ACS Publications. Most Trusted. Most Cited. Most Read
2-D Materials for Ultrascaled Field-Effect Transistors: One Hundred Candidates under the Ab Initio Microscope
My Activity
    Article

    2-D Materials for Ultrascaled Field-Effect Transistors: One Hundred Candidates under the Ab Initio Microscope
    Click to copy article linkArticle link copied!

    • Cedric Klinkert
      Cedric Klinkert
      Integrated System Laboratory, ETH Zurich, CH-8092 Zurich, Switzerland
    • Áron Szabó
      Áron Szabó
      Integrated System Laboratory, ETH Zurich, CH-8092 Zurich, Switzerland
      More by Áron Szabó
    • Christian Stieger
      Christian Stieger
      Integrated System Laboratory, ETH Zurich, CH-8092 Zurich, Switzerland
    • Davide Campi
      Davide Campi
      Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
      More by Davide Campi
    • Nicola Marzari
      Nicola Marzari
      Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
    • Mathieu Luisier*
      Mathieu Luisier
      Integrated System Laboratory, ETH Zurich, CH-8092 Zurich, Switzerland
      *Email: [email protected]
    Other Access OptionsSupporting Information (2)

    ACS Nano

    Cite this: ACS Nano 2020, 14, 7, 8605–8615
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.0c02983
    Published June 12, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Due to their remarkable properties, single-layer 2-D materials appear as excellent candidates to extend Moore’s scaling law beyond the currently manufactured silicon FinFETs. However, the known 2-D semiconducting components, essentially transition metal dichalcogenides, are still far from delivering the expected performance. Based on a recent theoretical study that predicts the existence of more than 1800 exfoliable 2-D materials, we investigate here the 100 most promising contenders for logic applications. Their current versus voltage characteristics are simulated from first-principles, combining density functional theory and advanced quantum transport calculations. Both n- and p-type configurations are considered, with gate lengths ranging from 15 down to 5 nm. From this large collection of electronic materials, we identify 13 compounds with electron and hole currents potentially much higher than those in future Si FinFETs. The resulting database widely expands the design space of 2-D transistors and provides original guidelines to the materials and device engineering community.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsnano.0c02983.

    • Electron/hole current vs voltage characteristics, sub-threshold swing vs gate length, unit cell, band structure, injection velocity, transport and density of states effective masses, dielectric constants, and pass factor of the 100 2-D materials considered in this work (PDF)

    • Table with all data (XLSX)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 65 publications.

    1. Davide Campi, Nicolas Mounet, Marco Gibertini, Giovanni Pizzi, Nicola Marzari. Expansion of the Materials Cloud 2D Database. ACS Nano 2023, 17 (12) , 11268-11278. https://doi.org/10.1021/acsnano.2c11510
    2. Robert K. A. Bennett, Eric Pop. How Do Quantum Effects Influence the Capacitance and Carrier Density of Monolayer MoS2 Transistors?. Nano Letters 2023, 23 (5) , 1666-1672. https://doi.org/10.1021/acs.nanolett.2c03913
    3. Sirsha Guha, Arnab Kabiraj, Santanu Mahapatra. Discovery of Clustered-P1 Borophene and Its Application as the Lightest High-Performance Transistor. ACS Applied Materials & Interfaces 2023, 15 (2) , 3182-3191. https://doi.org/10.1021/acsami.2c20055
    4. Huiqin Zhao, Guofeng Yang, Yushen Liu, Xifeng Yang, Yan Gu, Chunlei Wei, Zhijian Xie, Qi Zhang, Baoan Bian, Xiumei Zhang, Xinxia Huo, Naiyan Lu. Quantum Transport of Sub-10 nm Monolayer WGe2N4 Transistors. ACS Applied Electronic Materials 2021, 3 (11) , 5086-5094. https://doi.org/10.1021/acsaelm.1c00829
    5. Sirsha Guha, Sitangshu Bhattacharya, Santanu Mahapatra. Exceptional ballisticity in monolayer BX (X = P, As, Sb) transistors. Journal of Applied Physics 2025, 137 (9) https://doi.org/10.1063/5.0243690
    6. Mayuri Sritharan, Hyunjae Lee, Michael Spinazze, Youngki Yoon. Implications of Dielectric Phases in Ferroelectric HfO$_{2}$ Films on the Performance of Negative Capacitance FETs. IEEE Transactions on Nanotechnology 2025, 24 , 67-72. https://doi.org/10.1109/TNANO.2025.3531552
    7. Jae Eun Seo, Minseung Gyeon, Jisoo Seok, Sukhyeong Youn, Tanmoy Das, Seongdae Kwon, Tae Soo Kim, Dae Kyu Lee, Joon Young Kwak, Kibum Kang, Jiwon Chang. Improvement of Contact Resistance and 3D Integration of 2D Material Field‐Effect Transistors Using Semi‐Metallic PtSe 2 Contacts. Advanced Functional Materials 2024, 34 (44) https://doi.org/10.1002/adfm.202407382
    8. Khalil Tamersit. WS2 Nanosheet-Based Ultrascaled Field-Effect Transistor for Hydrogen Gas Sensing: Addressing the Sensitivity-Downscaling Trade-Off. Sensors 2024, 24 (20) , 6730. https://doi.org/10.3390/s24206730
    9. Akhilesh Rawat, Brajesh Rawat. Multichannel Two-Dimensional MoS₂ Nanosheet MOSFET for Future Technology Node. IEEE Transactions on Electron Devices 2024, 71 (6) , 3945-3951. https://doi.org/10.1109/TED.2024.3384136
    10. Mayuri Sritharan, Robert K.A. Bennett, Manasa Kaniselvan, Youngki Yoon. A comparative study on 2D materials with native high- κ oxides for sub-10 nm transistors. Materials Today Electronics 2024, 8 , 100096. https://doi.org/10.1016/j.mtelec.2024.100096
    11. M. Matić, M. Poljak. Validity of the Ballistic Top-of-the-Barrier Model for FETs Based on 2D Material Nanoribbons. 2024, 1596-1601. https://doi.org/10.1109/MIPRO60963.2024.10569245
    12. Hengze Qu, Shengli Zhang, Jiang Cao, Zhenhua Wu, Yang Chai, Weisheng Li, Lain-Jong Li, Wencai Ren, Xinran Wang, Haibo Zeng. Identifying atomically thin isolated-band channels for intrinsic steep-slope transistors by high-throughput study. Science Bulletin 2024, 69 (10) , 1427-1436. https://doi.org/10.1016/j.scib.2024.03.017
    13. Jonathan Backman, Youseung Lee, Mathieu Luisier. Phonon-limited transport in two-dimensional materials: A unified approach for ab initio mobility and current calculations. Physical Review Applied 2024, 21 (5) https://doi.org/10.1103/PhysRevApplied.21.054017
    14. Joel Molina-Reyes, Adriana Mercedes Cuellar-Juarez. Low temperature passivation of silicon surfaces for enhanced performance of Schottky-barrier MOSFET. Nanotechnology 2024, 35 (10) , 105701. https://doi.org/10.1088/1361-6528/ad1161
    15. Joel Molina-Reyes, Arely-Vazquez Jimenez, Adriana Mercedes Cuellar Juarez. Development of Schottky barrier field-effect transistors (SB-MOSFET) with ultra-low thermal budget. Physica Scripta 2024, 99 (3) , 035914. https://doi.org/10.1088/1402-4896/ad2042
    16. Mislav Matić, Mirko Poljak. Ballistic Performance of Quasi-One-Dimensional Hafnium Disulfide Field-Effect Transistors. Electronics 2024, 13 (6) , 1048. https://doi.org/10.3390/electronics13061048
    17. Mirko Poljak, Mislav Matić, Ivan Prevarić, Karolina Japec. Ballistic performance and overshoot effects in gallenene nanoribbon field-effect transistors. Journal of Applied Physics 2024, 135 (7) https://doi.org/10.1063/5.0188216
    18. Xiangde Lin, Yonghai Li, Yanqiang Lei, Qijun Sun. Electric-double-layer-gated 2D transistors for bioinspired sensors and neuromorphic devices. International Journal of Smart and Nano Materials 2024, 15 (1) , 238-259. https://doi.org/10.1080/19475411.2024.2306837
    19. Rajesh C. Junghare, Ganesh C. Patil. Performance Comparison of 2D Mono-Elemental (X-enes) Armchair Nanoribbon Schottky Barrier Field Effect Transistors. IEEE Transactions on Nanotechnology 2024, 23 , 408-414. https://doi.org/10.1109/TNANO.2024.3395986
    20. Francis Opoku, Albert Aniagyei, Osei Akoto, Edward Ebow Kwaansa-Ansah, Noah Kyame Asare-Donkor, Anthony Apeke Adimado. Investigation of 2D Janus Al2OS/Ga2SSe van der Waals heterojunction as next-generation thermoelectric and photocatalytic devices. Next Materials 2023, 1 (4) , 100042. https://doi.org/10.1016/j.nxmate.2023.100042
    21. Mislav Matić, Mirko Poljak. Modulation of ballistic injection velocity in phosphorene nanodevices by bias and confinement effects. Solid-State Electronics 2023, 209 , 108776. https://doi.org/10.1016/j.sse.2023.108776
    22. Divya Nechiyil, M A Gokul, Ashutosh Shukla, G V Pavan Kumar, Atikur Rahman. Strain-enabled defect migration and defect activation in monolayer MoS 2. 2D Materials 2023, 10 (4) , 045009. https://doi.org/10.1088/2053-1583/aceb74
    23. Mayuri Sritharan, Hyunjae Lee, Robert K. A. Bennett, Youngki Yoon. Design considerations for engineering $$\hbox {HfS}_2$$ negative capacitance FET through multilayered channel and $$\hbox {Hf}_{1-x}{\hbox {Zr}_{x}}\hbox {O}_2$$/$$\hbox {HfO}_2$$ double-gate stacks: an ab initio and NEGF study. Journal of Computational Electronics 2023, 22 (5) , 1338-1349. https://doi.org/10.1007/s10825-023-02036-6
    24. Mislav Matić, Mirko Poljak. Electronic, transport and ballistic device properties of quasi-one-dimensional GeS. Journal of Computational Electronics 2023, 22 (5) , 1350-1362. https://doi.org/10.1007/s10825-023-02054-4
    25. Hong Li, Yuhang Liu, Shuai Sun, Fengbin Liu, Jing Lu. Scaling limits of monolayer AlN and GaN MOSFETs. Applied Surface Science 2023, 634 , 157613. https://doi.org/10.1016/j.apsusc.2023.157613
    26. Mathieu LUISIER, Cedric KLINKERT, Sara FIORE, Jonathan BACKMAN, Youseung LEE, Christian STIEGER, Áron SZABÓ. Field‐Effect Transistors Based on 2D Materials. 2023, 33-78. https://doi.org/10.1002/9781394228713.ch2
    27. Youseung Lee, Jiang Cao, Mathieu Luisier. Atomistic Simulation of Nanoscale Devices. IEEE Nanotechnology Magazine 2023, 17 (4) , 4-14. https://doi.org/10.1109/MNANO.2023.3278968
    28. Ateeb Naseer, Keshari Nandan, Amit Agarwal, Somnath Bhowmick, Yogesh S. Chauhan. Di-Metal Chalcogenides: A New Family of Promising 2-D Semiconductors for High-Performance Transistors. IEEE Transactions on Electron Devices 2023, 70 (5) , 2445-2452. https://doi.org/10.1109/TED.2023.3261831
    29. Jialin Yang, Wenhan Zhou, Chuyao Chen, Jingwen Zhang, Hengze Qu, Yuxi Ji, Li Tao, Zhenhua Wu, Haibo Zeng, Shengli Zhang. Extreme Anisotropic Dispersion and One-Dimensional Confined Electrons in 2-D SiP₂ FETs With High Transmission Coefficients. IEEE Transactions on Electron Devices 2023, 70 (3) , 1330-1337. https://doi.org/10.1109/TED.2022.3232756
    30. Sirsha Guha, Arnab Kabiraj, Santanu Mahapatra. High-throughput design of functional-engineered MXene transistors with low-resistive contacts. npj Computational Materials 2022, 8 (1) https://doi.org/10.1038/s41524-022-00885-6
    31. Rajesh C. Junghare, Ganesh C. Patil. Effect of strain on quantum transport in fully-hydrogenated silicene based field effect transistor. Micro and Nanostructures 2022, 172 , 207432. https://doi.org/10.1016/j.micrna.2022.207432
    32. Khang D. Pham. First principles prediction of electronic, mechanical, transport and optical properties of the silicane/Ga 2 SSe heterostructure. RSC Advances 2022, 12 (49) , 31935-31942. https://doi.org/10.1039/D2RA05723A
    33. Mislav Matić, Mirko Poljak. Ab initio quantum transport simulations of monolayer GeS nanoribbons. Solid-State Electronics 2022, 197 , 108460. https://doi.org/10.1016/j.sse.2022.108460
    34. Md Mahfuzur Rahman, Amirjan Bin Nawabjan. Doped Graphene on Silicon Bottom Gated FET for High Drain Current and Applications in RF And Logic Circuits. 2022, 540-545. https://doi.org/10.1109/ICTC55196.2022.9952777
    35. Theresia Knobloch, Siegfried Selberherr, Tibor Grasser. Challenges for Nanoscale CMOS Logic Based on Two-Dimensional Materials. Nanomaterials 2022, 12 (20) , 3548. https://doi.org/10.3390/nano12203548
    36. Tianyao Wei, Zichao Han, Xinyi Zhong, Qingyu Xiao, Tao Liu, Du Xiang. Two dimensional semiconducting materials for ultimately scaled transistors. iScience 2022, 25 (10) , 105160. https://doi.org/10.1016/j.isci.2022.105160
    37. Josef Weinbub, Mauro Ballicchia, Mihail Nedjalkov. Gate-controlled electron quantum interference logic. Nanoscale 2022, 14 (37) , 13520-13525. https://doi.org/10.1039/D2NR04423D
    38. Carlo Gilardi, Robert K. A. Bennett, Youngki Yoon, Eric Pop, H.-S. Philip Wong, Subhasish Mitra. Extended Scale Length Theory for Low-Dimensional Field-Effect Transistors. IEEE Transactions on Electron Devices 2022, 69 (9) , 5302-5309. https://doi.org/10.1109/TED.2022.3190464
    39. Kecui Hu, . Nursing Education of Lateral Oblique Complications of Neurosurgery under Microscope. Scanning 2022, 2022 , 1-8. https://doi.org/10.1155/2022/2158181
    40. Manasa Kaniselvan, Mayuri Sritharan, Youngki Yoon. Mitigating Tunneling Leakage in Ultrascaled HfS 2 pMOS Devices With Uniaxial Strain. IEEE Electron Device Letters 2022, 43 (7) , 1133-1136. https://doi.org/10.1109/LED.2022.3179228
    41. Shunning Li, Zhefeng Chen, Zhi Wang, Mouyi Weng, Jianyuan Li, Mingzheng Zhang, Jing Lu, Kang Xu, Feng Pan. Graph-based discovery and analysis of atomic-scale one-dimensional materials. National Science Review 2022, 9 (6) https://doi.org/10.1093/nsr/nwac028
    42. Wenhan Zhou, Hengze Qu, Shiying Guo, Bo Cai, Hongting Chen, Zhenhua Wu, Haibo Zeng, Shengli Zhang. Dependence of Tunneling Mechanism on Two-Dimensional Material Parameters: A High-Throughput Study. Physical Review Applied 2022, 17 (6) https://doi.org/10.1103/PhysRevApplied.17.064053
    43. M. Matic, T. Zupancic, M. Poljak. Parallelized Ab Initio Quantum Transport Simulation of Nanoscale Bismuthene Devices. 2022, 118-123. https://doi.org/10.23919/MIPRO55190.2022.9803335
    44. M. Poljak, M. Matic, I. Prevaric, K. Japec. Bandstructure and Transport Properties of Semiconducting Gallenene Nanoribbons. 2022, 124-128. https://doi.org/10.23919/MIPRO55190.2022.9803442
    45. Josef Weinbub, Robert Kosik. Computational perspective on recent advances in quantum electronics: from electron quantum optics to nanoelectronic devices and systems. Journal of Physics: Condensed Matter 2022, 34 (16) , 163001. https://doi.org/10.1088/1361-648X/ac49c6
    46. Mu Wen Chuan, Munawar Agus Riyadi, Afiq Hamzah, Nurul Ezaila Alias, Suhana Mohamed Sultan, Cheng Siong Lim, Michael Loong Peng Tan, . Device performances analysis of p-type doped silicene-based field effect transistor using SPICE-compatible model. PLOS ONE 2022, 17 (3) , e0264483. https://doi.org/10.1371/journal.pone.0264483
    47. Cem Sevik, Jonas Bekaert, Mikhail Petrov, Milorad V. Milošević. High-temperature multigap superconductivity in two-dimensional metal borides. Physical Review Materials 2022, 6 (2) https://doi.org/10.1103/PhysRevMaterials.6.024803
    48. Sara Fiore, Cedric Klinkert, Fabian Ducry, Jonathan Backman, Mathieu Luisier. Influence of the hBN Dielectric Layers on the Quantum Transport Properties of MoS2 Transistors. Materials 2022, 15 (3) , 1062. https://doi.org/10.3390/ma15031062
    49. Mirko Poljak, Mislav Matić, Tin Župančić, Ante Zeljko. Lower Limits of Contact Resistance in Phosphorene Nanodevices with Edge Contacts. Nanomaterials 2022, 12 (4) , 656. https://doi.org/10.3390/nano12040656
    50. Mirko Poljak, Mislav Matić. Bandstructure and Size-Scaling Effects in the Performance of Monolayer Black Phosphorus Nanodevices. Materials 2022, 15 (1) , 243. https://doi.org/10.3390/ma15010243
    51. Aryan Afzalian. Ab initio perspective of ultra-scaled CMOS from 2D-material fundamentals to dynamically doped transistors. npj 2D Materials and Applications 2021, 5 (1) https://doi.org/10.1038/s41699-020-00181-1
    52. Jiang Cao, Yu Wu, Hao Zhang, Demetrio Logoteta, Shengli Zhang, Marco Pala. Dissipative transport and phonon scattering suppression via valley engineering in single-layer antimonene and arsenene field-effect transistors. npj 2D Materials and Applications 2021, 5 (1) https://doi.org/10.1038/s41699-021-00238-9
    53. Bajramshahe Shkodra, Mattia Petrelli, Martina Aurora Costa Angeli, Denis Garoli, Nako Nakatsuka, Paolo Lugli, Luisa Petti. Electrolyte-gated carbon nanotube field-effect transistor-based biosensors: Principles and applications. Applied Physics Reviews 2021, 8 (4) , 041325. https://doi.org/10.1063/5.0058591
    54. Yu‐Chieh Chien, Xuewei Feng, Li Chen, Kai‐Chun Chang, Wee Chong Tan, Sifan Li, Li Huang, Kah‐Wee Ang. Charge Carrier Mobility and Series Resistance Extraction in 2D Field‐Effect Transistors: Toward the Universal Technique. Advanced Functional Materials 2021, 31 (41) https://doi.org/10.1002/adfm.202105003
    55. Mirko Poljak, Mislav Matić. Bandstructure Effects in Phosphorene Nanoribbon MOSFETs from NEGF Simulations Using a New DFT-based Tight-binding Hamiltonian Model. 2021, 180-183. https://doi.org/10.1109/SISPAD54002.2021.9592544
    56. M. Poljak, M. Matic. DFT-Based Tight-Binding Model for Atomistic Simulations of Phosphorene Nanoribbons. 2021, 80-84. https://doi.org/10.23919/MIPRO52101.2021.9596745
    57. Robert K. A. Bennett, Youngki Yoon. Exploiting Fringing Fields Created by High- κ Gate Insulators to Enhance the Performance of Ultrascaled 2-D-Material-Based Transistors. IEEE Transactions on Electron Devices 2021, 68 (9) , 4618-4624. https://doi.org/10.1109/TED.2021.3096178
    58. D. K. Pham. Electronic properties of a two-dimensional van der Waals MoGe 2 N 4 /MoSi 2 N 4 heterobilayer: effect of the insertion of a graphene layer and interlayer coupling. RSC Advances 2021, 11 (46) , 28659-28666. https://doi.org/10.1039/D1RA04531H
    59. Quan Zheng, Xi Zhang, Leihao Feng, Gang Xiang. The gate length effect of high-performance monolayer SiAs 2 FETs. Semiconductor Science and Technology 2021, 36 (8) , 085006. https://doi.org/10.1088/1361-6641/ac05de
    60. Zhihao Ren, Jikai Xu, Xianhao Le, Chengkuo Lee. Heterogeneous Wafer Bonding Technology and Thin-Film Transfer Technology-Enabling Platform for the Next Generation Applications beyond 5G. Micromachines 2021, 12 (8) , 946. https://doi.org/10.3390/mi12080946
    61. Mirko Poljak, Mislav Matić. Metallization-Induced Quantum Limits of Contact Resistance in Graphene Nanoribbons with One-Dimensional Contacts. Materials 2021, 14 (13) , 3670. https://doi.org/10.3390/ma14133670
    62. Sheng-Kai Su, Chih-Piao Chuu, Ming-Yang Li, Chao-Ching Cheng, H.-S. Philip Wong, Lain-Jong Li. Layered Semiconducting 2D Materials for Future Transistor Applications. Small Structures 2021, 2 (5) https://doi.org/10.1002/sstr.202000103
    63. Wenhan Zhou, Shengli Zhang, Jiang Cao, Zhenhua Wu, Yangyang Wang, Yunwei Zhang, Zhong Yan, Hengze Qu, Haibo Zeng. Modulating tunneling width and energy window for high-on-current two-dimensional tunnel field-effect transistors. Nano Energy 2021, 81 , 105642. https://doi.org/10.1016/j.nanoen.2020.105642
    64. Cedric Klinkert, Sara Fiore, Jonathan Backman, Youseung Lee, Mathieu Luisier. Impact of Orientation Misalignments on Black Phosphorus Ultrascaled Field-Effect Transistors. IEEE Electron Device Letters 2021, 42 (3) , 434-437. https://doi.org/10.1109/LED.2021.3055287
    65. Maarten L. Van de Put, Gautam Gaddemane, Sanjay Gopalan, Massimo V. Fischetti. Effects of the Dielectric Environment on Electronic Transport in Monolayer MoS 2 : Screening and Remote Phonon Scattering. 2020, 281-284. https://doi.org/10.23919/SISPAD49475.2020.9241676

    ACS Nano

    Cite this: ACS Nano 2020, 14, 7, 8605–8615
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.0c02983
    Published June 12, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    3465

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.