ACS Publications. Most Trusted. Most Cited. Most Read
Picomolar Biosensing and Conformational Analysis Using Artificial Bidomain Proteins and Terbium-to-Quantum Dot Förster Resonance Energy Transfer
My Activity
    Article

    Picomolar Biosensing and Conformational Analysis Using Artificial Bidomain Proteins and Terbium-to-Quantum Dot Förster Resonance Energy Transfer
    Click to copy article linkArticle link copied!

    • Corentin Léger
      Corentin Léger
      Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
    • Akram Yahia-Ammar
      Akram Yahia-Ammar
      Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
    • Kimihiro Susumu
      Kimihiro Susumu
      Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
      KeyW Corporation, Hanover, Maryland 21076, United States
    • Igor L. Medintz
      Igor L. Medintz
      Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
    • Agathe Urvoas*
      Agathe Urvoas
      Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
      *Email: [email protected]
    • Marie Valerio-Lepiniec*
      Marie Valerio-Lepiniec
      Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
      *Email: [email protected]
    • Philippe Minard*
      Philippe Minard
      Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
      *Email: [email protected]
    • Niko Hildebrandt*
      Niko Hildebrandt
      Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
      nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse), Université de Rouen Normandie, CNRS, INSA, 76821 Mont-Saint-Aignan, France
      *Email: [email protected]
    Other Access OptionsSupporting Information (1)

    ACS Nano

    Cite this: ACS Nano 2020, 14, 5, 5956–5967
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.0c01410
    Published March 27, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Although antibodies remain a primary recognition element in all forms of biosensing, functional limitations arising from their size, stability, and structure have motivated the development and production of many different artificial scaffold proteins for biological recognition. However, implementing such artificial binders into functional high-performance biosensors remains a challenging task. Here, we present the design and application of Förster resonance energy transfer (FRET) nanoprobes comprising small artificial proteins (αRep bidomains) labeled with a Tb complex (Tb) donor on the C-terminus and a semiconductor quantum dot (QD) acceptor on the N-terminus. Specific binding of one or two protein targets to the αReps induced a conformational change that could be detected by time-resolved Tb-to-QD FRET. These single-probe FRET switches were used in a separation-free solution-phase assay to quantify different protein targets at sub-nanomolar concentrations and to measure the conformational changes with sub-nanometer resolution. Probing ligand–receptor binding under physiological conditions at very low concentrations in solution is a special feature of FRET that can be efficiently combined with other structural characterization methods to develop, understand, and optimize artificial biosensors. Our results suggest that the αRep FRET nanoprobes have a strong potential for their application in advanced diagnostics and intracellular live-cell imaging of ligand–receptor interactions.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsnano.0c01410.

    • Bioconjugation rate of Tb per protein bidomain; overlap of eGFP and BFP absorption spectra with Tb PL spectrum; time-resolved PL decay curves of Tb and QD and decay time fit results for all QD concentrations and all investigated systems; construction of the Tb–bidomain–QD FRET probes; determination of LODs in buffer; assay calibration curves and determination of LODs in serum-containing samples; time-resolved PL decay curves for QDs without Tb donor (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 24 publications.

    1. Oleksii Dukhno, Srijayee Ghosh, Vanille Greiner, Sophie Bou, Julien Godet, Verena Muhr, Markus Buchner, Thomas Hirsch, Yves Mély, Frédéric Przybilla. Targeted Single Particle Tracking with Upconverting Nanoparticles. ACS Applied Materials & Interfaces 2024, 16 (9) , 11217-11227. https://doi.org/10.1021/acsami.3c17116
    2. Hui-Jun Fu, Ruifang Su, Lin Luo, Zi-Jian Chen, Thomas Just Sørensen, Niko Hildebrandt, Zhen-Lin Xu. Rapid and Wash-Free Time-Gated FRET Histamine Assays Using Antibodies and Aptamers. ACS Sensors 2022, 7 (4) , 1113-1121. https://doi.org/10.1021/acssensors.2c00085
    3. Xue Qiu, Jingyue Xu, Marcelina Cardoso Dos Santos, Niko Hildebrandt. Multiplexed Biosensing and Bioimaging Using Lanthanide-Based Time-Gated Förster Resonance Energy Transfer. Accounts of Chemical Research 2022, 55 (4) , 551-564. https://doi.org/10.1021/acs.accounts.1c00691
    4. Cassio C. S. Pedroso, Victor R. Mann, Kathrin Zuberbühler, Markus-Frederik Bohn, Jessica Yu, Virginia Altoe, Charles S. Craik, Bruce E. Cohen. Immunotargeting of Nanocrystals by SpyCatcher Conjugation of Engineered Antibodies. ACS Nano 2021, 15 (11) , 18374-18384. https://doi.org/10.1021/acsnano.1c07856
    5. Chen-chen Li, Jinping Hu, Xiliang Luo, Juan Hu, Chun-yang Zhang. Development of a Single Quantum Dot-Mediated FRET Nanosensor for Sensitive Detection of Single-Nucleotide Polymorphism in Cancer Cells. Analytical Chemistry 2021, 93 (43) , 14568-14576. https://doi.org/10.1021/acs.analchem.1c03675
    6. W. Russ Algar, Melissa Massey, Kelly Rees, Rehan Higgins, Katherine D. Krause, Ghinwa H. Darwish, William J. Peveler, Zhujun Xiao, Hsin-Yun Tsai, Rupsa Gupta, Kelsi Lix, Michael V. Tran, Hyungki Kim. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chemical Reviews 2021, 121 (15) , 9243-9358. https://doi.org/10.1021/acs.chemrev.0c01176
    7. Mingli Ni, Wen Luo, Dan Wang, Yue Zhang, Haiyan Peng, Xingping Zhou, Xiaolin Xie. Orthogonal Reconstruction of Upconversion and Holographic Images for Anticounterfeiting Based on Energy Transfer. ACS Applied Materials & Interfaces 2021, 13 (16) , 19159-19167. https://doi.org/10.1021/acsami.1c02561
    8. Wen-jing Liu, Rui Song, Dongming Yang, Shulin Zhao, Chun-yang Zhang. A programmable quantum dot nanosensor guided by three-way junction skeleton-mediated cascade signal amplification for sensitive detection of circRNAs in breast cancer. Chemical Engineering Journal 2024, 484 , 149788. https://doi.org/10.1016/j.cej.2024.149788
    9. M. Gomes, A. Fleck, A. Degaugue, F. Gourmelon, C. Léger, M. Aumont-Nicaise, A. Mesneau, H. Jean-Jacques, G. Hassaine, A. Urvoas, P. Minard, M. Valerio-Lepiniec. Design of an artificial phage-display library based on a new scaffold improved for average stability of the randomized proteins. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-27710-4
    10. Sümeyra Vural Kaymaz, Hediyeh Malekzadsani Nobar, Hasan Sarıgül, Caner Soylukan, Lalehan Akyüz, Meral Yüce. Nanomaterial surface modification toolkit: Principles, components, recipes, and applications. Advances in Colloid and Interface Science 2023, 322 , 103035. https://doi.org/10.1016/j.cis.2023.103035
    11. Christopher M. Green, David A. Hastman, Kimihiro Susumu, Joseph Spangler, David A. Stenger, Igor L. Medintz, Sebastián A. Díaz. Passivating quantum dots against histag-displaying enzymes using blocking peptides: salient considerations for self-assembling quantum dot biosensors. Sensors & Diagnostics 2023, 2 (6) , 1521-1530. https://doi.org/10.1039/D3SD00149K
    12. Priyadharshini Bhupathi, Thoraya Mohamed Elhassan A-Elgadir, Riyadh Hasan Mohammed Ali, Hijran Sanaan Jabbar, Djakhangirova Gulnoza, S. K. Joshi, Mohammed Kadhem Abid, Esraa Ahmed Said, Ahmed Alawadi, Ali Alsaalamy. Fluorescence Resonance Energy Transfer (FRET)-Based Sensor for Detection of Foodborne Pathogenic Bacteria: A Review. Critical Reviews in Analytical Chemistry 2023, , 1-18. https://doi.org/10.1080/10408347.2023.2274050
    13. Wen-jing Liu, Li-juan Wang, Chun-yang Zhang. Progress in quantum dot-based biosensors for microRNA assay: A review. Analytica Chimica Acta 2023, 1278 , 341615. https://doi.org/10.1016/j.aca.2023.341615
    14. Yuan Liang, Yiyao Gong, Yifan Yu, Qiuyan Jiang, Jingqi Zhao, Haoyang Zou, Jie Zhang. Fluorescence resonance energy transfer-based analytical methods for determination of food contaminants: A review. Food Control 2023, 152 , 109892. https://doi.org/10.1016/j.foodcont.2023.109892
    15. Suzit Hasan Nayem, Bejoy Sikder, Shiekh Zia Uddin. Anisotropic energy transfer near multi-layer black phosphorus. 2D Materials 2023, 10 (4) , 045022. https://doi.org/10.1088/2053-1583/acf052
    16. Jeladhara Sobhanan, Abdulaziz Anas, Vasudevanpillai Biju. Nanomaterials for Fluorescence and Multimodal Bioimaging. The Chemical Record 2023, 23 (3) https://doi.org/10.1002/tcr.202200253
    17. N. Connor Payne, Ralph Mazitschek. Tiny Titans: Nanobodies as Powerful Tools for TR‐FRET Assay Development. Analysis & Sensing 2022, 2 (6) https://doi.org/10.1002/anse.202200020
    18. Clémence Cheignon, Ali A. Kassir, Lohona K. Soro, Loïc J. Charbonnière. Dye-sensitized lanthanide containing nanoparticles for luminescence based applications. Nanoscale 2022, 14 (38) , 13915-13949. https://doi.org/10.1039/D1NR06464A
    19. Viviana Scognamiglio, Amina Antonacci. Structural Changes as a Tool for Affinity Recognition: Conformational Switch Biosensing. Crystals 2022, 12 (9) , 1209. https://doi.org/10.3390/cryst12091209
    20. Ruifang Su, Yu‐Tang Wu, Sofia Doulkeridou, Xue Qiu, Thomas Just Sørensen, Kimihiro Susumu, Igor L. Medintz, Paul M. P. van Bergen en Henegouwen, Niko Hildebrandt. A Nanobody‐on‐Quantum Dot Displacement Assay for Rapid and Sensitive Quantification of the Epidermal Growth Factor Receptor (EGFR). Angewandte Chemie 2022, 134 (33) https://doi.org/10.1002/ange.202207797
    21. Ruifang Su, Yu‐Tang Wu, Sofia Doulkeridou, Xue Qiu, Thomas Just Sørensen, Kimihiro Susumu, Igor L. Medintz, Paul M. P. van Bergen en Henegouwen, Niko Hildebrandt. A Nanobody‐on‐Quantum Dot Displacement Assay for Rapid and Sensitive Quantification of the Epidermal Growth Factor Receptor (EGFR). Angewandte Chemie International Edition 2022, 61 (33) https://doi.org/10.1002/anie.202207797
    22. Lin Ling Zheng, Xin Jia Shuai, Yue Liu, Chun Mei Li, Shu Jun Zhen, Jia Jun Liu, Yuan Fang Li, Cheng Zhi Huang. One-donor-two-acceptors coupled energy transfer nanoprobe for recording of viral gene replication in living cells. Chemical Engineering Journal 2022, 434 , 134658. https://doi.org/10.1016/j.cej.2022.134658
    23. Christophe Velours, Magali Aumont-Nicaise, Stephan Uebel, Patrick England, Adrian Velazquez-Campoy, David Stroebel, Guillaume Bec, Pierre Soule, Christophe Quétard, Christine Ebel, Alain Roussel, Jean-Baptiste Charbonnier, Paloma Fernández Varela. Macromolecular interactions in vitro, comparing classical and novel approaches. European Biophysics Journal 2021, 50 (3-4) , 313-330. https://doi.org/10.1007/s00249-021-01517-5
    24. Eitan Lerner, Anders Barth, Jelle Hendrix, Benjamin Ambrose, Victoria Birkedal, Scott C Blanchard, Richard Börner, Hoi Sung Chung, Thorben Cordes, Timothy D Craggs, Ashok A Deniz, Jiajie Diao, Jingyi Fei, Ruben L Gonzalez, Irina V Gopich, Taekjip Ha, Christian A Hanke, Gilad Haran, Nikos S Hatzakis, Sungchul Hohng, Seok-Cheol Hong, Thorsten Hugel, Antonino Ingargiola, Chirlmin Joo, Achillefs N Kapanidis, Harold D Kim, Ted Laurence, Nam Ki Lee, Tae-Hee Lee, Edward A Lemke, Emmanuel Margeat, Jens Michaelis, Xavier Michalet, Sua Myong, Daniel Nettels, Thomas-Otavio Peulen, Evelyn Ploetz, Yair Razvag, Nicole C Robb, Benjamin Schuler, Hamid Soleimaninejad, Chun Tang, Reza Vafabakhsh, Don C Lamb, Claus AM Seidel, Shimon Weiss. FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. eLife 2021, 10 https://doi.org/10.7554/eLife.60416

    ACS Nano

    Cite this: ACS Nano 2020, 14, 5, 5956–5967
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.0c01410
    Published March 27, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    1305

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.