ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Weak Distance Dependence of Hot-Electron-Transfer Rates at the Interface between Monolayer MoS2 and Gold

  • Ce Xu
    Ce Xu
    Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
    More by Ce Xu
  • Hui Wen Yong
    Hui Wen Yong
    Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
    More by Hui Wen Yong
  • Jinlu He
    Jinlu He
    College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
    More by Jinlu He
  • Run Long
    Run Long
    College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
    More by Run Long
  • Alisson R. Cadore
    Alisson R. Cadore
    Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, United Kingdom
  • Ioannis Paradisanos
    Ioannis Paradisanos
    Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, United Kingdom
  • Anna K. Ott
    Anna K. Ott
    Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, United Kingdom
    More by Anna K. Ott
  • Giancarlo Soavi
    Giancarlo Soavi
    Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, United Kingdom
    Institute for Solid State Physics, Abbe Center of Photonics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743 Jena, Germany
  • Sefaattin Tongay
    Sefaattin Tongay
    School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
  • Giulio Cerullo
    Giulio Cerullo
    Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano Italy
    IFN-CNR, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
  • Andrea C. Ferrari*
    Andrea C. Ferrari
    Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, United Kingdom
    *Email: [email protected]
  • Oleg V. Prezhdo*
    Oleg V. Prezhdo
    Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
    *Email: [email protected]
  • , and 
  • Zhi-Heng Loh*
    Zhi-Heng Loh
    Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
    Centre for Optical Fibre Technology, The Photonics Institute, Nanyang Technological University, Singapore 639798, Singapore
    *Email: [email protected]
    More by Zhi-Heng Loh
Cite this: ACS Nano 2021, 15, 1, 819–828
Publication Date (Web):December 21, 2020
https://doi.org/10.1021/acsnano.0c07350
Copyright © 2020 American Chemical Society

    Article Views

    2483

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Electron transport across the transition-metal dichalcogenide (TMD)/metal interface plays an important role in determining the performance of TMD-based optoelectronic devices. However, the robustness of this process against structural heterogeneities remains unexplored, to the best of our knowledge. Here, we employ a combination of time-resolved photoemission electron microscopy (TR-PEEM) and atomic force microscopy to investigate the spatially resolved hot-electron-transfer dynamics at the monolayer (1L) MoS2/Au interface. A spatially heterogeneous distribution of 1L-MoS2/Au gap distances, along with the sub-80 nm spatial- and sub-60 fs temporal resolution of TR-PEEM, permits the simultaneous measurement of electron-transfer rates across a range of 1L-MoS2/Au distances. These decay exponentially as a function of distance, with an attenuation coefficient β ∼ 0.06 ± 0.01 Å–1, comparable to molecular wires. Ab initio simulations suggest that surface plasmon-like states mediate hot-electron-transfer, hence accounting for its weak distance dependence. The weak distance dependence of the interfacial hot-electron-transfer rate indicates that this process is insensitive to distance fluctuations at the TMD/metal interface, thus motivating further exploration of optoelectronic devices based on hot carriers.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsnano.0c07350.

    • Determination of spatial and temporal resolution, second derivative of the PL spectrum, determination of photon order and probe window, temporal response of the Au substrate, fluence dependence measurements, reconstruction of the Δd distribution, power spectral analysis of TR-PEEM and AFM data, and ab initio analysis of 1L-MoS2/Au interaction (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 24 publications.

    1. Jinglin Tang, Yaolong Li, Sheng Ye, Pengzuo Jiang, Zhaohang Xue, Xiaofang Li, Xiaying Lyu, Qinyun Liu, Saisai Chu, Hong Yang, Chengyin Wu, Xiaoyong Hu, Yunan Gao, Shufeng Wang, Quan Sun, Guowei Lu, Qihuang Gong. Direct Hot-Electron Transfer at the Au Nanoparticle/Monolayer Transition-Metal Dichalcogenide Interface Observed with Ultrahigh Spatiotemporal Resolution. Nano Letters 2024, Article ASAP.
    2. Ce Xu, Natalie Barden, Evgeny M. Alexeev, Xiaoli Wang, Run Long, Alisson R. Cadore, Ioannis Paradisanos, Anna K. Ott, Giancarlo Soavi, Sefaattin Tongay, Giulio Cerullo, Andrea C. Ferrari, Oleg V. Prezhdo, Zhi-Heng Loh. Ultrafast Charge Transfer and Recombination Dynamics in Monolayer–Multilayer WSe2 Junctions Revealed by Time-Resolved Photoemission Electron Microscopy. ACS Nano 2024, 18 (3) , 1931-1947. https://doi.org/10.1021/acsnano.3c06473
    3. Ce Xu, Guoqing Zhou, Evgeny M. Alexeev, Alisson R. Cadore, Ioannis Paradisanos, Anna K. Ott, Giancarlo Soavi, Sefaattin Tongay, Giulio Cerullo, Andrea C. Ferrari, Oleg V. Prezhdo, Zhi-Heng Loh. Ultrafast Electronic Relaxation Dynamics of Atomically Thin MoS2 Is Accelerated by Wrinkling. ACS Nano 2023, 17 (17) , 16682-16694. https://doi.org/10.1021/acsnano.3c02917
    4. Ashutosh Giri, Scott G. Walton, John Tomko, Niraj Bhatt, Michael J. Johnson, David R. Boris, Guanyu Lu, Joshua D. Caldwell, Oleg V. Prezhdo, Patrick E. Hopkins. Ultrafast and Nanoscale Energy Transduction Mechanisms and Coupled Thermal Transport across Interfaces. ACS Nano 2023, 17 (15) , 14253-14282. https://doi.org/10.1021/acsnano.3c02417
    5. Mirko Vanzan, Gabriel Gil, Davide Castaldo, Peter Nordlander, Stefano Corni. Energy Transfer to Molecular Adsorbates by Transient Hot Electron Spillover. Nano Letters 2023, 23 (7) , 2719-2725. https://doi.org/10.1021/acs.nanolett.3c00013
    6. Fatimah Rudayni, Tika R. Kafle, Jack Waters, Kushal Rijal, Wai-Lun Chan. Ultrafast and Long-Range Energy Transfer from Plasmon to Molecular Exciton. The Journal of Physical Chemistry C 2023, 127 (3) , 1697-1703. https://doi.org/10.1021/acs.jpcc.2c07921
    7. Bipeng Wang, Weibin Chu, Yifan Wu, David Casanova, Wissam A. Saidi, Oleg V. Prezhdo. Electron-Volt Fluctuation of Defect Levels in Metal Halide Perovskites on a 100 ps Time Scale. The Journal of Physical Chemistry Letters 2022, 13 (25) , 5946-5952. https://doi.org/10.1021/acs.jpclett.2c01452
    8. Oleg V. Prezhdo. Modeling Non-adiabatic Dynamics in Nanoscale and Condensed Matter Systems. Accounts of Chemical Research 2021, 54 (23) , 4239-4249. https://doi.org/10.1021/acs.accounts.1c00525
    9. Xiaoli Wang, Run Long. Thermal-Driven Dynamic Shape Change of Bimetallic Nanoparticles Extends Hot Electron Lifetime of Pt/MoS2 Catalysts. The Journal of Physical Chemistry Letters 2021, 12 (30) , 7173-7179. https://doi.org/10.1021/acs.jpclett.1c01640
    10. Oleg V. Prezhdo, Carlos Mora Perez. Non-Adiabatic Dynamics in Condensed Matter and Nanoscale Systems. 2024, 394-412. https://doi.org/10.1016/B978-0-12-821978-2.00073-8
    11. YuLu QIN, Rui WANG, YunQuan LIU. Ultrafast photoelectron imaging with high spatiotemporal and energy resolution. SCIENTIA SINICA Physica, Mechanica & Astronomica 2023, 53 (10) , 100003. https://doi.org/10.1360/SSPMA-2022-0442
    12. Fábio J R Costa, Thiago G-L Brito, Ingrid D Barcelos, Luiz Fernando Zagonel. Impacts of dielectric screening on the luminescence of monolayer WSe 2. Nanotechnology 2023, 34 (38) , 385703. https://doi.org/10.1088/1361-6528/acda3b
    13. Lin Wang, Hongyan Zhang, Zhoujie Zhang, Jiajia Zhang, Yuhan He, Qi Li, Jianchun Bao, Min Fang, Yong Wu. Highly Efficient and Selective Visible‐light Photocatalytic CO 2 Reduction to CO Using a 2D Co(II)‐Imidazole MOF as Cocatalyst and Ru(bpy) 3 Cl 2 as Photosensitizer. Chemistry – An Asian Journal 2023, 18 (15) https://doi.org/10.1002/asia.202300297
    14. Wei Li, Ting Xue, Carlos Mora-Perez, Oleg V. Prezhdo. Ab initio quantum dynamics of plasmonic charge carriers. Trends in Chemistry 2023, 5 (8) , 634-645. https://doi.org/10.1016/j.trechm.2023.02.010
    15. Chengyun Hong, Seo Gyun Jang, Young‐Jun Yu, Ji‐Hee Kim. Hot Electron Dynamics in MoS 2 /Pt Van Der Waals Electrode Interface for Self‐Powered Hot Electron Photodetection. Advanced Materials Interfaces 2023, 10 (13) https://doi.org/10.1002/admi.202300140
    16. Tao Yang, Erik Pollmann, Stephan Sleziona, Eckart Hasselbrink, Peter Kratzer, Marika Schleberger, R. Kramer Campen, Yujin Tong. Interaction between a gold substrate and monolayer MoS 2 : An azimuthal-dependent sum frequency generation study. Physical Review B 2023, 107 (15) https://doi.org/10.1103/PhysRevB.107.155433
    17. Tommaso Pincelli, Thomas Vasileiadis, Shuo Dong, Samuel Beaulieu, Maciej Dendzik, Daniela Zahn, Sang‐Eun Lee, Hélène Seiler, Yingpeng Qi, R. Patrick Xian, Julian Maklar, Emerson Coy, Niclas S. Mueller, Yu Okamura, Stephanie Reich, Martin Wolf, Laurenz Rettig, Ralph Ernstorfer. Observation of Multi‐Directional Energy Transfer in a Hybrid Plasmonic–Excitonic Nanostructure. Advanced Materials 2023, 35 (9) https://doi.org/10.1002/adma.202209100
    18. Fang Liu. Time- and angle-resolved photoemission spectroscopy (TR-ARPES) of TMDC monolayers and bilayers. Chemical Science 2023, 14 (4) , 736-750. https://doi.org/10.1039/D2SC04124C
    19. Manuel Katzer, Sviatoslav Kovalchuk, Kyrylo Greben, Kirill I. Bolotin, Malte Selig, Andreas Knorr. Impact of dark excitons on Förster-type resonant energy transfer between dye molecules and atomically thin semiconductors. Physical Review B 2023, 107 (3) https://doi.org/10.1103/PhysRevB.107.035304
    20. Alisson R Cadore, Raphaela de Oliveira, Raphael Longuinhos, Verônica de C Teixeira, Danilo A Nagaoka, Vinicius T Alvarenga, Jenaina Ribeiro-Soares, Kenji Watanabe, Takashi Taniguchi, Roberto M Paniago, Angelo Malachias, Klaus Krambrock, Ingrid D Barcelos, Christiano J S de Matos. Exploring the structural and optoelectronic properties of natural insulating phlogopite in van der Waals heterostructures. 2D Materials 2022, 9 (3) , 035007. https://doi.org/10.1088/2053-1583/ac6cf4
    21. Thomas E. Beechem, Sean W. Smith, R. Guild Copeland, Fangze Liu, Taisuke Ohta. Spectral and polarization based imaging in deep-ultraviolet excited photoelectron microscopy. Review of Scientific Instruments 2022, 93 (5) https://doi.org/10.1063/5.0077867
    22. Ghasem Habibi Jetani, Mohammad Bagher Rahmani. Exploring the effect of hydrothermal precursor pH on the photosensitivity of 1T/2H–MoS2 nanosheets. Optical Materials 2022, 124 , 111974. https://doi.org/10.1016/j.optmat.2022.111974
    23. Sofiia Kosar, Andrew J. Winchester, Tiarnan A. S. Doherty, Stuart Macpherson, Christopher E. Petoukhoff, Kyle Frohna, Miguel Anaya, Nicholas S. Chan, Julien Madéo, Michael K. L. Man, Samuel D. Stranks, Keshav M. Dani. Unraveling the varied nature and roles of defects in hybrid halide perovskites with time-resolved photoemission electron microscopy. Energy & Environmental Science 2021, 14 (12) , 6320-6328. https://doi.org/10.1039/D1EE02055B
    24. Joonas T. Holmi, Ramesh Raju, Jonas Ylönen, Nagarajan Subramaniyam, Harri Lipsanen. Optical amplification by surface-plasmon-resonant Au grating substrates: Monolayer MoS2 with 170-fold second harmonic generation and 3-fold (off-resonance) Raman scattering. Superlattices and Microstructures 2021, 160 , 107077. https://doi.org/10.1016/j.spmi.2021.107077

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect