/10.1016/B978-0-323-89812-6.00013-4
- Zhang-Xu He, Yun-Peng Gong, Xin Zhang, Li-Ying Ma, Wen Zhao. Pyridazine as a privileged structure: An updated review on anticancer activity of pyridazine containing bioactive molecules. European Journal of Medicinal Chemistry 2021, 209 , 112946. https://doi.org/10.1016/j.ejmech.2020.112946
- Wen‐Zhu Bi, Wen‐Jie Zhang, Zi‐Jie Li, Su‐Xiang Feng, Xiao‐Lan Chen, Ling‐Bo Qu. A Practical Synthesis of 1‐Azine‐pyridin‐2(1H)‐ones from Azine
N
‐oxides and Pyridin‐2(1H)‐ones under Mild Reaction Conditions. ChemistrySelect 2020, 5
(45)
, 14320-14323. https://doi.org/10.1002/slct.202003792
- Pengfei Xu, Pei Shen, Bin Yu, Xi Xu, Raoling Ge, Xinying Cheng, Qiuyu Chen, Jinlei Bian, Zhiyu Li, JuBo Wang. Janus kinases (JAKs): The efficient therapeutic targets for autoimmune diseases and myeloproliferative disorders. European Journal of Medicinal Chemistry 2020, 192 , 112155. https://doi.org/10.1016/j.ejmech.2020.112155
- Armands Kazia, Renate Melngaile, Anatoly Mishnev, Janis Veliks. Johnson–Corey–Chaykovsky fluorocyclopropanation of double activated alkenes: scope and limitations. Organic & Biomolecular Chemistry 2020, 18
(7)
, 1384-1388. https://doi.org/10.1039/C9OB02712B
- Katharina Wöss, Natalija Simonović, Birgit Strobl, Sabine Macho-Maschler, Mathias Müller. TYK2: An Upstream Kinase of STATs in Cancer. Cancers 2019, 11
(11)
, 1728. https://doi.org/10.3390/cancers11111728
- Qi Wu, Pan-Lin Shao, Yun He. Synthesis of 1,4,5,6-tetrahydropyridazines and pyridazines
via
transition-metal-free (4 + 2) cycloaddition of alkoxyallenes with 1,2-diaza-1,3-dienes. RSC Advances 2019, 9
(37)
, 21507-21512. https://doi.org/10.1039/C9RA02712B
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.