ACS Publications. Most Trusted. Most Cited. Most Read
Modified MAX Phase Synthesis for Environmentally Stable and Highly Conductive Ti3C2 MXene
My Activity
    Article

    Modified MAX Phase Synthesis for Environmentally Stable and Highly Conductive Ti3C2 MXene
    Click to copy article linkArticle link copied!

    • Tyler S. Mathis
      Tyler S. Mathis
      A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19143, United States
    • Kathleen Maleski
      Kathleen Maleski
      A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19143, United States
    • Adam Goad
      Adam Goad
      A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19143, United States
      More by Adam Goad
    • Asia Sarycheva
      Asia Sarycheva
      A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19143, United States
    • Mark Anayee
      Mark Anayee
      A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19143, United States
      More by Mark Anayee
    • Alexandre C. Foucher
      Alexandre C. Foucher
      Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19143, United States
    • Kanit Hantanasirisakul
      Kanit Hantanasirisakul
      A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19143, United States
    • Christopher E. Shuck
      Christopher E. Shuck
      A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19143, United States
    • Eric A. Stach
      Eric A. Stach
      Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19143, United States
      Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19143, United States
    • Yury Gogotsi*
      Yury Gogotsi
      A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19143, United States
      *Email: [email protected]
      More by Yury Gogotsi
    Other Access OptionsSupporting Information (1)

    ACS Nano

    Cite this: ACS Nano 2021, 15, 4, 6420–6429
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.0c08357
    Published April 13, 2021
    Copyright © 2021 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    One of the primary factors limiting further research and commercial use of the two-dimensional (2D) titanium carbide MXene Ti3C2, as well as MXenes in general, is the rate at which freshly made samples oxidize and degrade when stored as aqueous suspensions. Here, we show that including excess aluminum during synthesis of the Ti3AlC2 MAX phase precursor leads to Ti3AlC2 grains with improved crystallinity and carbon stoichiometry (termed Al–Ti3AlC2). MXene nanosheets (Al–Ti3C2) produced from this precursor are of higher quality, as evidenced by their increased resistance to oxidation and an increase in their electronic conductivity up to 20 000 S/cm. Aqueous suspensions of stoichiometric single- to few-layer Al–Ti3C2 flakes produced from the modified Al–Ti3AlC2 have a shelf life of over ten months, compared to 1 to 2 weeks for previously published Ti3C2, even when stored in ambient conditions. Freestanding films made from Al–Ti3C2 suspensions stored for ten months show minimal decreases in electrical conductivity and negligible oxidation. Furthermore, oxidation of the improved Al–Ti3C2 in air initiates at temperatures that are 100–150 °C higher than that of conventional Ti3C2. The observed improvements in both the shelf life and properties of Al–Ti3C2 will facilitate the widespread use of this material.

    Copyright © 2021 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsnano.0c08357.

    • Additional XRD patterns, Raman spectroscopy analysis, SEM and TEM images, UV–vis spectra, DLS data, and XPS spectra for the MAX and MXene samples presented in this study (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 567 publications.

    1. Fatemeh Mokhtari, Ken Aldren S. Usman, Jizhen Zhang, Robert Komljenovic, Žan Simon, Bhagya Dharmasiri, Amgad Rezk, Peter C. Sherrell, Luke C. Henderson, Russell J. Varley, Joselito M. Razal. Enhanced Acoustoelectric Energy Harvesting with Ti3C2Tx MXene in an All-Fiber Nanogenerator. ACS Applied Materials & Interfaces 2025, 17 (2) , 3214-3228. https://doi.org/10.1021/acsami.4c15178
    2. Andreas Furchner, Tetiana Parker, Vincent Mauchamp, Simon Hurand, Julian Plaickner, Jörg Rappich, Aline Alencar Emerenciano, Karsten Hinrichs, Yury Gogotsi, Tristan Petit. Ti3C2Tx MXene Thin Films and Intercalated Species Characterized by IR-to-UV Broadband Ellipsometry. The Journal of Physical Chemistry C 2025, 129 (1) , 500-507. https://doi.org/10.1021/acs.jpcc.4c06906
    3. Yubin Huang, Jean Spiece, Tetiana Parker, Asaph Lee, Yury Gogotsi, Pascal Gehring. Violation of the Wiedemann–Franz Law and Ultralow Thermal Conductivity of Ti3C2Tx MXene. ACS Nano 2024, 18 (47) , 32491-32497. https://doi.org/10.1021/acsnano.4c08189
    4. Keqing Zhao, Yuxuan Zhang, Xinlong Zhang, Fei Xing, Yonghui Zhang, Yu Feng, Tong Zhou. VS2 Nanoflowers Supported on Ti3C2 MXene as Electrocatalyst for the Hydrogen Evolution Reaction. ACS Applied Nano Materials 2024, 7 (22) , 25880-25890. https://doi.org/10.1021/acsanm.4c05027
    5. Kimberly Ventura-Martinez, Yaguang Zhu, Austin Booth, Kelsey B. Hatzell. Impact of Asymmetric Microstructure on Ion Transport in Ti3C2Tx Membranes. Nano Letters 2024, 24 (43) , 13551-13557. https://doi.org/10.1021/acs.nanolett.4c03080
    6. Michael J. Loes, Saman Bagheri, Alexander Sinitskii. Layer-Dependent Gas Sensing Mechanism of 2D Titanium Carbide (Ti3C2Tx) MXene. ACS Nano 2024, 18 (38) , 26251-26260. https://doi.org/10.1021/acsnano.4c08225
    7. Zixin Hong, Hui Tian, Zhenhan Fang, Hengcai Wu, Fei Zhao, Qunqing Li, Shoushan Fan, Jiaping Wang, Peng Liu. Carbon Nanotube/MXene Composite with a Dense Regular Connective Tissue Structure and Its Application in Lithium-Ion Batteries. ACS Applied Energy Materials 2024, 7 (18) , 8004-8013. https://doi.org/10.1021/acsaem.4c01650
    8. Suruthi Priya Nagalingam, Mohammed Shariq, Sathish Marimuthu, A. Christina Josephine Malathi, Saravanan Pandiaraj, Abdullah N. Alodhayb, Andrews Nirmala Grace. 2D/2D-Graphene Functionalized MXene as an Alternative Counter Electrode for Dye-Sensitized Solar Cells. Industrial & Engineering Chemistry Research 2024, 63 (37) , 16141-16153. https://doi.org/10.1021/acs.iecr.4c01924
    9. Tetiana Parker, Danzhen Zhang, David Bugallo, Kateryna Shevchuk, Marley Downes, Geetha Valurouthu, Alex Inman, Benjamin Chacon, Teng Zhang, Christopher E. Shuck, Yong-Jie Hu, Yury Gogotsi. Fourier-Transform Infrared Spectral Library of MXenes. Chemistry of Materials 2024, 36 (17) , 8437-8446. https://doi.org/10.1021/acs.chemmater.4c01536
    10. Zhihua Zhao, Yao Wang, Bo Li, Pu Chen, Guixin Jin, Xiaoqing Shen, Zhigang Shao, Lan Wu. Multifunctional and Flexible Sensor Based on PU-Supported Ti3C2Tx/TiO2/PPy Yarns for Ammonia Sensing and Human Motion Monitoring. ACS Applied Electronic Materials 2024, 6 (8) , 6226-6237. https://doi.org/10.1021/acsaelm.4c01087
    11. Henrique Teixeira, Catarina Dias, Andreia Vieira Silva, João Ventura. Advances on MXene-Based Memristors for Neuromorphic Computing: A Review on Synthesis, Mechanisms, and Future Directions. ACS Nano 2024, 18 (33) , 21685-21713. https://doi.org/10.1021/acsnano.4c03264
    12. Md Selim Reza, Md Sharifuzzaman, Md Asaduzzaman, Zahidul Islam, Yeyeong Lee, Dongyun Kim, Jae Yeong Park. Polyaromatic Hydrocarbon-Functionalized 2D MXene-Based 3D Porous Antifouling Nanocomposite with Long Shelf Life for High-Performance Electrochemical Immunosensor Applications. ACS Applied Materials & Interfaces 2024, 16 (24) , 31610-31623. https://doi.org/10.1021/acsami.4c05685
    13. Bright Ngozichukwu, Eugenie Pranada, Denis Johnson, Abdoulaye Djire. Nanolayered Ti4N3Tx MXene Retains Its Electrocatalytic Properties after Prolonged Immersion in Solvents. ACS Applied Nano Materials 2024, 7 (11) , 13765-13774. https://doi.org/10.1021/acsanm.4c02503
    14. Sonata Adomaviciute-Grabusove, Anton Popov, Simonas Ramanavicius, Valdas Sablinskas, Kateryna Shevchuk, Oleksiy Gogotsi, Ivan Baginskiy, Yury Gogotsi, Arunas Ramanavicius. Monitoring Ti3C2Tx MXene Degradation Pathways Using Raman Spectroscopy. ACS Nano 2024, 18 (20) , 13184-13195. https://doi.org/10.1021/acsnano.4c02150
    15. Bernd Wicklein, Geetha Valurouthu, HongYeon Yoon, Hyunjoon Yoo, Sathiyanathan Ponnan, Manmatha Mahato, Jiseok Kim, Syed Sheraz Ali, Jeong Young Park, Yury Gogotsi, Il-Kwon Oh. Influence of MXene Composition on Triboelectricity of MXene-Alginate Nanocomposites. ACS Applied Materials & Interfaces 2024, 16 (18) , 23948-23959. https://doi.org/10.1021/acsami.4c03298
    16. Noushad Hussain, Ari Chae, Aamir Iqbal, Sehyun Doo, Shabbir Madad Naqvi, Tufail Hassan, Albert S. Lee, Taegon Oh, Chong Min Koo. Oxidation of Molybdenum-Based Single-Metallic/bimetallic Carbide MXenes in Aqueous Suspensions: Mechanistic Insights. Langmuir 2024, 40 (17) , 9170-9179. https://doi.org/10.1021/acs.langmuir.4c00568
    17. Andrei Ungureanu, Alessandro Francini, Paolo Neri, Aldo Girimonte, Roberto Giovanardi, Anna Maria Ferrari, Roberto Rosa. Systematic Life Cycle Environmental Impact Comparison of Alternative Synthetic Strategies for Ti3C2Tx MXene. ACS Sustainable Chemistry & Engineering 2024, 12 (15) , 5893-5906. https://doi.org/10.1021/acssuschemeng.3c08491
    18. Murilo H. M. Facure, Luiza A. Mercante, Yury Gogotsi, Daniel S. Correa. ZnO–Co3O4 Nanofibers/MXene Composite with Peroxidase-Like Activity for Ascorbic Acid Detection. ACS Applied Nano Materials 2024, Article ASAP.
    19. B. Edward Sartor, Teng Zhang, Christopher P. Muzzillo, Chungho Lee, Ryan Muzzio, Yury Gogotsi, Matthew O. Reese, André D. Taylor. Hierarchical Transparent Back Contacts for Bifacial CdTe PV. ACS Energy Letters 2024, 9 (4) , 1617-1623. https://doi.org/10.1021/acsenergylett.4c00156
    20. Teng Zhang, Kateryna Shevchuk, Ruocun John Wang, Hyunho Kim, Jamal Hourani, Yury Gogotsi. Delamination of Chlorine-Terminated MXene Produced Using Molten Salt Etching. Chemistry of Materials 2024, 36 (4) , 1998-2006. https://doi.org/10.1021/acs.chemmater.3c02872
    21. Mailis Lounasvuori, Teng Zhang, Yury Gogotsi, Tristan Petit. Tuning the Microenvironment of Water Confined in Ti3C2Tx MXene by Cation Intercalation. The Journal of Physical Chemistry C 2024, 128 (7) , 2803-2813. https://doi.org/10.1021/acs.jpcc.4c00247
    22. Zhenyu Zhao, Binjian Du, Zihan Ren, Qianhou Liu, Fei Xing, Fang Zhang. Two-Dimensional Nb4AlC3 (MAX) and Nb4C3 (MXene): Excellent Optical Limiting Materials with Oppositely Applicated Waveband. ACS Applied Nano Materials 2024, 7 (3) , 2775-2785. https://doi.org/10.1021/acsanm.3c04990
    23. Natalia Noriega, Mikhail Shekhirev, Christopher E. Shuck, Jonathan Salvage, Armin VahidMohammadi, Marcus K. Dymond, Joseph Lacey, Susan Sandeman, Yury Gogotsi, Bhavik Anil Patel. Pristine Ti3C2Tx MXene Enables Flexible and Transparent Electrochemical Sensors. ACS Applied Materials & Interfaces 2024, 16 (5) , 6569-6578. https://doi.org/10.1021/acsami.3c14842
    24. Rabia Ahmad, Naseem Iqbal, Tayyaba Noor, Srinivasa Kartik Nemani, Likun Zhu, Babak Anasori. Metal–Organic Framework/Ti3C2Tx MXene-Derived Functional Nanostructures for High-Performance Supercapacitors. ACS Applied Nano Materials 2024, 7 (1) , 253-266. https://doi.org/10.1021/acsanm.3c04389
    25. Alexey Lipatov, Saman Bagheri, Alexander Sinitskii. Metallic Conductivity of Ti3C2Tx MXene Confirmed by Temperature-Dependent Electrical Measurements. ACS Materials Letters 2024, 6 (1) , 298-307. https://doi.org/10.1021/acsmaterialslett.3c01234
    26. Piyush Sharma, Shagun Kainth, Om Prakash Pandey, Roop Mahajan. Customized Synthesis of 2D Ti3C2 MXene for Improved Overall Water Splitting. ACS Applied Nano Materials 2023, 6 (23) , 21788-21802. https://doi.org/10.1021/acsanm.3c03986
    27. Shuxian Wang, Wenrou Tian, Jun Han, Najun Li, Dongyun Chen, Qingfeng Xu, Hua Li, Jianmei Lu. Interfacial Self-Assembly-Induced Lattice Distortion in Ti3C2 for Enhanced Piezocatalytic Activity. ACS Applied Materials & Interfaces 2023, 15 (47) , 55129-55138. https://doi.org/10.1021/acsami.3c13207
    28. Anu Mini Aravind, Merin Tomy, Anupama Kuttapan, Ann Mary Kakkassery Aippunny, Xavier Thankappan Suryabai. Progress of 2D MXene as an Electrode Architecture for Advanced Supercapacitors: A Comprehensive Review. ACS Omega 2023, 8 (47) , 44375-44394. https://doi.org/10.1021/acsomega.3c02002
    29. Paraskevi Flouda, Alex Inman, Mariana Gumenna, Daria Bukharina, Valery V. Shevchenko, Yury Gogotsi, Vladimir V. Tsukruk. Ultrathin Films of MXene Nanosheets Decorated by Ionic Branched Nanoparticles with Enhanced Energy Storage Stability. ACS Applied Materials & Interfaces 2023, 15 (46) , 53776-53785. https://doi.org/10.1021/acsami.3c09064
    30. Yury Gogotsi. The Future of MXenes. Chemistry of Materials 2023, 35 (21) , 8767-8770. https://doi.org/10.1021/acs.chemmater.3c02491
    31. Guoyu Yang, Xuming Yao, Yujun Li, Yi Hu, Xing Chen, Jialiang Li, Junzhen Chen, Jianjun Jiang. Ti3C2Tx MXene Nanosheet-Based Hybrid Films for Enhanced Wave Absorption-Dominated Electromagnetic Interference Shielding. ACS Applied Nano Materials 2023, 6 (20) , 19378-19391. https://doi.org/10.1021/acsanm.3c03932
    32. Teng Zhang, Christopher E. Shuck, Kateryna Shevchuk, Mark Anayee, Yury Gogotsi. Synthesis of Three Families of Titanium Carbonitride MXenes. Journal of the American Chemical Society 2023, 145 (41) , 22374-22383. https://doi.org/10.1021/jacs.3c04712
    33. Kateryna Shevchuk, Asia Sarycheva, Christopher E. Shuck, Yury Gogotsi. Raman Spectroscopy Characterization of 2D Carbide and Carbonitride MXenes. Chemistry of Materials 2023, 35 (19) , 8239-8247. https://doi.org/10.1021/acs.chemmater.3c01742
    34. Nilmani Kumar Harpreet Singh Madhu Khatri Neha Bhardwaj . 2D-Transition Metal Carbides and Nitrides: Materials for the Next Generation. , 1-25. https://doi.org/10.1021/bk-2023-1442.ch001
    35. Nasima Khatun . Progresses and Challenges in 2D MXenes: Synthesis, Intercalation/Delamination, and Storage. , 101-141. https://doi.org/10.1021/bk-2023-1442.ch005
    36. Hushan Chand Kamlesh Kumari Venkata Krishnan . MXenes‐Based Materials for Contaminant Removal from Wastewaters. , 193-218. https://doi.org/10.1021/bk-2023-1443.ch010
    37. . Age of MXenes, Volume 4. Applications in Advanced Catalysis and Membrane Processes. https://doi.org/10.1021/bk-2023-1445
    38. Abhishek Kagalkar Swapnil Dharaskar . 2D-Transition Metal Carbides and Nitrides: Prospects and Challenges. , 1-42. https://doi.org/10.1021/bk-2023-1445.ch001
    39. Marley Downes, Christopher E. Shuck, Robert W. Lord, Mark Anayee, Mikhail Shekhirev, Ruocun John Wang, Tetiana Hryhorchuk, Martin Dahlqvist, Johanna Rosen, Yury Gogotsi. M5X4: A Family of MXenes. ACS Nano 2023, 17 (17) , 17158-17168. https://doi.org/10.1021/acsnano.3c04967
    40. Şirin Massoumılari, Sadiye Velioǧlu. Can MXene be the Effective Nanomaterial Family for the Membrane and Adsorption Technologies to Reach a Sustainable Green World?. ACS Omega 2023, 8 (33) , 29859-29909. https://doi.org/10.1021/acsomega.3c01182
    41. Xueqiang Tan, Shuting Wang, Zhongyuan You, Jimin Zheng, Ying Liu. High Performance Porous Triboelectric Nanogenerator Based on Silk Fibroin@MXene Composite Aerogel and PDMS Sponge. ACS Materials Letters 2023, 5 (7) , 1929-1937. https://doi.org/10.1021/acsmaterialslett.3c00273
    42. Dipankar Saha, Johnson Dalmieda, Vinay Patel. Surface-Modified MXenes: Simulation to Potential Applications. ACS Applied Electronic Materials 2023, 5 (6) , 2933-2955. https://doi.org/10.1021/acsaelm.3c00076
    43. Ximin Cui, Qifeng Ruan, Xiaolu Zhuo, Xinyue Xia, Jingtian Hu, Runfang Fu, Yang Li, Jianfang Wang, Hongxing Xu. Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. Chemical Reviews 2023, 123 (11) , 6891-6952. https://doi.org/10.1021/acs.chemrev.3c00159
    44. Beatriz Mendoza-Sánchez, Enrique Samperio-Niembro, Oleksandr Dolotko, Thomas Bergfeldt, Christian Kübel, Michael Knapp, Christopher E. Shuck. Systematic Study of the Multiple Variables Involved in V2AlC Acid-Based Etching Processes, a Key Step in MXene Synthesis. ACS Applied Materials & Interfaces 2023, 15 (23) , 28332-28348. https://doi.org/10.1021/acsami.3c01671
    45. Yu-Chuan Lin, Riccardo Torsi, Rehan Younas, Christopher L. Hinkle, Albert F. Rigosi, Heather M. Hill, Kunyan Zhang, Shengxi Huang, Christopher E. Shuck, Chen Chen, Yu-Hsiu Lin, Daniel Maldonado-Lopez, Jose L. Mendoza-Cortes, John Ferrier, Swastik Kar, Nadire Nayir, Siavash Rajabpour, Adri C. T. van Duin, Xiwen Liu, Deep Jariwala, Jie Jiang, Jian Shi, Wouter Mortelmans, Rafael Jaramillo, Joao Marcelo J. Lopes, Roman Engel-Herbert, Anthony Trofe, Tetyana Ignatova, Seng Huat Lee, Zhiqiang Mao, Leticia Damian, Yuanxi Wang, Megan A. Steves, Kenneth L. Knappenberger, Jr., Zhengtianye Wang, Stephanie Law, George Bepete, Da Zhou, Jiang-Xiazi Lin, Mathias S. Scheurer, Jia Li, Pengjie Wang, Guo Yu, Sanfeng Wu, Deji Akinwande, Joan M. Redwing, Mauricio Terrones, Joshua A. Robinson. Recent Advances in 2D Material Theory, Synthesis, Properties, and Applications. ACS Nano 2023, 17 (11) , 9694-9747. https://doi.org/10.1021/acsnano.2c12759
    46. So Yeong Jeong, Yongmin Jeon, Eunji Kim, Gibok Lee, Yeon-Wha Oh, Chi Won Ahn, Eun Hae Cho, Yonghee Lee, Kyung Cheol Choi. Highly Air-Stable, Flexible, and Water-Resistive 2D Titanium Carbide MXene-Based RGB Organic Light-Emitting Diode Displays for Transparent Free-Form Electronics. ACS Nano 2023, 17 (11) , 10353-10364. https://doi.org/10.1021/acsnano.3c00781
    47. Zetong Zhuang, Hongwu Chen, Chun Li. Robust Pristine MXene Films with Superhigh Electromagnetic Interference Shielding Effectiveness via Spatially Confined Evaporation. ACS Nano 2023, 17 (11) , 10628-10636. https://doi.org/10.1021/acsnano.3c01697
    48. Kallayi Nabeela, Rakesh Deka, Zahir Abbas, Praveen Kumar, Mohit Saraf, Shaikh M. Mobin. Covalent Organic Frameworks (COFs)/MXenes Heterostructures for Electrochemical Energy Storage. Crystal Growth & Design 2023, 23 (5) , 3057-3078. https://doi.org/10.1021/acs.cgd.3c00206
    49. Matteo Paolieri, Zihao Chen, Firoz Babu Kadumudi, Morteza Alehosseini, Melanie Zorrón, Alireza Dolatshahi-Pirouz, Hajar Maleki. Biomimetic Flexible Electronic Materials from Silk Fibroin-MXene Composites Developed via Mussel-Inspired Chemistry as Wearable Pressure Sensors. ACS Applied Nano Materials 2023, 6 (7) , 5211-5223. https://doi.org/10.1021/acsanm.2c05140
    50. Riya Nag, Pramod Bhakuni, Sudipta Roy Barman, Abhijit Bera. MXene as a Superior Charge-Transport Layer in an MXene–BiFeO3–ZnO Nanocomposite for Photocatalytic Disintegration of Antacids. ACS Applied Engineering Materials 2023, 1 (3) , 1034-1047. https://doi.org/10.1021/acsaenm.3c00013
    51. Swapnil B. Ambade, Laura A. Kesner, Mohammed K. Abdel-Rahman, D. Howard Fairbrother, Zeev Rosenzweig. Interactions of Ti3C2 MXene with Aqueous Zwitterionic Biological Buffers: Implications for Applications in Biological Systems. ACS Applied Nano Materials 2023, 6 (6) , 4898-4909. https://doi.org/10.1021/acsanm.3c00666
    52. Mailis Lounasvuori, Tyler S. Mathis, Yury Gogotsi, Tristan Petit. Hydrogen-Bond Restructuring of Water-in-Salt Electrolyte Confined in Ti3C2Tx MXene Monitored by Operando Infrared Spectroscopy. The Journal of Physical Chemistry Letters 2023, 14 (6) , 1578-1584. https://doi.org/10.1021/acs.jpclett.2c03769
    53. Su Bin Choi, Jung-Min Oh, Jagan Singh Meena, Hanjung Kwon, Seung-Boo Jung, Jong-Woong Kim. Role of Oxygen in the Ti3AlC2 MAX Phase in the Oxide Formation and Conductivity of Ti3C2-Based MXene Nanosheets. ACS Applied Materials & Interfaces 2023, 15 (6) , 8393-8405. https://doi.org/10.1021/acsami.2c21658
    54. Salim Hassan Siddiki, Kartikey Verma, Bhaswati Chakraborty, Sushrut Das, Vijay Kumar Thakur, Ganesh Chandra Nayak. Defect Dipole-Induced HfO2-Coated Ti3C2Tx MXene/Nickel Ferrite Nanocomposites for Enhanced Microwave Absorption. ACS Applied Nano Materials 2023, 6 (3) , 1839-1848. https://doi.org/10.1021/acsanm.2c04793
    55. Binxia Chen, Zhixing Lu, Shiyi Feng, Zehang Zhou, Canhui Lu. Redox-Active Nitroxide Radicals Grafted onto MXene: Boosting Energy Storage via Improved Charge Transfer and Surface Capacitance. ACS Energy Letters 2023, 8 (2) , 1096-1106. https://doi.org/10.1021/acsenergylett.2c02595
    56. Vivek Adepu, Manav Tathacharya, Raghuram CS, Venkat Mattela, Parikshit Sahatiya. TeNWs/Ti3C2Tx Nanohybrid-Based Flexible Pressure Sensors for Personal Safety Applications Using Morse Code. ACS Applied Nano Materials 2022, 5 (12) , 18209-18219. https://doi.org/10.1021/acsanm.2c04088
    57. Bo Liu, Bin Ran, Chaozhan Chen, Liuyong Shi, Jing Jin, Yonggang Zhu. High-Throughput Microfluidic Production of Bimetallic Nanoparticles on MXene Nanosheets and Application in Hydrogen Peroxide Detection. ACS Applied Materials & Interfaces 2022, 14 (50) , 56298-56309. https://doi.org/10.1021/acsami.2c16316
    58. Mikhail Shekhirev, Yusuke Ogawa, Christopher E. Shuck, Mark Anayee, Takeshi Torita, Yury Gogotsi. Delamination of Ti3C2Tx Nanosheets with NaCl and KCl for Improved Environmental Stability of MXene Films. ACS Applied Nano Materials 2022, 5 (11) , 16027-16032. https://doi.org/10.1021/acsanm.2c03701
    59. Phuong Huyen Nguyen, Duc Hieu Nguyen, Donghyoung Kim, Mun Kyoung Kim, Jiseong Jang, Woo Hyeong Sim, Hyung Mo Jeong, Gon Namkoong, Mun Seok Jeong. Regenerating MXene by a Facile Chemical Treatment Method. ACS Applied Materials & Interfaces 2022, 14 (45) , 51487-51495. https://doi.org/10.1021/acsami.2c13993
    60. Mark Anayee, Christopher E. Shuck, Mikhail Shekhirev, Adam Goad, Ruocun Wang, Yury Gogotsi. Kinetics of Ti3AlC2 Etching for Ti3C2Tx MXene Synthesis. Chemistry of Materials 2022, 34 (21) , 9589-9600. https://doi.org/10.1021/acs.chemmater.2c02194
    61. Thomas B. Sobyra, Kyle Matthews, Tyler S. Mathis, Yury Gogotsi, Paul Fenter. Operando X-ray Reflectivity Reveals the Dynamical Response of Ti3C2 MXene Film Structure during Electrochemical Cycling. ACS Energy Letters 2022, 7 (10) , 3612-3617. https://doi.org/10.1021/acsenergylett.2c01577
    62. Ihsan Amin, Hidde van den Brekel, Kartik Nemani, Erdni Batyrev, Arnoud de Vooys, Hans van der Weijde, Babak Anasori, N. Raveendran Shiju. Ti3C2Tx MXene Polymer Composites for Anticorrosion: An Overview and Perspective. ACS Applied Materials & Interfaces 2022, 14 (38) , 43749-43758. https://doi.org/10.1021/acsami.2c11953
    63. Mikhail Shekhirev, Jeffrey Busa, Christopher E. Shuck, Angel Torres, Saman Bagheri, Alexander Sinitskii, Yury Gogotsi. Ultralarge Flakes of Ti3C2Tx MXene via Soft Delamination. ACS Nano 2022, 16 (9) , 13695-13703. https://doi.org/10.1021/acsnano.2c04506
    64. Lan Ding, Senwei Zeng, Weiye Zhang, Chao Guo, Xinyi Chen, Bo Peng, Zhongpeng Lv, Hongjun Zhou, Quan Xu. Nitrogen-Doped Ti3C2 MXene Quantum Dots/1D CdS Nanorod Heterostructure Photocatalyst of Highly Efficient Hydrogen Evolution. ACS Applied Energy Materials 2022, 5 (9) , 11540-11552. https://doi.org/10.1021/acsaem.2c02001
    65. Shuohan Huang, Vadym N. Mochalin. Combination of High pH and an Antioxidant Improves Chemical Stability of Two-Dimensional Transition-Metal Carbides and Carbonitrides (MXenes) in Aqueous Colloidal Solutions. Inorganic Chemistry 2022, 61 (26) , 9877-9887. https://doi.org/10.1021/acs.inorgchem.2c00537
    66. Tao Wu, Paul R. C. Kent, Yury Gogotsi, De-en Jiang. How Water Attacks MXene. Chemistry of Materials 2022, 34 (11) , 4975-4982. https://doi.org/10.1021/acs.chemmater.2c00224
    67. Asia Sarycheva, Maruda Shanmugasundaram, Andrey Krayev, Yury Gogotsi. Tip-Enhanced Raman Scattering Imaging of Single- to Few-Layer Ti3C2Tx MXene. ACS Nano 2022, 16 (4) , 6858-6865. https://doi.org/10.1021/acsnano.2c01868
    68. Soorya Srinivasan, M. Jothibas, Noel Nesakumar. Enhancing Electric Double Layer Capacitance of Two-Dimensional Titanium Carbide (MXene) with Facile Synthesis and Accentuated Properties. Energy & Fuels 2022, 36 (5) , 2811-2820. https://doi.org/10.1021/acs.energyfuels.1c04092
    69. Mufeng Liu, Yuling Zhuo, Asia Sarycheva, Yury Gogotsi, Mark A. Bissett, Robert J. Young, Ian A. Kinloch. Deformation of and Interfacial Stress Transfer in Ti3C2 MXene–Polymer Composites. ACS Applied Materials & Interfaces 2022, 14 (8) , 10681-10690. https://doi.org/10.1021/acsami.1c21611
    70. Kyle Matthews, Teng Zhang, Christopher E. Shuck, Armin VahidMohammadi, Yury Gogotsi. Guidelines for Synthesis and Processing of Chemically Stable Two-Dimensional V2CTx MXene. Chemistry of Materials 2022, 34 (2) , 499-509. https://doi.org/10.1021/acs.chemmater.1c03508
    71. Haneesh Saini, Nikitha Srinivasan, Veronika Šedajová, Mandira Majumder, Deepak P. Dubal, Michal Otyepka, Radek Zbořil, Narendra Kurra, Roland A. Fischer, Kolleboyina Jayaramulu. Emerging MXene@Metal–Organic Framework Hybrids: Design Strategies toward Versatile Applications. ACS Nano 2021, 15 (12) , 18742-18776. https://doi.org/10.1021/acsnano.1c06402
    72. Jacob T. Lee, Brian C. Wyatt, Gregory A. Davis, Jr., Adrianna N. Masterson, Amber L. Pagan, Archit Shah, Babak Anasori, Rajesh Sardar. Covalent Surface Modification of Ti3C2Tx MXene with Chemically Active Polymeric Ligands Producing Highly Conductive and Ordered Microstructure Films. ACS Nano 2021, 15 (12) , 19600-19612. https://doi.org/10.1021/acsnano.1c06670
    73. Hongwu Chen, Hongyun Ma, Chun Li. Host–Guest Intercalation Chemistry in MXenes and Its Implications for Practical Applications. ACS Nano 2021, 15 (10) , 15502-15537. https://doi.org/10.1021/acsnano.1c04423
    74. Peida Li, Nan Su, Zhiyu Wang, Jieshan Qiu. A Ti3C2Tx MXene-Based Energy-Harvesting Soft Actuator with Self-Powered Humidity Sensing and Real-Time Motion Tracking Capability. ACS Nano 2021, 15 (10) , 16811-16818. https://doi.org/10.1021/acsnano.1c07186
    75. Krutarth Kamath, Vivek ADEPU, Venkat Mattela, Parikshit Sahatiya. Development of Ti3C2Tx/MoS2xSe2(1–x) Nanohybrid Multilayer Structures for Piezoresistive Mechanical Transduction. ACS Applied Electronic Materials 2021, 3 (9) , 4091-4104. https://doi.org/10.1021/acsaelm.1c00583
    76. Yingqiao Wang, Raghav Garg, Jane E. Hartung, Adam Goad, Dipna A. Patel, Flavia Vitale, Michael S. Gold, Yury Gogotsi, Tzahi Cohen-Karni. Ti3C2Tx MXene Flakes for Optical Control of Neuronal Electrical Activity. ACS Nano 2021, 15 (9) , 14662-14671. https://doi.org/10.1021/acsnano.1c04431
    77. Yongling An, Yuan Tian, Chengkai Liu, Shenglin Xiong, Jinkui Feng, Yitai Qian. Rational Design of Sulfur-Doped Three-Dimensional Ti3C2Tx MXene/ZnS Heterostructure as Multifunctional Protective Layer for Dendrite-Free Zinc-Ion Batteries. ACS Nano 2021, 15 (9) , 15259-15273. https://doi.org/10.1021/acsnano.1c05934
    78. Xuehang Wang, Tyler S. Mathis, Yangyunli Sun, Wan-Yu Tsai, Netanel Shpigel, Hui Shao, Danzhen Zhang, Kanit Hantanasirisakul, Fyodor Malchik, Nina Balke, De-en Jiang, Patrice Simon, Yury Gogotsi. Titanium Carbide MXene Shows an Electrochemical Anomaly in Water-in-Salt Electrolytes. ACS Nano 2021, 15 (9) , 15274-15284. https://doi.org/10.1021/acsnano.1c06027
    79. Christopher E. Shuck, Kimberly Ventura-Martinez, Adam Goad, Simge Uzun, Mikhail Shekhirev, Yury Gogotsi. Safe Synthesis of MAX and MXene: Guidelines to Reduce Risk During Synthesis. ACS Chemical Health & Safety 2021, 28 (5) , 326-338. https://doi.org/10.1021/acs.chas.1c00051
    80. Thomas B. Sobyra, Tyler S. Mathis, Yury Gogotsi, Paul Fenter. Probing the In Situ Pseudocapacitive Charge Storage in Ti3C2 MXene Thin Films with X-ray Reflectivity. ACS Applied Materials & Interfaces 2021, 13 (36) , 43597-43605. https://doi.org/10.1021/acsami.1c10959
    81. Srinivasa Kartik Nemani, Bowen Zhang, Brian C. Wyatt, Zachary D. Hood, Sukriti Manna, Rasoul Khaledialidusti, Weichen Hong, Michael G. Sternberg, Subramanian K. R. S. Sankaranarayanan, Babak Anasori. High-Entropy 2D Carbide MXenes: TiVNbMoC3 and TiVCrMoC3. ACS Nano 2021, 15 (8) , 12815-12825. https://doi.org/10.1021/acsnano.1c02775
    82. Mohsen Bandar Abadi, Rene Weissing, Michael Wilhelm, Yan Demidov, Jaqueline Auer, Samaneh Ghazanfari, Babak Anasori, Sanjay Mathur, Hajar Maleki. Nacre-Mimetic, Mechanically Flexible, and Electrically Conductive Silk Fibroin-MXene Composite Foams as Piezoresistive Pressure Sensors. ACS Applied Materials & Interfaces 2021, 13 (29) , 34996-35007. https://doi.org/10.1021/acsami.1c09675
    83. Yury Gogotsi, (Associate Editor)Qing Huang. MXenes: Two-Dimensional Building Blocks for Future Materials and Devices. ACS Nano 2021, 15 (4) , 5775-5780. https://doi.org/10.1021/acsnano.1c03161
    84. Junhui Tang, Renyang Zhu, Ya-Hsin Pai, Yan Zhao, Chen Xu, Ziqi Liang. Thermoelectric Modulation of Neat Ti3C2Tx MXenes by Finely Regulating the Stacking of Nanosheets. Nano-Micro Letters 2025, 17 (1) https://doi.org/10.1007/s40820-024-01594-z
    85. Jusu M. Ngobeh, Vishal Sorathiya, Abdullah Alwabli, Amar Y. Jaffar, Osama S. Faragallah. MXene-based multilayered and ultrawideband absorber for solar cell and photovoltaic applications. Scientific Reports 2025, 15 (1) https://doi.org/10.1038/s41598-025-86230-5
    86. Sin-Yi Pang, Weng Fu Io, Feng Guo, Yuqian Zhao, Jianhua Hao. Two-dimensional MXene-based devices for information technology. Materials Science and Engineering: R: Reports 2025, 163 , 100894. https://doi.org/10.1016/j.mser.2024.100894
    87. Shaowei Wang, Haoyu Ma, Shengbo Ge, Mashallah Rezakazemi, Jingquan Han. Advanced design strategies and multifunctional applications of Nanocellulose/MXene composites: A comprehensive review. Materials Science and Engineering: R: Reports 2025, 163 , 100925. https://doi.org/10.1016/j.mser.2025.100925
    88. Qiliang Pan, Lisan Fu, Zhouxiao Wang, Zhengmin Zhong, Jianguo Zhao. Research progress on MXenes-based electrocatalysts with high oxygen activity for air cathodes in metal-air batteries. Journal of Energy Storage 2025, 111 , 115388. https://doi.org/10.1016/j.est.2025.115388
    89. Jianjian Zhong, Zhen Wang, Yunhao Wu, Jianling Li. Functionalized Ti3C2Tx assisted by natural phytic acid for high-power application in lithium-ion capacitors. Journal of Energy Storage 2025, 109 , 115159. https://doi.org/10.1016/j.est.2024.115159
    90. Zhenyu Hou, Xin Zhang, Shihai Guo, Bingjie Liu, Lihong Xu, Yan Qi, Yanghuan Zhang, Ping Li, DongLiang Zhao. Hydrogen storage performance of MXenes: Intrinsic properties and catalytic effects. International Journal of Hydrogen Energy 2025, 101 , 904-945. https://doi.org/10.1016/j.ijhydene.2024.12.486
    91. Sultan Ullah, Muhammad Altaf Nazir, Muhammad Adnan Saeed, Sami Ullah, Ismail Hossain, Mohammed A. Assiri, Tensangmu Lama Tamang, Giedrius Janušas. Next generation MXene based materials for electrochemical sensor: A critical review. Journal of Molecular Structure 2025, 1321 , 139830. https://doi.org/10.1016/j.molstruc.2024.139830
    92. Zhuo Li, Qinglong He, Hao Chen, Yiwen Chen, Chuijin Zeng, Tianyue Xu, Shungui Deng, Chuanfang Zhang. Multifunctional MXene inks for printed electrochemical energy storage devices. Energy Materials 2025, 5 (1) https://doi.org/10.20517/energymater.2024.31
    93. Ritik Vishwakarma, Ambrish Kumar, Moumita Saha, Bhawna, Kamalakanta Behera, Shruti Trivedi. MXene-based hybrid nanostructures for sensing application: Fundamental and state-of-art. 2025, 173-202. https://doi.org/10.1016/B978-0-443-21853-8.00011-6
    94. Swati Singh, Saicharan Dharavath, Supriya Kodali, Raj Kishora Dash. The role of delaminating agents on the structure, morphology, bonding, and electrical properties of HF etched MXenes. FlatChem 2025, 228 , 100806. https://doi.org/10.1016/j.flatc.2024.100806
    95. Papi Sarkar, Kaustuv Chatterjee, Prabir Pal, Kaustuv Das. Exploring the molarity of Lithium Fluoride in minimally intensive layer delamination (MILD) method for efficient room temperature synthesis of high quality Ti3C2Tx free-standing film. Materials Science in Semiconductor Processing 2025, 185 , 108881. https://doi.org/10.1016/j.mssp.2024.108881
    96. Murilo H.M. Facure, Bruno S. Sampaio, Luiza A. Mercante, Daniel S. Correa. The beneficial impact of MXene on the electrochemical performance of graphene quantum dots for dopamine detection. Materials Today Communications 2025, 42 , 111197. https://doi.org/10.1016/j.mtcomm.2024.111197
    97. Abdallah Kamal, Baosong Li, Abdullah Solayman, Shaohong Luo, Ian Kinloch, Lianxi Zheng, Kin Liao. Mechanical properties of two-dimensional material-based thin films: a comprehensive review. Nanoscale Horizons 2025, 7 https://doi.org/10.1039/D4NH00425F
    98. Zubair Khalid, Jing Xie, Farhan Hadi, Tetsuo Yamaguchi, Fabrice Salles, Jae-Min Oh. Selective captivation of DOX via topotactic surface enrichment with hydrated sodium ions on engineered MXene nanosheets. Journal of Materials Chemistry A 2025, 73 https://doi.org/10.1039/D4TA06297C
    99. Kapil Dev Verma, Kamal K. Kar. Cost-effective synthesis route for ultra-high purity of Ti3AlC2 MAX phase with enhanced performance of Ti3C2Tx MXene and MXene/NiO composite for supercapacitor application. Chemical Engineering Journal 2025, 504 , 158938. https://doi.org/10.1016/j.cej.2024.158938
    100. Kai Li, Zihang Zhang, Chenxi Sun, Weiguang Han, Mengmeng Zhen, Huiling Liu. Highly exposed TiO2 (001)/MXene heterostructure with ultrafast kinetics for high-performance sodium storages. Journal of Alloys and Compounds 2025, 1010 , 178238. https://doi.org/10.1016/j.jallcom.2024.178238
    Load more citations

    ACS Nano

    Cite this: ACS Nano 2021, 15, 4, 6420–6429
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.0c08357
    Published April 13, 2021
    Copyright © 2021 American Chemical Society

    Article Views

    21k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.