ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES

Circularly Polarized Photoluminescence from Chiral Perovskite Thin Films at Room Temperature

Cite this: ACS Nano 2020, 14, 6, 7610–7616
Publication Date (Web):May 27, 2020
https://doi.org/10.1021/acsnano.0c03628
Copyright © 2020 American Chemical Society
Article Views
5261
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (1 MB)
Supporting Info (1)»

Abstract

Abstract Image

Hybrid organic–inorganic perovskites allow the synthesis of high-quality, nanostructured semiconducting films via easily accessible solution-based techniques. This has allowed tremendous development in optoelectronic applications, primarily solar cells and light-emitting diodes. Allowed by the ease of access to nanostructure, chirality has recently been introduced in semiconducting perovskites as a promising way to obtain advanced control of charge and spin and for developing circularly polarized light sources. Circular polarization of photoluminescence (CPL) is a powerful tool to probe the electronic structure of materials. However, CPL in chiral perovskites has been scarcely investigated, and a study in bulk thin films and at room temperature is still missing. In this work, we fabricate bromine-based chiral perovskites by using a bulky chiral organic cation mixed with CsBr, resulting in Ruddlesden–Popper perovskite thin films. We measure CPL on these films at room temperature and, by using unpolarized photoexcitation, we record a degree of circular polarization of photoluminescence in the order of 10–3 and provide a full spectral characterization of CPL. Our results show that chirality is imparted on the electronic structure of the semiconductor; we hypothesize that the excess in polarization of emitted light originates from the charge in the photogenerated Wannier exciton describing an orbit in a symmetry-broken environment. Furthermore, our experiments allow the direct measurement of the magnetic dipole moment of the optical transition, which we estimate to be ≥0.1 μB. Finally, we discuss the implications of our findings on the development of chiral semiconducting perovskites as sources of circularly polarized light.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsnano.0c03628.

  • UV–vis absorption spectrum and SEM image of a sample based on PbBr2:CsBr:(S)-NEABr precursor mix, CD spectrum of a sample based on PbBr2:CsBr:(R)-NEABr precursor mix, PL/gPL measurements as function of time under constant photoexcitation (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 55 publications.

  1. Yongshen Zheng, Xiao Han, Puxin Cheng, Xiaodi Jia, Jialiang Xu, Xian-He Bu. Induction of Chiral Hybrid Metal Halides from Achiral Building Blocks. Journal of the American Chemical Society 2022, 144 (36) , 16471-16479. https://doi.org/10.1021/jacs.2c05063
  2. Ziwei Yu, Shiqi Cao, Yingjie Zhao, Yangwu Guo, Meiqiu Dong, Yue Fu, Jinjin Zhao, Jingrun Yang, Lei Jiang, Yuchen Wu. Chiral Lead-Free Double Perovskite Single-Crystalline Microwire Arrays for Anisotropic Second-Harmonic Generation. ACS Applied Materials & Interfaces 2022, 14 (34) , 39451-39458. https://doi.org/10.1021/acsami.2c06856
  3. Shangpu Liu, Markus W. Heindl, Natalie Fehn, Sebastián Caicedo-Dávila, Lissa Eyre, Silva Maria Kronawitter, Jonathan Zerhoch, Stanislav Bodnar, Andrii Shcherbakov, Anna Stadlbauer, Gregor Kieslich, Ian D. Sharp, David A. Egger, Aras Kartouzian, Felix Deschler. Optically Induced Long-Lived Chirality Memory in the Color-Tunable Chiral Lead-Free Semiconductor (R)/(S)-CHEA4Bi2BrxI10–x (x = 0–10). Journal of the American Chemical Society 2022, 144 (31) , 14079-14089. https://doi.org/10.1021/jacs.2c01994
  4. Masoud Kazem-Rostami, Angel Orte, Ana M. Ortuño, Arthur H. G. David, Indranil Roy, Delia Miguel, Amine Garci, Carlos M. Cruz, Charlotte L. Stern, Juan M. Cuerva, J. Fraser Stoddart. Helically Chiral Hybrid Cyclodextrin Metal–Organic Framework Exhibiting Circularly Polarized Luminescence. Journal of the American Chemical Society 2022, 144 (21) , 9380-9389. https://doi.org/10.1021/jacs.2c01554
  5. Zhen Li, Yan Yan, Mu-Sen Song, Jia-Yu Xin, Hai-Yu Wang, Hai Wang, Yu Wang. Exciton–Phonon Coupling of Chiral One-Dimensional Lead-Free Hybrid Metal Halides at Room Temperature. The Journal of Physical Chemistry Letters 2022, 13 (18) , 4073-4081. https://doi.org/10.1021/acs.jpclett.2c00698
  6. Ming-Yue Ding, Hang Peng, Yu-Ling Zeng, Jun-Chao Liu, Xiao-Gang Chen. Insight into Channel-Type Ionic Crystals Based on Cholic Acid for Chiral Phase Transition Materials. Crystal Growth & Design 2022, 22 (5) , 2863-2868. https://doi.org/10.1021/acs.cgd.1c01205
  7. Maoxin Li, Feier Fang, Xiao Huang, Guangyou Liu, Zheng Lai, Zhihao Chen, Jiahao Hong, Yu Chen, Rong-jia Wei, Guo-Hong Ning, Kai Leng, Yumeng Shi, Bingbing Tian. Chiral Ligand-Induced Structural Transformation of Low-Dimensional Hybrid Perovskite for Circularly Polarized Photodetection. Chemistry of Materials 2022, 34 (7) , 2955-2962. https://doi.org/10.1021/acs.chemmater.1c03622
  8. Yan Qin, Fei-Fei Gao, Shuhang Qian, Tian-Meng Guo, Yong-Ji Gong, Zhi-Gang Li, Guo-Dong Su, Yan Gao, Wei Li, Chongyun Jiang, Peixiang Lu, Xian-He Bu. Multifunctional Chiral 2D Lead Halide Perovskites with Circularly Polarized Photoluminescence and Piezoelectric Energy Harvesting Properties. ACS Nano 2022, 16 (2) , 3221-3230. https://doi.org/10.1021/acsnano.1c11101
  9. Tianjun Liu, Wenda Shi, Weidong Tang, Zilu Liu, Bob C. Schroeder, Oliver Fenwick, Matthew J. Fuchter. High Responsivity Circular Polarized Light Detectors based on Quasi Two-Dimensional Chiral Perovskite Films. ACS Nano 2022, 16 (2) , 2682-2689. https://doi.org/10.1021/acsnano.1c09521
  10. Nicholas A. Kotov, (Associate Editor)Luis M. Liz-Marzán, (Associate Editor)Paul S. Weiss (Editor-in-Chief). Chiral Nanostructures: New Twists. ACS Nano 2021, 15 (8) , 12457-12460. https://doi.org/10.1021/acsnano.1c06959
  11. Amrita Dey, Junzhi Ye, Apurba De, Elke Debroye, Seung Kyun Ha, Eva Bladt, Anuraj S. Kshirsagar, Ziyu Wang, Jun Yin, Yue Wang, Li Na Quan, Fei Yan, Mengyu Gao, Xiaoming Li, Javad Shamsi, Tushar Debnath, Muhan Cao, Manuel A. Scheel, Sudhir Kumar, Julian A. Steele, Marina Gerhard, Lata Chouhan, Ke Xu, Xian-gang Wu, Yanxiu Li, Yangning Zhang, Anirban Dutta, Chuang Han, Ilka Vincon, Andrey L. Rogach, Angshuman Nag, Anunay Samanta, Brian A. Korgel, Chih-Jen Shih, Daniel R. Gamelin, Dong Hee Son, Haibo Zeng, Haizheng Zhong, Handong Sun, Hilmi Volkan Demir, Ivan G. Scheblykin, Iván Mora-Seró, Jacek K. Stolarczyk, Jin Z. Zhang, Jochen Feldmann, Johan Hofkens, Joseph M. Luther, Julia Pérez-Prieto, Liang Li, Liberato Manna, Maryna I. Bodnarchuk, Maksym V. Kovalenko, Maarten B. J. Roeffaers, Narayan Pradhan, Omar F. Mohammed, Osman M. Bakr, Peidong Yang, Peter Müller-Buschbaum, Prashant V. Kamat, Qiaoliang Bao, Qiao Zhang, Roman Krahne, Raquel E. Galian, Samuel D. Stranks, Sara Bals, Vasudevanpillai Biju, William A. Tisdale, Yong Yan, Robert L. Z. Hoye, Lakshminarayana Polavarapu. State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano 2021, 15 (7) , 10775-10981. https://doi.org/10.1021/acsnano.0c08903
  12. Biao Zhao, Xiaobin Gao, Kai Pan, Jianping Deng. Chiral Helical Polymer/Perovskite Hybrid Nanofibers with Intense Circularly Polarized Luminescence. ACS Nano 2021, 15 (4) , 7463-7471. https://doi.org/10.1021/acsnano.1c00864
  13. He Ren, Yue Wu, Chenchen Wang, Yong Yan. 2D Perovskite Nanosheets with Intrinsic Chirality. The Journal of Physical Chemistry Letters 2021, 12 (10) , 2676-2681. https://doi.org/10.1021/acs.jpclett.1c00315
  14. Guankui Long, Giorgio Adamo, Jingyi Tian, Maciej Klein, Harish N. S. Krishnamoorthy, Elena Feltri, Hebin Wang, Cesare Soci. Perovskite metasurfaces with large superstructural chirality. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-29253-0
  15. Qian Wang, Ying Lu, Rui‐Lin He, Ruyi Chen, Leilei Qiao, Feng Pan, Zhou Yang, Cheng Song. Spin Selectivity in Chiral Hybrid Cobalt Halide Films with Ultrasmooth Surface. Small Methods 2022, 15 , 2201048. https://doi.org/10.1002/smtd.202201048
  16. Yu Peng, Xing Wang, Lina Li, Huang Ye, Shuang Yang, Hua Gui Yang, Junhua Luo, Yu Hou. Moisture‐Resistant Chiral Perovskites for White‐Light Circularly Polarized Photoluminescence. Advanced Optical Materials 2022, 443 , 2201888. https://doi.org/10.1002/adom.202201888
  17. Zhihang Guo, Junzi Li, Tai Luo, Yanyan Cui, Changshun Wang, Tingchao He. Strong two-photon absorption induced by energy funneling in chiral quasi-2D perovskites. Optics Letters 2022, 47 (21) , 5573. https://doi.org/10.1364/OL.474280
  18. Ming Li, Yumin Wang, Liangwei Yang, Zhifang Chai, Yaxing Wang, Shuao Wang. Circularly Polarized Radioluminescence from Chiral Perovskite Scintillators for Improved X‐ray Imaging. Angewandte Chemie 2022, 134 (37) https://doi.org/10.1002/ange.202208440
  19. Ming Li, Yumin Wang, Liangwei Yang, Zhifang Chai, Yaxing Wang, Shuao Wang. Circularly Polarized Radioluminescence from Chiral Perovskite Scintillators for Improved X‐ray Imaging. Angewandte Chemie International Edition 2022, 61 (37) https://doi.org/10.1002/anie.202208440
  20. Joanna M. Urban, Abdelaziz Jouaiti, Nathalie Gruber, Géraud Delport, Gaëlle Trippé-Allard, Jean-François Guillemoles, Emmanuelle Deleporte, Sylvie Ferlay, Damien Garrot. Using chiral ammonium cations to modulate the structure of 1D hybrid lead bromide perovskites for linearly polarized broadband light emission at room temperature. Journal of Materials Chemistry C 2022, 10 (34) , 12436-12443. https://doi.org/10.1039/D2TC02040H
  21. Zheng Lai, Shuai Lin, Youzhi Shi, Maoxin Li, Guangyou Liu, Bingbing Tian, Yu Chen, Xinxing Zhou. Experimental demonstration of weak chirality enhancement by hybrid perovskite nanocrystals using photonic spin Hall effect. Nanophotonics 2022, 11 (18) , 4245-4251. https://doi.org/10.1515/nanoph-2022-0313
  22. Ruiheng Pan, Sheng Tao, Lixuan Kan, Jiaji Hu, Juqian Li, Yang Li, Xiangpeng Zhang, Kai Wang. Tunable and Large Magneto‐Photoluminescence for Single‐Crystalline Chiral Perovskites. Advanced Optical Materials 2022, 10 (15) , 2200064. https://doi.org/10.1002/adom.202200064
  23. Adva Shpatz Dayan, Małgorzata Wierzbowska, Lioz Etgar. Ruddlesden–Popper 2D Chiral Perovskite‐Based Solar Cells. Small Structures 2022, 3 (8) , 2200051. https://doi.org/10.1002/sstr.202200051
  24. Jian Chen, Shuai Zhang, Xin Pan, Ruiqian Li, Shi Ye, Anthony K. Cheetham, Lingling Mao. Structural Origin of Enhanced Circularly Polarized Luminescence in Hybrid Manganese Bromides. Angewandte Chemie International Edition 2022, 61 (30) https://doi.org/10.1002/anie.202205906
  25. Jian Chen, Shuai Zhang, Xin Pan, Ruiqian Li, Shi Ye, Anthony K. Cheetham, Lingling Mao. Structural Origin of Enhanced Circularly Polarized Luminescence in Hybrid Manganese Bromides. Angewandte Chemie 2022, 134 (30) https://doi.org/10.1002/ange.202205906
  26. Beibei Wang, Chao Wang, Ya Chu, Haoyue Zhang, Mengjiao Sun, Hui Wang, Shiping Wang, Guangjiu Zhao. Environmental-friendly lead-free chiral Mn-based metal halides with efficient circularly polarized photoluminescence at room temperature. Journal of Alloys and Compounds 2022, 910 , 164892. https://doi.org/10.1016/j.jallcom.2022.164892
  27. Shuaijun Liu, Xuan Liu, Yongzhen Wu, Diwei Zhang, Yue Wu, He Tian, Zhigang Zheng, Wei-Hong Zhu. Circularly polarized perovskite luminescence with dissymmetry factor up to 1.9 by soft helix bilayer device. Matter 2022, 5 (7) , 2319-2333. https://doi.org/10.1016/j.matt.2022.05.012
  28. Markus W. Heindl, Tim Kodalle, Natalie Fehn, Lennart K. Reb, Shangpu Liu, Constantin Harder, Maged Abdelsamie, Lissa Eyre, Ian D. Sharp, Stephan V. Roth, Peter Müller‐Buschbaum, Aras Kartouzian, Carolin M. Sutter‐Fella, Felix Deschler. Strong Induced Circular Dichroism in a Hybrid Lead‐Halide Semiconductor Using Chiral Amino Acids for Crystallite Surface Functionalization. Advanced Optical Materials 2022, 10 (14) , 2200204. https://doi.org/10.1002/adom.202200204
  29. Jiarong Cai, Wei Zhang, Liguang Xu, Changlong Hao, Wei Ma, Maozhong Sun, Xiaoling Wu, Xian Qin, Felippe Mariano Colombari, André Farias de Moura, Jiahui Xu, Mariana Cristina Silva, Evaldo Batista Carneiro-Neto, Weverson Rodrigues Gomes, Renaud A. L. Vallée, Ernesto Chaves Pereira, Xiaogang Liu, Chuanlai Xu, Rafal Klajn, Nicholas A. Kotov, Hua Kuang. Polarization-sensitive optoionic membranes from chiral plasmonic nanoparticles. Nature Nanotechnology 2022, 17 (4) , 408-416. https://doi.org/10.1038/s41565-022-01079-3
  30. Shuang Jiang, Nicholas A. Kotov. Circular Polarized Light Emission in Chiral Inorganic Nanomaterials. Advanced Materials 2022, 9 , 2108431. https://doi.org/10.1002/adma.202108431
  31. Zhihang Guo, Junzi Li, Rui Chen, Tingchao He. Advances in single crystals and thin films of chiral hybrid metal halides. Progress in Quantum Electronics 2022, 82 , 100375. https://doi.org/10.1016/j.pquantelec.2022.100375
  32. Fei Ge, Bo‐Han Li, Puxin Cheng, Geng Li, Zefeng Ren, Jialiang Xu, Xian‐He Bu. Chiral Hybrid Copper(I) Halides for High Efficiency Second Harmonic Generation with a Broadband Transparency Window. Angewandte Chemie 2022, 134 (10) https://doi.org/10.1002/ange.202115024
  33. Fei Ge, Bo‐Han Li, Puxin Cheng, Geng Li, Zefeng Ren, Jialiang Xu, Xian‐He Bu. Chiral Hybrid Copper(I) Halides for High Efficiency Second Harmonic Generation with a Broadband Transparency Window. Angewandte Chemie International Edition 2022, 61 (10) https://doi.org/10.1002/anie.202115024
  34. Ferdinand Evers, Amnon Aharony, Nir Bar‐Gill, Ora Entin‐Wohlman, Per Hedegård, Oded Hod, Pavel Jelinek, Grzegorz Kamieniarz, Mikhail Lemeshko, Karen Michaeli, Vladimiro Mujica, Ron Naaman, Yossi Paltiel, Sivan Refaely‐Abramson, Oren Tal, Jos Thijssen, Michael Thoss, Jan M. van Ruitenbeek, Latha Venkataraman, David H. Waldeck, Binghai Yan, Leeor Kronik. Theory of Chirality Induced Spin Selectivity: Progress and Challenges. Advanced Materials 2022, 5 , 2106629. https://doi.org/10.1002/adma.202106629
  35. Ruiheng Pan, Kai Wang, Zhi-Gang Yu. Magnetic-field manipulation of circularly polarized photoluminescence in chiral perovskites. Materials Horizons 2022, 9 (2) , 740-747. https://doi.org/10.1039/D1MH01154E
  36. Yingjie Zhao, Meiqiu Dong, Jiangang Feng, Jinjin Zhao, Yangwu Guo, Yue Fu, Hanfei Gao, Junchuan Yang, Lei Jiang, Yuchen Wu. Lead‐Free Chiral 2D Double Perovskite Microwire Arrays for Circularly Polarized Light Detection. Advanced Optical Materials 2022, 10 (3) , 2102227. https://doi.org/10.1002/adom.202102227
  37. Dongxue Han, Chengxi Li, Chengyu Jiang, Xue Jin, Xiongbin Wang, Rui Chen, Jiaji Cheng, Pengfei Duan. Endowing inorganic nanomaterials with circularly polarized luminescence. Aggregate 2022, 3 (1) https://doi.org/10.1002/agt2.148
  38. Stefan C. J. Meskers. Circular Polarization of Luminescence as a Tool To Study Molecular Dynamical Processes. ChemPhotoChem 2022, 6 (1) https://doi.org/10.1002/cptc.202100154
  39. Florian Ristow, Kevin Liang, Johannes Pittrich, Jakob Scheffel, Natalie Fehn, Reinhard Kienberger, Ulrich Heiz, Aras Kartouzian, Hristo Iglev. Large-area SHG-CD probe intrinsic chirality in polycrystalline films. Journal of Materials Chemistry C 2022, 42 https://doi.org/10.1039/D2TC01700H
  40. Min Wang, Zhengwei Yang, Chuang Zhang. Polarized Photoluminescence from Lead Halide Perovskites. Advanced Optical Materials 2021, 9 (23) , 2002236. https://doi.org/10.1002/adom.202002236
  41. Ying Lu, Qian Wang, Ruyi Chen, Leilei Qiao, Foxin Zhou, Xia Yang, Dong Wang, Hui Cao, Wanli He, Feng Pan, Zhou Yang, Cheng Song. Spin‐Dependent Charge Transport in 1D Chiral Hybrid Lead‐Bromide Perovskite with High Stability. Advanced Functional Materials 2021, 31 (43) , 2104605. https://doi.org/10.1002/adfm.202104605
  42. Jin‐Tai Lin, Deng‐Gao Chen, Lan‐Sheng Yang, Tai‐Chun Lin, Yi‐Hung Liu, Yu‐Chiang Chao, Pi‐Tai Chou, Ching‐Wen Chiu. Tuning the Circular Dichroism and Circular Polarized Luminescence Intensities of Chiral 2D Hybrid Organic–Inorganic Perovskites through Halogenation of the Organic Ions. Angewandte Chemie International Edition 2021, 60 (39) , 21434-21440. https://doi.org/10.1002/anie.202107239
  43. Jin‐Tai Lin, Deng‐Gao Chen, Lan‐Sheng Yang, Tai‐Chun Lin, Yi‐Hung Liu, Yu‐Chiang Chao, Pi‐Tai Chou, Ching‐Wen Chiu. Tuning the Circular Dichroism and Circular Polarized Luminescence Intensities of Chiral 2D Hybrid Organic–Inorganic Perovskites through Halogenation of the Organic Ions. Angewandte Chemie 2021, 133 (39) , 21604-21610. https://doi.org/10.1002/ange.202107239
  44. Jiaqi Ma, Haizhen Wang, Dehui Li. Recent Progress of Chiral Perovskites: Materials, Synthesis, and Properties. Advanced Materials 2021, 33 (26) , 2008785. https://doi.org/10.1002/adma.202008785
  45. Hang Peng, Yu-Hua Liu, Xue-Qin Huang, Qin Liu, Zi-Hong Yu, Zhong-Xia Wang, Wei-Qiang Liao. Homochiral one-dimensional ABX 3 lead halide perovskites with high- T c quadratic nonlinear optical and dielectric switchings. Materials Chemistry Frontiers 2021, 5 (12) , 4756-4763. https://doi.org/10.1039/D1QM00223F
  46. Yu‐Ling Zeng, Xue‐Qin Huang, Chao‐Ran Huang, Hua Zhang, Fang Wang, Zhong‐Xia Wang. Unprecedented 2D Homochiral Hybrid Lead‐Iodide Perovskite Thermochromic Ferroelectrics with Ferroelastic Switching. Angewandte Chemie International Edition 2021, 60 (19) , 10730-10735. https://doi.org/10.1002/anie.202102195
  47. Dong Li, Xitao Liu, Wentao Wu, Yu Peng, Sangen Zhao, Lina Li, Maochun Hong, Junhua Luo. Chiral Lead‐Free Hybrid Perovskites for Self‐Powered Circularly Polarized Light Detection. Angewandte Chemie 2021, 133 (15) , 8496-8499. https://doi.org/10.1002/ange.202013947
  48. Zhihang Guo, Junzi Li, Changshun Wang, Rulin Liu, Jiechun Liang, Yang Gao, Jiaji Cheng, Wenjing Zhang, Xi Zhu, Ruikun Pan, Tingchao He. Giant Optical Activity and Second Harmonic Generation in 2D Hybrid Copper Halides. Angewandte Chemie 2021, 133 (15) , 8522-8526. https://doi.org/10.1002/ange.202015445
  49. Dong Li, Xitao Liu, Wentao Wu, Yu Peng, Sangen Zhao, Lina Li, Maochun Hong, Junhua Luo. Chiral Lead‐Free Hybrid Perovskites for Self‐Powered Circularly Polarized Light Detection. Angewandte Chemie International Edition 2021, 60 (15) , 8415-8418. https://doi.org/10.1002/anie.202013947
  50. Zhihang Guo, Junzi Li, Changshun Wang, Rulin Liu, Jiechun Liang, Yang Gao, Jiaji Cheng, Wenjing Zhang, Xi Zhu, Ruikun Pan, Tingchao He. Giant Optical Activity and Second Harmonic Generation in 2D Hybrid Copper Halides. Angewandte Chemie International Edition 2021, 60 (15) , 8441-8445. https://doi.org/10.1002/anie.202015445
  51. Yu‐Ling Zeng, Xue‐Qin Huang, Chao‐Ran Huang, Hua Zhang, Fang Wang, Zhong‐Xia Wang. Unprecedented 2D Homochiral Hybrid Lead‐Iodide Perovskite Thermochromic Ferroelectrics with Ferroelastic Switching. Angewandte Chemie 2021, 432 https://doi.org/10.1002/ange.202102195
  52. Hongil Jo, Xinglong Chen, Hee‐Seung Lee, Kang Min Ok. Chiral Template‐Driven Macroscopic Chirality Control: Structure‐Second‐Harmonic Generation Properties Relationship. European Journal of Inorganic Chemistry 2021, 2021 (5) , 426-434. https://doi.org/10.1002/ejic.202000964
  53. Tanglue Feng, Zhiyu Wang, Zixuan Zhang, Jie Xue, Haipeng Lu. Spin selectivity in chiral metal–halide semiconductors. Nanoscale 2021, 4 https://doi.org/10.1039/D1NR06407J
  54. Wenjie Chen, Kai Ma, Pengfei Duan, Guanghui Ouyang, Xuefeng Zhu, Li Zhang, Minghua Liu. Circularly polarized luminescence of nanoassemblies via multi-dimensional chiral architecture control. Nanoscale 2020, 12 (38) , 19497-19515. https://doi.org/10.1039/D0NR04239K
  55. Suryakant Mishra, Anup Kumar, Munuswamy Venkatesan, Laura Pigani, Luca Pasquali, Claudio Fontanesi. Exchange Interactions Drive Supramolecular Chiral Induction in Polyaniline. Small Methods 2020, 4 (10) , 2000617. https://doi.org/10.1002/smtd.202000617

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE