ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Gate-Controlled Suspended Titanium Nanobridge Supercurrent Transistor

  • Mirko Rocci*
    Mirko Rocci
    NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa, Italy
    *Email: [email protected]
    More by Mirko Rocci
  • Giorgio De Simoni*
    Giorgio De Simoni
    NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa, Italy
    *Email: [email protected]
  • Claudio Puglia
    Claudio Puglia
    NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa, Italy
    Department of Physics “E. Fermi”, Università di Pisa, Largo Pontecorvo 3, I-56127 Pisa, Italy
  • Davide Degli Esposti
    Davide Degli Esposti
    NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa, Italy
    Department of Physics “E. Fermi”, Università di Pisa, Largo Pontecorvo 3, I-56127 Pisa, Italy
  • Elia Strambini
    Elia Strambini
    NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa, Italy
  • Valentina Zannier
    Valentina Zannier
    NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa, Italy
  • Lucia Sorba
    Lucia Sorba
    NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa, Italy
    More by Lucia Sorba
  • , and 
  • Francesco Giazotto*
    Francesco Giazotto
    NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa, Italy
    *Email: [email protected]
Cite this: ACS Nano 2020, 14, 10, 12621–12628
Publication Date (Web):August 21, 2020
https://doi.org/10.1021/acsnano.0c05355
Copyright © 2020 American Chemical Society

    Article Views

    1860

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Under standard conditions, the electrostatic field-effect is negligible in conventional metals and was expected to be completely ineffective also in superconducting metals. This common belief was recently put under question by a family of experiments that displayed full gate-voltage-induced suppression of critical current in superconducting all-metallic gated nanotransistors. To date, the microscopic origin of this phenomenon is under debate, and trivial explanations based on heating effects given by the negligible electron leakage from the gates should be excluded. Here, we demonstrate the control of the supercurrent in fully suspended superconducting nanobridges. Our advanced nanofabrication methods allow us to build suspended superconducting Ti-based supercurrent transistors which show ambipolar and monotonic full suppression of the critical current for gate voltages of VGC ≃ 18 V and for temperatures up to ∼80% of the critical temperature. The suspended device architecture minimizes the electron–phonon interaction between the superconducting nanobridge and the substrate, and therefore, it rules out any possible contribution stemming from charge injection into the insulating substrate. Besides, our finite element method simulations of vacuum electron tunneling from the gate to the bridge and thermal considerations rule out the cold-electron field emission as a possible driving mechanism for the observed phenomenology. Our findings promise a better understanding of the field effect in superconducting metals.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 39 publications.

    1. Younghun Ryu, Jinhoon Jeong, Junho Suh, Jihwan Kim, Hyoungsoon Choi, Jinwoong Cha. Utilizing Gate-Controlled Supercurrent for All-Metallic Tunable Superconducting Microwave Resonators. Nano Letters 2024, 24 (4) , 1223-1230. https://doi.org/10.1021/acs.nanolett.3c04080
    2. Shujie Yu, Lei Chen, Yinping Pan, Yue Wang, Denghui Zhang, Guangting Wu, Xinxin Fan, Xiaoyu Liu, Ling Wu, Lu Zhang, Wei Peng, Jie Ren, Zhen Wang. Gate-Tunable Critical Current of the Three-Dimensional Niobium Nanobridge Josephson Junction. Nano Letters 2023, 23 (17) , 8043-8049. https://doi.org/10.1021/acs.nanolett.3c02015
    3. Tosson Elalaily, Martin Berke, Máté Kedves, Gergő Fülöp, Zoltán Scherübl, Thomas Kanne, Jesper Nygård, Péter Makk, Szabolcs Csonka. Signatures of Gate-Driven Out-of-Equilibrium Superconductivity in Ta/InAs Nanowires. ACS Nano 2023, 17 (6) , 5528-5535. https://doi.org/10.1021/acsnano.2c10877
    4. Federico Paolucci, Francesco Crisá, Giorgio De Simoni, Lennart Bours, Claudio Puglia, Elia Strambini, Stefano Roddaro, Francesco Giazotto. Electrostatic Field-Driven Supercurrent Suppression in Ionic-Gated Metallic Superconducting Nanotransistors. Nano Letters 2021, 21 (24) , 10309-10314. https://doi.org/10.1021/acs.nanolett.1c03481
    5. Tosson Elalaily, Olivér Kürtössy, Zoltán Scherübl, Martin Berke, Gergö Fülöp, István Endre Lukács, Thomas Kanne, Jesper Nygård, Kenji Watanabe, Takashi Taniguchi, Péter Makk, Szabolcs Csonka. Gate-Controlled Supercurrent in Epitaxial Al/InAs Nanowires. Nano Letters 2021, 21 (22) , 9684-9690. https://doi.org/10.1021/acs.nanolett.1c03493
    6. Giorgio De Simoni, Sebastiano Battisti, Nadia Ligato, Maria Teresa Mercaldo, Mario Cuoco, Francesco Giazotto. Gate Control of the Current–Flux Relation of a Josephson Quantum Interferometer Based on Proximitized Metallic Nanojuntions. ACS Applied Electronic Materials 2021, 3 (9) , 3927-3935. https://doi.org/10.1021/acsaelm.1c00508
    7. Mirko Rocci, Dhavala Suri, Akashdeep Kamra, Gilvânia Vilela, Yota Takamura, Norbert M. Nemes, Jose L. Martinez, Mar Garcia Hernandez, Jagadeesh S. Moodera. Large Enhancement of Critical Current in Superconducting Devices by Gate Voltage. Nano Letters 2021, 21 (1) , 216-221. https://doi.org/10.1021/acs.nanolett.0c03547
    8. Federico Vittorio Lupo, Daniel Margineda, Claudio Puglia, Giorgio De Simoni, Roberto Macaluso, Francesco Giazotto, Oleg A. Mukhanov, Marco Arzeo. Digital Logic Based on Superconducting Gate-Controlled Transistors. IEEE Transactions on Applied Superconductivity 2024, 34 (3) , 1-5. https://doi.org/10.1109/TASC.2024.3355327
    9. Jennifer Koch, Carla Cirillo, Sebastiano Battisti, Leon Ruf, Zahra Makhdoumi Kakhaki, Alessandro Paghi, Armen Gulian, Serafim Teknowijoyo, Giorgio De Simoni, Francesco Giazotto, Carmine Attanasio, Elke Scheer, Angelo Di Bernardo. Gate-controlled supercurrent effect in dry-etched Dayem bridges of non-centrosymmetric niobium rhenium. Nano Research 2024, 13 https://doi.org/10.1007/s12274-024-6576-7
    10. Rosa Córdoba, Vladimir M. Fomin. Topological and chiral superconductor nanoarchitectures. Applied Physics Letters 2024, 124 (17) https://doi.org/10.1063/5.0206198
    11. Alessio Zaccone, Vladimir M. Fomin. Theory of superconductivity in thin films under an external electric field. Physical Review B 2024, 109 (14) https://doi.org/10.1103/PhysRevB.109.144520
    12. Qingchang Huan, Ruoyan Ma, Xingyu Zhang, Zhongpei Feng, Yangmu Li, Jiamin Xiong, Jia Huang, Hao Li, Wei Peng, Xiaofu Zhang, Lixing You. Impact of on-chip gate voltage on the electric properties of NbTiN superconducting nanowire transistor. Applied Physics Letters 2024, 124 (13) https://doi.org/10.1063/5.0199226
    13. Hongmei Du, Zuyu Xu, Ping Zhang, Dingding Li, Zihan Wei, Zixi Wang, Shoucheng Hou, Benwen Chen, Tao Liu, Ruxin Liu, Yang-Yang Lyu, Hancong Sun, Yong-Lei Wang, Huabing Wang, Peiheng Wu. High-energy electron injection in top-gated niobium microbridges for enhanced power efficiency and localized control. Applied Physics Letters 2024, 124 (11) https://doi.org/10.1063/5.0195254
    14. Yunchae Jeon, Somi Kim, Juhyung Seo, Hocheon Yoo. Contributions of Light to Novel Logic Concepts Using Optoelectronic Materials. Small Methods 2024, 8 (2) https://doi.org/10.1002/smtd.202300391
    15. Shamiul Alam, Md Shafayat Hossain, Kai Ni, Vijaykrishnan Narayanan, Ahmedullah Aziz. Voltage-controlled cryogenic Boolean logic gates based on ferroelectric SQUID and heater cryotron. Journal of Applied Physics 2024, 135 (1) https://doi.org/10.1063/5.0172531
    16. Khenchoul Salah. Non-spontaneous symmetry breaking, chaos, and universality in 2D superconducting phase transition. Superconductor Science and Technology 2024, 37 (1) , 015015. https://doi.org/10.1088/1361-6668/ad10b5
    17. Rosa Córdoba. Additive nanofabrication using focused ion and electron beams. 2024, 448-464. https://doi.org/10.1016/B978-0-323-90800-9.00035-4
    18. Subrata Chakraborty, Danilo Nikolić, Juan Carlos Cuevas, Francesco Giazotto, Angelo Di Bernardo, Elke Scheer, Mario Cuoco, Wolfgang Belzig. Microscopic theory of supercurrent suppression by gate-controlled surface depairing. Physical Review B 2023, 108 (18) https://doi.org/10.1103/PhysRevB.108.184508
    19. Shamiul Alam, Dana S. Rampini, Bakhrom G. Oripov, Adam N. McCaughan, Ahmedullah Aziz. Cryogenic reconfigurable logic with superconducting heater cryotron: Enhancing area efficiency and enabling camouflaged processors. Applied Physics Letters 2023, 123 (15) https://doi.org/10.1063/5.0170187
    20. Hongmei Du, Zuyu Xu, Zihan Wei, Dingding Li, Shixian Chen, Wanghao Tian, Ping Zhang, Yang-Yang Lyu, Hancong Sun, Yong-Lei Wang, Huabing Wang, Peiheng Wu. High-energy electron local injection in top-gated metallic superconductor switch. Superconductor Science and Technology 2023, 36 (9) , 095005. https://doi.org/10.1088/1361-6668/ace65f
    21. L. Ruf, T. Elalaily, C. Puglia, Yu. P. Ivanov, F. Joint, M. Berke, A. Iorio, P. Makk, G. De Simoni, S. Gasparinetti, G. Divitini, S. Csonka, F. Giazotto, E. Scheer, A. Di Bernardo. Effects of fabrication routes and material parameters on the control of superconducting currents by gate voltage. APL Materials 2023, 11 (9) https://doi.org/10.1063/5.0159750
    22. Maria Teresa Mercaldo, Carmine Ortix, Mario Cuoco. High Orbital‐Moment Cooper Pairs by Crystalline Symmetry Breaking. Advanced Quantum Technologies 2023, 6 (8) https://doi.org/10.1002/qute.202300081
    23. Andrea Amoretti. Superconductors in strong electric fields: Quantum Electrodynamics meets Superconductivity. Journal of Physics: Conference Series 2023, 2531 (1) , 012001. https://doi.org/10.1088/1742-6596/2531/1/012001
    24. Andrea Amoretti, Daniel K. Brattan, Nicodemo Magnoli, Luca Martinoia, Ioannis Matthaiakakis, Paolo Solinas. Destroying superconductivity in thin films with an electric field. Physical Review Research 2022, 4 (3) https://doi.org/10.1103/PhysRevResearch.4.033211
    25. Sarath Sankar, Julia S. Meyer, Manuel Houzet. Josephson effect in superconductor/normal-dot/superconductor junctions driven out of equilibrium by quasiparticle injection. Physical Review B 2022, 105 (13) https://doi.org/10.1103/PhysRevB.105.134515
    26. Maria Teresa Mercaldo, Carmine Ortix, Francesco Giazotto, Mario Cuoco. Orbital vortices in s -wave spin-singlet superconductors in zero magnetic field. Physical Review B 2022, 105 (14) https://doi.org/10.1103/PhysRevB.105.L140507
    27. Pablo Orús, Fabian Sigloch, Soraya Sangiao, José María De Teresa. Superconducting Materials and Devices Grown by Focused Ion and Electron Beam Induced Deposition. Nanomaterials 2022, 12 (8) , 1367. https://doi.org/10.3390/nano12081367
    28. C Puglia, G De Simoni, F Giazotto. Phase slips dynamics in gated Ti and V all-metallic supercurrent nano-transistors. Journal of Physics D: Applied Physics 2022, 55 (5) , 055301. https://doi.org/10.1088/1361-6463/ac2e8b
    29. M. F. Ritter, N. Crescini, D. Z. Haxell, M. Hinderling, H. Riel, C. Bruder, A. Fuhrer, F. Nichele. Out-of-equilibrium phonons in gated superconducting switches. Nature Electronics 2022, 5 (2) , 71-77. https://doi.org/10.1038/s41928-022-00721-1
    30. I. Golokolenov, A. Guthrie, S. Kafanov, Yu. A. Pashkin, V. Tsepelin. On the origin of the controversial electrostatic field effect in superconductors. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-22998-0
    31. Pablo Orús, Vladimir M. Fomin, José María De Teresa, Rosa Córdoba. Critical current modulation induced by an electric field in superconducting tungsten-carbon nanowires. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-97075-z
    32. J. Basset, O. Stanisavljević, M. Kuzmanović, J. Gabelli, C. H. L. Quay, J. Estève, M. Aprili. Gate-assisted phase fluctuations in all-metallic Josephson junctions. Physical Review Research 2021, 3 (4) https://doi.org/10.1103/PhysRevResearch.3.043169
    33. Rizos N. Krikkis. On the Thermal Dynamics of Metallic and Superconducting Wires. Bifurcations, Quench, the Destruction of Bistability and Temperature Blowup. J 2021, 4 (4) , 803-823. https://doi.org/10.3390/j4040055
    34. Marius K. Hope, Morten Amundsen, Dhavala Suri, Jagadeesh S. Moodera, Akashdeep Kamra. Interfacial control of vortex-limited critical current in type-II superconductor films. Physical Review B 2021, 104 (18) https://doi.org/10.1103/PhysRevB.104.184512
    35. Maria Teresa Mercaldo, Francesco Giazotto, Mario Cuoco. Spectroscopic signatures of gate-controlled superconducting phases. Physical Review Research 2021, 3 (4) https://doi.org/10.1103/PhysRevResearch.3.043042
    36. Luca Chirolli, Tommaso Cea, Francesco Giazotto. Impact of electrostatic fields in layered crystalline BCS superconductors. Physical Review Research 2021, 3 (2) https://doi.org/10.1103/PhysRevResearch.3.023135
    37. P. Solinas, A. Amoretti, F. Giazotto. Sauter-Schwinger Effect in a Bardeen-Cooper-Schrieffer Superconductor. Physical Review Letters 2021, 126 (11) https://doi.org/10.1103/PhysRevLett.126.117001
    38. Claudio Puglia, Giorgio De Simoni, Francesco Giazotto. Gate Control of Superconductivity in Mesoscopic All-Metallic Devices. Materials 2021, 14 (5) , 1243. https://doi.org/10.3390/ma14051243
    39. Lennart Bours, Maria Teresa Mercaldo, Mario Cuoco, Elia Strambini, Francesco Giazotto. Unveiling mechanisms of electric field effects on superconductors by a magnetic field response. Physical Review Research 2020, 2 (3) https://doi.org/10.1103/PhysRevResearch.2.033353

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect