Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Modified MAX Phase Synthesis for Environmentally Stable and Highly Conductive Ti3C2 MXene

  • Tyler S. Mathis
    Tyler S. Mathis
    A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19143, United States
  • Kathleen Maleski
    Kathleen Maleski
    A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19143, United States
  • Adam Goad
    Adam Goad
    A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19143, United States
    More by Adam Goad
  • Asia Sarycheva
    Asia Sarycheva
    A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19143, United States
  • Mark Anayee
    Mark Anayee
    A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19143, United States
    More by Mark Anayee
  • Alexandre C. Foucher
    Alexandre C. Foucher
    Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19143, United States
  • Kanit Hantanasirisakul
    Kanit Hantanasirisakul
    A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19143, United States
  • Christopher E. Shuck
    Christopher E. Shuck
    A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19143, United States
  • Eric A. Stach
    Eric A. Stach
    Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19143, United States
    Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19143, United States
  • , and 
  • Yury Gogotsi*
    Yury Gogotsi
    A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19143, United States
    *Email: [email protected]
    More by Yury Gogotsi
Cite this: ACS Nano 2021, 15, 4, 6420–6429
Publication Date (Web):April 13, 2021
https://doi.org/10.1021/acsnano.0c08357
Copyright © 2021 American Chemical Society

    Article Views

    17709

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    One of the primary factors limiting further research and commercial use of the two-dimensional (2D) titanium carbide MXene Ti3C2, as well as MXenes in general, is the rate at which freshly made samples oxidize and degrade when stored as aqueous suspensions. Here, we show that including excess aluminum during synthesis of the Ti3AlC2 MAX phase precursor leads to Ti3AlC2 grains with improved crystallinity and carbon stoichiometry (termed Al–Ti3AlC2). MXene nanosheets (Al–Ti3C2) produced from this precursor are of higher quality, as evidenced by their increased resistance to oxidation and an increase in their electronic conductivity up to 20 000 S/cm. Aqueous suspensions of stoichiometric single- to few-layer Al–Ti3C2 flakes produced from the modified Al–Ti3AlC2 have a shelf life of over ten months, compared to 1 to 2 weeks for previously published Ti3C2, even when stored in ambient conditions. Freestanding films made from Al–Ti3C2 suspensions stored for ten months show minimal decreases in electrical conductivity and negligible oxidation. Furthermore, oxidation of the improved Al–Ti3C2 in air initiates at temperatures that are 100–150 °C higher than that of conventional Ti3C2. The observed improvements in both the shelf life and properties of Al–Ti3C2 will facilitate the widespread use of this material.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsnano.0c08357.

    • Additional XRD patterns, Raman spectroscopy analysis, SEM and TEM images, UV–vis spectra, DLS data, and XPS spectra for the MAX and MXene samples presented in this study (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 304 publications.

    1. Md Selim Reza, Md Sharifuzzaman, Md Asaduzzaman, Zahidul Islam, Yeyeong Lee, Dongyun Kim, Jae Yeong Park. Polyaromatic Hydrocarbon-Functionalized 2D MXene-Based 3D Porous Antifouling Nanocomposite with Long Shelf Life for High-Performance Electrochemical Immunosensor Applications. ACS Applied Materials & Interfaces 2024, 16 (24) , 31610-31623. https://doi.org/10.1021/acsami.4c05685
    2. Bright Ngozichukwu, Eugenie Pranada, Denis Johnson, Abdoulaye Djire. Nanolayered Ti4N3Tx MXene Retains Its Electrocatalytic Properties after Prolonged Immersion in Solvents. ACS Applied Nano Materials 2024, 7 (11) , 13765-13774. https://doi.org/10.1021/acsanm.4c02503
    3. Sonata Adomaviciute-Grabusove, Anton Popov, Simonas Ramanavicius, Valdas Sablinskas, Kateryna Shevchuk, Oleksiy Gogotsi, Ivan Baginskiy, Yury Gogotsi, Arunas Ramanavicius. Monitoring Ti3C2Tx MXene Degradation Pathways Using Raman Spectroscopy. ACS Nano 2024, 18 (20) , 13184-13195. https://doi.org/10.1021/acsnano.4c02150
    4. Bernd Wicklein, Geetha Valurouthu, HongYeon Yoon, Hyunjoon Yoo, Sathiyanathan Ponnan, Manmatha Mahato, Jiseok Kim, Syed Sheraz Ali, Jeong Young Park, Yury Gogotsi, Il-Kwon Oh. Influence of MXene Composition on Triboelectricity of MXene-Alginate Nanocomposites. ACS Applied Materials & Interfaces 2024, 16 (18) , 23948-23959. https://doi.org/10.1021/acsami.4c03298
    5. Noushad Hussain, Ari Chae, Aamir Iqbal, Sehyun Doo, Shabbir Madad Naqvi, Tufail Hassan, Albert S. Lee, Taegon Oh, Chong Min Koo. Oxidation of Molybdenum-Based Single-Metallic/bimetallic Carbide MXenes in Aqueous Suspensions: Mechanistic Insights. Langmuir 2024, 40 (17) , 9170-9179. https://doi.org/10.1021/acs.langmuir.4c00568
    6. Andrei Ungureanu, Alessandro Francini, Paolo Neri, Aldo Girimonte, Roberto Giovanardi, Anna Maria Ferrari, Roberto Rosa. Systematic Life Cycle Environmental Impact Comparison of Alternative Synthetic Strategies for Ti3C2Tx MXene. ACS Sustainable Chemistry & Engineering 2024, 12 (15) , 5893-5906. https://doi.org/10.1021/acssuschemeng.3c08491
    7. Murilo H. M. Facure, Luiza A. Mercante, Yury Gogotsi, Daniel S. Correa. ZnO–Co3O4 Nanofibers/MXene Composite with Peroxidase-Like Activity for Ascorbic Acid Detection. ACS Applied Nano Materials 2024, Article ASAP.
    8. B. Edward Sartor, Teng Zhang, Christopher P. Muzzillo, Chungho Lee, Ryan Muzzio, Yury Gogotsi, Matthew O. Reese, André D. Taylor. Hierarchical Transparent Back Contacts for Bifacial CdTe PV. ACS Energy Letters 2024, 9 (4) , 1617-1623. https://doi.org/10.1021/acsenergylett.4c00156
    9. Teng Zhang, Kateryna Shevchuk, Ruocun John Wang, Hyunho Kim, Jamal Hourani, Yury Gogotsi. Delamination of Chlorine-Terminated MXene Produced Using Molten Salt Etching. Chemistry of Materials 2024, 36 (4) , 1998-2006. https://doi.org/10.1021/acs.chemmater.3c02872
    10. Mailis Lounasvuori, Teng Zhang, Yury Gogotsi, Tristan Petit. Tuning the Microenvironment of Water Confined in Ti3C2Tx MXene by Cation Intercalation. The Journal of Physical Chemistry C 2024, 128 (7) , 2803-2813. https://doi.org/10.1021/acs.jpcc.4c00247
    11. Zhenyu Zhao, Binjian Du, Zihan Ren, Qianhou Liu, Fei Xing, Fang Zhang. Two-Dimensional Nb4AlC3 (MAX) and Nb4C3 (MXene): Excellent Optical Limiting Materials with Oppositely Applicated Waveband. ACS Applied Nano Materials 2024, 7 (3) , 2775-2785. https://doi.org/10.1021/acsanm.3c04990
    12. Natalia Noriega, Mikhail Shekhirev, Christopher E. Shuck, Jonathan Salvage, Armin VahidMohammadi, Marcus K. Dymond, Joseph Lacey, Susan Sandeman, Yury Gogotsi, Bhavik Anil Patel. Pristine Ti3C2Tx MXene Enables Flexible and Transparent Electrochemical Sensors. ACS Applied Materials & Interfaces 2024, 16 (5) , 6569-6578. https://doi.org/10.1021/acsami.3c14842
    13. Rabia Ahmad, Naseem Iqbal, Tayyaba Noor, Srinivasa Kartik Nemani, Likun Zhu, Babak Anasori. Metal–Organic Framework/Ti3C2Tx MXene-Derived Functional Nanostructures for High-Performance Supercapacitors. ACS Applied Nano Materials 2024, 7 (1) , 253-266. https://doi.org/10.1021/acsanm.3c04389
    14. Alexey Lipatov, Saman Bagheri, Alexander Sinitskii. Metallic Conductivity of Ti3C2Tx MXene Confirmed by Temperature-Dependent Electrical Measurements. ACS Materials Letters 2024, 6 (1) , 298-307. https://doi.org/10.1021/acsmaterialslett.3c01234
    15. Piyush Sharma, Shagun Kainth, Om Prakash Pandey, Roop Mahajan. Customized Synthesis of 2D Ti3C2 MXene for Improved Overall Water Splitting. ACS Applied Nano Materials 2023, 6 (23) , 21788-21802. https://doi.org/10.1021/acsanm.3c03986
    16. Shuxian Wang, Wenrou Tian, Jun Han, Najun Li, Dongyun Chen, Qingfeng Xu, Hua Li, Jianmei Lu. Interfacial Self-Assembly-Induced Lattice Distortion in Ti3C2 for Enhanced Piezocatalytic Activity. ACS Applied Materials & Interfaces 2023, 15 (47) , 55129-55138. https://doi.org/10.1021/acsami.3c13207
    17. Anu Mini Aravind, Merin Tomy, Anupama Kuttapan, Ann Mary Kakkassery Aippunny, Xavier Thankappan Suryabai. Progress of 2D MXene as an Electrode Architecture for Advanced Supercapacitors: A Comprehensive Review. ACS Omega 2023, 8 (47) , 44375-44394. https://doi.org/10.1021/acsomega.3c02002
    18. Paraskevi Flouda, Alex Inman, Mariana Gumenna, Daria Bukharina, Valery V. Shevchenko, Yury Gogotsi, Vladimir V. Tsukruk. Ultrathin Films of MXene Nanosheets Decorated by Ionic Branched Nanoparticles with Enhanced Energy Storage Stability. ACS Applied Materials & Interfaces 2023, 15 (46) , 53776-53785. https://doi.org/10.1021/acsami.3c09064
    19. Yury Gogotsi. The Future of MXenes. Chemistry of Materials 2023, 35 (21) , 8767-8770. https://doi.org/10.1021/acs.chemmater.3c02491
    20. Guoyu Yang, Xuming Yao, Yujun Li, Yi Hu, Xing Chen, Jialiang Li, Junzhen Chen, Jianjun Jiang. Ti3C2Tx MXene Nanosheet-Based Hybrid Films for Enhanced Wave Absorption-Dominated Electromagnetic Interference Shielding. ACS Applied Nano Materials 2023, 6 (20) , 19378-19391. https://doi.org/10.1021/acsanm.3c03932
    21. Teng Zhang, Christopher E. Shuck, Kateryna Shevchuk, Mark Anayee, Yury Gogotsi. Synthesis of Three Families of Titanium Carbonitride MXenes. Journal of the American Chemical Society 2023, 145 (41) , 22374-22383. https://doi.org/10.1021/jacs.3c04712
    22. Kateryna Shevchuk, Asia Sarycheva, Christopher E. Shuck, Yury Gogotsi. Raman Spectroscopy Characterization of 2D Carbide and Carbonitride MXenes. Chemistry of Materials 2023, 35 (19) , 8239-8247. https://doi.org/10.1021/acs.chemmater.3c01742
    23. Nilmani Kumar Harpreet Singh Madhu Khatri Neha Bhardwaj . 2D-Transition Metal Carbides and Nitrides: Materials for the Next Generation. , 1-25. https://doi.org/10.1021/bk-2023-1442.ch001
    24. Nasima Khatun . Progresses and Challenges in 2D MXenes: Synthesis, Intercalation/Delamination, and Storage. , 101-141. https://doi.org/10.1021/bk-2023-1442.ch005
    25. Hushan Chand Kamlesh Kumari Venkata Krishnan . MXenes‐Based Materials for Contaminant Removal from Wastewaters. , 193-218. https://doi.org/10.1021/bk-2023-1443.ch010
    26. Abhishek Kagalkar Swapnil Dharaskar . 2D-Transition Metal Carbides and Nitrides: Prospects and Challenges. , 1-42. https://doi.org/10.1021/bk-2023-1445.ch001
    27. Marley Downes, Christopher E. Shuck, Robert W. Lord, Mark Anayee, Mikhail Shekhirev, Ruocun John Wang, Tetiana Hryhorchuk, Martin Dahlqvist, Johanna Rosen, Yury Gogotsi. M5X4: A Family of MXenes. ACS Nano 2023, 17 (17) , 17158-17168. https://doi.org/10.1021/acsnano.3c04967
    28. Şirin Massoumılari, Sadiye Velioǧlu. Can MXene be the Effective Nanomaterial Family for the Membrane and Adsorption Technologies to Reach a Sustainable Green World?. ACS Omega 2023, 8 (33) , 29859-29909. https://doi.org/10.1021/acsomega.3c01182
    29. Xueqiang Tan, Shuting Wang, Zhongyuan You, Jimin Zheng, Ying Liu. High Performance Porous Triboelectric Nanogenerator Based on Silk Fibroin@MXene Composite Aerogel and PDMS Sponge. ACS Materials Letters 2023, 5 (7) , 1929-1937. https://doi.org/10.1021/acsmaterialslett.3c00273
    30. Dipankar Saha, Johnson Dalmieda, Vinay Patel. Surface-Modified MXenes: Simulation to Potential Applications. ACS Applied Electronic Materials 2023, 5 (6) , 2933-2955. https://doi.org/10.1021/acsaelm.3c00076
    31. Ximin Cui, Qifeng Ruan, Xiaolu Zhuo, Xinyue Xia, Jingtian Hu, Runfang Fu, Yang Li, Jianfang Wang, Hongxing Xu. Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. Chemical Reviews 2023, 123 (11) , 6891-6952. https://doi.org/10.1021/acs.chemrev.3c00159
    32. Beatriz Mendoza-Sánchez, Enrique Samperio-Niembro, Oleksandr Dolotko, Thomas Bergfeldt, Christian Kübel, Michael Knapp, Christopher E. Shuck. Systematic Study of the Multiple Variables Involved in V2AlC Acid-Based Etching Processes, a Key Step in MXene Synthesis. ACS Applied Materials & Interfaces 2023, 15 (23) , 28332-28348. https://doi.org/10.1021/acsami.3c01671
    33. Yu-Chuan Lin, Riccardo Torsi, Rehan Younas, Christopher L. Hinkle, Albert F. Rigosi, Heather M. Hill, Kunyan Zhang, Shengxi Huang, Christopher E. Shuck, Chen Chen, Yu-Hsiu Lin, Daniel Maldonado-Lopez, Jose L. Mendoza-Cortes, John Ferrier, Swastik Kar, Nadire Nayir, Siavash Rajabpour, Adri C. T. van Duin, Xiwen Liu, Deep Jariwala, Jie Jiang, Jian Shi, Wouter Mortelmans, Rafael Jaramillo, Joao Marcelo J. Lopes, Roman Engel-Herbert, Anthony Trofe, Tetyana Ignatova, Seng Huat Lee, Zhiqiang Mao, Leticia Damian, Yuanxi Wang, Megan A. Steves, Kenneth L. Knappenberger, Jr., Zhengtianye Wang, Stephanie Law, George Bepete, Da Zhou, Jiang-Xiazi Lin, Mathias S. Scheurer, Jia Li, Pengjie Wang, Guo Yu, Sanfeng Wu, Deji Akinwande, Joan M. Redwing, Mauricio Terrones, Joshua A. Robinson. Recent Advances in 2D Material Theory, Synthesis, Properties, and Applications. ACS Nano 2023, 17 (11) , 9694-9747. https://doi.org/10.1021/acsnano.2c12759
    34. So Yeong Jeong, Yongmin Jeon, Eunji Kim, Gibok Lee, Yeon-Wha Oh, Chi Won Ahn, Eun Hae Cho, Yonghee Lee, Kyung Cheol Choi. Highly Air-Stable, Flexible, and Water-Resistive 2D Titanium Carbide MXene-Based RGB Organic Light-Emitting Diode Displays for Transparent Free-Form Electronics. ACS Nano 2023, 17 (11) , 10353-10364. https://doi.org/10.1021/acsnano.3c00781
    35. Zetong Zhuang, Hongwu Chen, Chun Li. Robust Pristine MXene Films with Superhigh Electromagnetic Interference Shielding Effectiveness via Spatially Confined Evaporation. ACS Nano 2023, 17 (11) , 10628-10636. https://doi.org/10.1021/acsnano.3c01697
    36. Kallayi Nabeela, Rakesh Deka, Zahir Abbas, Praveen Kumar, Mohit Saraf, Shaikh M. Mobin. Covalent Organic Frameworks (COFs)/MXenes Heterostructures for Electrochemical Energy Storage. Crystal Growth & Design 2023, 23 (5) , 3057-3078. https://doi.org/10.1021/acs.cgd.3c00206
    37. Matteo Paolieri, Zihao Chen, Firoz Babu Kadumudi, Morteza Alehosseini, Melanie Zorrón, Alireza Dolatshahi-Pirouz, Hajar Maleki. Biomimetic Flexible Electronic Materials from Silk Fibroin-MXene Composites Developed via Mussel-Inspired Chemistry as Wearable Pressure Sensors. ACS Applied Nano Materials 2023, 6 (7) , 5211-5223. https://doi.org/10.1021/acsanm.2c05140
    38. Swapnil B. Ambade, Laura A. Kesner, Mohammed K. Abdel-Rahman, D. Howard Fairbrother, Zeev Rosenzweig. Interactions of Ti3C2 MXene with Aqueous Zwitterionic Biological Buffers: Implications for Applications in Biological Systems. ACS Applied Nano Materials 2023, 6 (6) , 4898-4909. https://doi.org/10.1021/acsanm.3c00666
    39. Riya Nag, Pramod Bhakuni, Sudipta Roy Barman, Abhijit Bera. MXene as a Superior Charge-Transport Layer in an MXene–BiFeO3–ZnO Nanocomposite for Photocatalytic Disintegration of Antacids. ACS Applied Engineering Materials 2023, 1 (3) , 1034-1047. https://doi.org/10.1021/acsaenm.3c00013
    40. Mailis Lounasvuori, Tyler S. Mathis, Yury Gogotsi, Tristan Petit. Hydrogen-Bond Restructuring of Water-in-Salt Electrolyte Confined in Ti3C2Tx MXene Monitored by Operando Infrared Spectroscopy. The Journal of Physical Chemistry Letters 2023, 14 (6) , 1578-1584. https://doi.org/10.1021/acs.jpclett.2c03769
    41. Su Bin Choi, Jung-Min Oh, Jagan Singh Meena, Hanjung Kwon, Seung-Boo Jung, Jong-Woong Kim. Role of Oxygen in the Ti3AlC2 MAX Phase in the Oxide Formation and Conductivity of Ti3C2-Based MXene Nanosheets. ACS Applied Materials & Interfaces 2023, 15 (6) , 8393-8405. https://doi.org/10.1021/acsami.2c21658
    42. Salim Hassan Siddiki, Kartikey Verma, Bhaswati Chakraborty, Sushrut Das, Vijay Kumar Thakur, Ganesh Chandra Nayak. Defect Dipole-Induced HfO2-Coated Ti3C2Tx MXene/Nickel Ferrite Nanocomposites for Enhanced Microwave Absorption. ACS Applied Nano Materials 2023, 6 (3) , 1839-1848. https://doi.org/10.1021/acsanm.2c04793
    43. Binxia Chen, Zhixing Lu, Shiyi Feng, Zehang Zhou, Canhui Lu. Redox-Active Nitroxide Radicals Grafted onto MXene: Boosting Energy Storage via Improved Charge Transfer and Surface Capacitance. ACS Energy Letters 2023, 8 (2) , 1096-1106. https://doi.org/10.1021/acsenergylett.2c02595
    44. Vivek Adepu, Manav Tathacharya, Raghuram CS, Venkat Mattela, Parikshit Sahatiya. TeNWs/Ti3C2Tx Nanohybrid-Based Flexible Pressure Sensors for Personal Safety Applications Using Morse Code. ACS Applied Nano Materials 2022, 5 (12) , 18209-18219. https://doi.org/10.1021/acsanm.2c04088
    45. Bo Liu, Bin Ran, Chaozhan Chen, Liuyong Shi, Jing Jin, Yonggang Zhu. High-Throughput Microfluidic Production of Bimetallic Nanoparticles on MXene Nanosheets and Application in Hydrogen Peroxide Detection. ACS Applied Materials & Interfaces 2022, 14 (50) , 56298-56309. https://doi.org/10.1021/acsami.2c16316
    46. Mikhail Shekhirev, Yusuke Ogawa, Christopher E. Shuck, Mark Anayee, Takeshi Torita, Yury Gogotsi. Delamination of Ti3C2Tx Nanosheets with NaCl and KCl for Improved Environmental Stability of MXene Films. ACS Applied Nano Materials 2022, 5 (11) , 16027-16032. https://doi.org/10.1021/acsanm.2c03701
    47. Phuong Huyen Nguyen, Duc Hieu Nguyen, Donghyoung Kim, Mun Kyoung Kim, Jiseong Jang, Woo Hyeong Sim, Hyung Mo Jeong, Gon Namkoong, Mun Seok Jeong. Regenerating MXene by a Facile Chemical Treatment Method. ACS Applied Materials & Interfaces 2022, 14 (45) , 51487-51495. https://doi.org/10.1021/acsami.2c13993
    48. Mark Anayee, Christopher E. Shuck, Mikhail Shekhirev, Adam Goad, Ruocun Wang, Yury Gogotsi. Kinetics of Ti3AlC2 Etching for Ti3C2Tx MXene Synthesis. Chemistry of Materials 2022, 34 (21) , 9589-9600. https://doi.org/10.1021/acs.chemmater.2c02194
    49. Thomas B. Sobyra, Kyle Matthews, Tyler S. Mathis, Yury Gogotsi, Paul Fenter. Operando X-ray Reflectivity Reveals the Dynamical Response of Ti3C2 MXene Film Structure during Electrochemical Cycling. ACS Energy Letters 2022, 7 (10) , 3612-3617. https://doi.org/10.1021/acsenergylett.2c01577
    50. Ihsan Amin, Hidde van den Brekel, Kartik Nemani, Erdni Batyrev, Arnoud de Vooys, Hans van der Weijde, Babak Anasori, N. Raveendran Shiju. Ti3C2Tx MXene Polymer Composites for Anticorrosion: An Overview and Perspective. ACS Applied Materials & Interfaces 2022, 14 (38) , 43749-43758. https://doi.org/10.1021/acsami.2c11953
    51. Mikhail Shekhirev, Jeffrey Busa, Christopher E. Shuck, Angel Torres, Saman Bagheri, Alexander Sinitskii, Yury Gogotsi. Ultralarge Flakes of Ti3C2Tx MXene via Soft Delamination. ACS Nano 2022, 16 (9) , 13695-13703. https://doi.org/10.1021/acsnano.2c04506
    52. Lan Ding, Senwei Zeng, Weiye Zhang, Chao Guo, Xinyi Chen, Bo Peng, Zhongpeng Lv, Hongjun Zhou, Quan Xu. Nitrogen-Doped Ti3C2 MXene Quantum Dots/1D CdS Nanorod Heterostructure Photocatalyst of Highly Efficient Hydrogen Evolution. ACS Applied Energy Materials 2022, 5 (9) , 11540-11552. https://doi.org/10.1021/acsaem.2c02001
    53. Shuohan Huang, Vadym N. Mochalin. Combination of High pH and an Antioxidant Improves Chemical Stability of Two-Dimensional Transition-Metal Carbides and Carbonitrides (MXenes) in Aqueous Colloidal Solutions. Inorganic Chemistry 2022, 61 (26) , 9877-9887. https://doi.org/10.1021/acs.inorgchem.2c00537
    54. Tao Wu, Paul R. C. Kent, Yury Gogotsi, De-en Jiang. How Water Attacks MXene. Chemistry of Materials 2022, 34 (11) , 4975-4982. https://doi.org/10.1021/acs.chemmater.2c00224
    55. Asia Sarycheva, Maruda Shanmugasundaram, Andrey Krayev, Yury Gogotsi. Tip-Enhanced Raman Scattering Imaging of Single- to Few-Layer Ti3C2Tx MXene. ACS Nano 2022, 16 (4) , 6858-6865. https://doi.org/10.1021/acsnano.2c01868
    56. Soorya Srinivasan, M. Jothibas, Noel Nesakumar. Enhancing Electric Double Layer Capacitance of Two-Dimensional Titanium Carbide (MXene) with Facile Synthesis and Accentuated Properties. Energy & Fuels 2022, 36 (5) , 2811-2820. https://doi.org/10.1021/acs.energyfuels.1c04092
    57. Mufeng Liu, Yuling Zhuo, Asia Sarycheva, Yury Gogotsi, Mark A. Bissett, Robert J. Young, Ian A. Kinloch. Deformation of and Interfacial Stress Transfer in Ti3C2 MXene–Polymer Composites. ACS Applied Materials & Interfaces 2022, 14 (8) , 10681-10690. https://doi.org/10.1021/acsami.1c21611
    58. Kyle Matthews, Teng Zhang, Christopher E. Shuck, Armin VahidMohammadi, Yury Gogotsi. Guidelines for Synthesis and Processing of Chemically Stable Two-Dimensional V2CTx MXene. Chemistry of Materials 2022, 34 (2) , 499-509. https://doi.org/10.1021/acs.chemmater.1c03508
    59. Haneesh Saini, Nikitha Srinivasan, Veronika Šedajová, Mandira Majumder, Deepak P. Dubal, Michal Otyepka, Radek Zbořil, Narendra Kurra, Roland A. Fischer, Kolleboyina Jayaramulu. Emerging MXene@Metal–Organic Framework Hybrids: Design Strategies toward Versatile Applications. ACS Nano 2021, 15 (12) , 18742-18776. https://doi.org/10.1021/acsnano.1c06402
    60. Jacob T. Lee, Brian C. Wyatt, Gregory A. Davis, Jr., Adrianna N. Masterson, Amber L. Pagan, Archit Shah, Babak Anasori, Rajesh Sardar. Covalent Surface Modification of Ti3C2Tx MXene with Chemically Active Polymeric Ligands Producing Highly Conductive and Ordered Microstructure Films. ACS Nano 2021, 15 (12) , 19600-19612. https://doi.org/10.1021/acsnano.1c06670
    61. Hongwu Chen, Hongyun Ma, Chun Li. Host–Guest Intercalation Chemistry in MXenes and Its Implications for Practical Applications. ACS Nano 2021, 15 (10) , 15502-15537. https://doi.org/10.1021/acsnano.1c04423
    62. Peida Li, Nan Su, Zhiyu Wang, Jieshan Qiu. A Ti3C2Tx MXene-Based Energy-Harvesting Soft Actuator with Self-Powered Humidity Sensing and Real-Time Motion Tracking Capability. ACS Nano 2021, 15 (10) , 16811-16818. https://doi.org/10.1021/acsnano.1c07186
    63. Krutarth Kamath, Vivek ADEPU, Venkat Mattela, Parikshit Sahatiya. Development of Ti3C2Tx/MoS2xSe2(1–x) Nanohybrid Multilayer Structures for Piezoresistive Mechanical Transduction. ACS Applied Electronic Materials 2021, 3 (9) , 4091-4104. https://doi.org/10.1021/acsaelm.1c00583
    64. Yingqiao Wang, Raghav Garg, Jane E. Hartung, Adam Goad, Dipna A. Patel, Flavia Vitale, Michael S. Gold, Yury Gogotsi, Tzahi Cohen-Karni. Ti3C2Tx MXene Flakes for Optical Control of Neuronal Electrical Activity. ACS Nano 2021, 15 (9) , 14662-14671. https://doi.org/10.1021/acsnano.1c04431
    65. Yongling An, Yuan Tian, Chengkai Liu, Shenglin Xiong, Jinkui Feng, Yitai Qian. Rational Design of Sulfur-Doped Three-Dimensional Ti3C2Tx MXene/ZnS Heterostructure as Multifunctional Protective Layer for Dendrite-Free Zinc-Ion Batteries. ACS Nano 2021, 15 (9) , 15259-15273. https://doi.org/10.1021/acsnano.1c05934
    66. Xuehang Wang, Tyler S. Mathis, Yangyunli Sun, Wan-Yu Tsai, Netanel Shpigel, Hui Shao, Danzhen Zhang, Kanit Hantanasirisakul, Fyodor Malchik, Nina Balke, De-en Jiang, Patrice Simon, Yury Gogotsi. Titanium Carbide MXene Shows an Electrochemical Anomaly in Water-in-Salt Electrolytes. ACS Nano 2021, 15 (9) , 15274-15284. https://doi.org/10.1021/acsnano.1c06027
    67. Christopher E. Shuck, Kimberly Ventura-Martinez, Adam Goad, Simge Uzun, Mikhail Shekhirev, Yury Gogotsi. Safe Synthesis of MAX and MXene: Guidelines to Reduce Risk During Synthesis. ACS Chemical Health & Safety 2021, 28 (5) , 326-338. https://doi.org/10.1021/acs.chas.1c00051
    68. Thomas B. Sobyra, Tyler S. Mathis, Yury Gogotsi, Paul Fenter. Probing the In Situ Pseudocapacitive Charge Storage in Ti3C2 MXene Thin Films with X-ray Reflectivity. ACS Applied Materials & Interfaces 2021, 13 (36) , 43597-43605. https://doi.org/10.1021/acsami.1c10959
    69. Srinivasa Kartik Nemani, Bowen Zhang, Brian C. Wyatt, Zachary D. Hood, Sukriti Manna, Rasoul Khaledialidusti, Weichen Hong, Michael G. Sternberg, Subramanian K. R. S. Sankaranarayanan, Babak Anasori. High-Entropy 2D Carbide MXenes: TiVNbMoC3 and TiVCrMoC3. ACS Nano 2021, 15 (8) , 12815-12825. https://doi.org/10.1021/acsnano.1c02775
    70. Mohsen Bandar Abadi, Rene Weissing, Michael Wilhelm, Yan Demidov, Jaqueline Auer, Samaneh Ghazanfari, Babak Anasori, Sanjay Mathur, Hajar Maleki. Nacre-Mimetic, Mechanically Flexible, and Electrically Conductive Silk Fibroin-MXene Composite Foams as Piezoresistive Pressure Sensors. ACS Applied Materials & Interfaces 2021, 13 (29) , 34996-35007. https://doi.org/10.1021/acsami.1c09675
    71. Yury Gogotsi, (Associate Editor)Qing Huang. MXenes: Two-Dimensional Building Blocks for Future Materials and Devices. ACS Nano 2021, 15 (4) , 5775-5780. https://doi.org/10.1021/acsnano.1c03161
    72. Pengfei Huang, Wei-Qiang Han. Recent Advances and Perspectives of Lewis Acidic Etching Route: An Emerging Preparation Strategy for MXenes. Nano-Micro Letters 2023, 15 (1) https://doi.org/10.1007/s40820-023-01039-z
    73. Razium A. Soomro, Peng Zhang, Baomin Fan, Yi Wei, Bin Xu. Progression in the Oxidation Stability of MXenes. Nano-Micro Letters 2023, 15 (1) https://doi.org/10.1007/s40820-023-01069-7
    74. Haitao Zhang, Hanyu He, Yongxiang Huang, Shi Pu, Yanting Xie, Junfeng Huang, Xinling Jiang, Yongbin Wang, Shenglong Wang, Hongzhi Peng, Yuanxiao Qu, Weiqing Yang. Simultaneously addressing self-stacking and oxidative degradation issues of Ti3C2Tx MXene through biothermochemistry induced 3D crosslinking. Applied Surface Science 2023, 639 , 158183. https://doi.org/10.1016/j.apsusc.2023.158183
    75. Renfei Cheng, Junchao Wang, Tao Hu, Yiming Zhao, Yan Liang, Xiaohui Wang, Yanchun Zhou. Stabilizing MXene suspension with polyhydric alcohols. Journal of Materials Science & Technology 2023, 165 , 219-224. https://doi.org/10.1016/j.jmst.2023.04.040
    76. Mailis Lounasvuori, Yangyunli Sun, Tyler S. Mathis, Ljiljana Puskar, Ulrich Schade, De-En Jiang, Yury Gogotsi, Tristan Petit. Vibrational signature of hydrated protons confined in MXene interlayers. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-36842-0
    77. Taeheon Kim, Jae‐Won Lim. Synthesis of low‐oxygen Ti 3 AlC 2 powders by hydrogenation–dehydrogenation and deoxidation from titanium scraps. Journal of the American Ceramic Society 2023, 106 (12) , 7311-7321. https://doi.org/10.1111/jace.19321
    78. Fatma Nur Tuzluca Yesilbag, Yasar Ozkan Yesilbag, Ahmad Huseyin, Ahmed Jalal Salih Salih, Mehmet Ertugrul. Rational design of MXene/Boron Carbon Nitride nanotube composite electrode for supercapacitors with improved electrochemical properties. Journal of Energy Storage 2023, 72 , 108446. https://doi.org/10.1016/j.est.2023.108446
    79. Muhammad Bilal Ahmed, Faaz Ahmed Butt, Asad A. Naqvi, Samra Asad, Zahoor ul Hussain Awan, Zain Shahid, Tayyab Azad Khan. Design and Development of Ti3C2Tx MXenes as Cathode Materials for Energy Storage Devices. Journal of Testing and Evaluation 2023, 51 (6) , 20230005. https://doi.org/10.1520/JTE20230005
    80. Anita Wojciechowska, Michał Jakubczak, Dorota Moszczyńska, Anna Wójcik, Kaitlyn Prenger, Michael Naguib, Agnieszka Maria Jastrzębska. Engineering the surface of Nbn+1CnT MXenes to versatile bio-activity towards microorganisms. Biomaterials Advances 2023, 153 , 213581. https://doi.org/10.1016/j.bioadv.2023.213581
    81. Chenjing Shi, Zijie Liu, Zhen Tian, Dan Li, Yanjun Chen, Li Guo, Yanzhong Wang. Fabrication of 3D MXene@graphene hydrogel with high ion accessibility via Al-induced self-assembly and reduction for high-performance supercapacitors. Electrochimica Acta 2023, 464 , 142892. https://doi.org/10.1016/j.electacta.2023.142892
    82. Sneha Shankar, Brendan B Murphy, Nicolette Driscoll, Mikhail Shekhirev, Geetha Valurouthu, Kateryna Shevchuk, Mark Anayee, Francesca Cimino, Yury Gogotsi, Flavia Vitale. Effect of the deposition process on the stability of Ti 3 C 2 T x MXene films for bioelectronics. 2D Materials 2023, 10 (4) , 044001. https://doi.org/10.1088/2053-1583/ace26c
    83. Danilo de Camargo Branco, Gary J Cheng. A strategy for 2D MXenes as thermal management materials by laser shock nanoshaping. Journal of Physics: Materials 2023, 6 (4) , 045005. https://doi.org/10.1088/2515-7639/acef96
    84. Su Bin Choi, Hooseok Lee, Jinseok Lee, Jong-Woong Kim. Static electricity-based motion artifact-free electrocardiography with novel Ti 3 C 2 T x MXene/Ag nanowire/polymer hybrid dry electrodes. Journal of Materials Chemistry B 2023, 11 (36) , 8754-8764. https://doi.org/10.1039/D3TB01301D
    85. Lan Ding, Siyang Wang, Yaoyao Tang, Xinyi Chen, Hongjun Zhou. Exposing high-activity (111) facet CoO octahedral loading MXene quantum dots for efficient and stable photocatalytic H 2 evolution. Dalton Transactions 2023, 52 (35) , 12347-12359. https://doi.org/10.1039/D3DT02090H
    86. Gabrijela Ljubek, Magdalena Kralj, Marijana Kraljić Roković. Fluorine-free mechanochemical synthesis of MXene. Materials Science and Technology 2023, 39 (13) , 1645-1649. https://doi.org/10.1080/02670836.2023.2178173
    87. Xianwu Huang, Jiahui Huang, Jing Yang, Dong Yang, Tongtao Li, Angang Dong. High‐Yield Exfoliation of Large MXene with Flake Sizes over 10 µm Using Edge‐Anchored Carbon Nanotubes. Advanced Functional Materials 2023, 33 (36) https://doi.org/10.1002/adfm.202303003
    88. Rui Ma, Lingyun Cao, Jingting Zhuo, Jintao Lu, Jiaxiang Chen, Jue Huang, Guowei Yang, Fang Yi. Designed Redox‐Electrolyte Strategy Boosted with Electrode Engineering for High‐Performance Ti 3 C 2 T x MXene‐Based Supercapacitors. Advanced Energy Materials 2023, 13 (34) https://doi.org/10.1002/aenm.202301219
    89. James Wait, Graham Josephson, Brian C. Wyatt, Babak Anasori, Arzu Çolak. Environmentally stable nanoscale superlubricity of multi-layered Ti3C2T MXene. Carbon 2023, 213 , 118284. https://doi.org/10.1016/j.carbon.2023.118284
    90. Junli Nie, Bingqiang Niu, Yijin Wang, Zhang He, Xingmao Zhang, HuanHuan Zheng, Yimin Lei, Peng Zhong, Xiaohua Ma. Multi-functional MXene quantum dots enhance the quality of perovskite polycrystalline films and charge transport for solar cells. Journal of Colloid and Interface Science 2023, 646 , 517-528. https://doi.org/10.1016/j.jcis.2023.05.058
    91. Yizhou Wang, Tianchao Guo, Zhengnan Tian, Lin Shi, Sharat C. Barman, Husam N. Alshareef. MXenes for soft robotics. Matter 2023, 6 (9) , 2807-2833. https://doi.org/10.1016/j.matt.2023.07.013
    92. Kan Fang, Yi-Lin Liu, Peng Chen, Heng Zhang, Daliang Fang, Hua-Yu Zhang, Zhan Wei, Ling Ding, Gui-Gen Wang, Hui Ying Yang. Electrochemical activation strategy enabled ammonium vanadate cathodes for all-climate zinc-ion batteries. Nano Energy 2023, 114 , 108671. https://doi.org/10.1016/j.nanoen.2023.108671
    93. Christopher E. Shuck. MXenes are materials, not chemicals: Synthesis factors that influence MXene properties. MRS Communications 2023, 120 https://doi.org/10.1557/s43579-023-00442-2
    94. Renjie Ding, Qian Yan, Fuhua Xue, Pengyang Li, Jinhua Xiong, Xu Zhao, Zonglin Liu, Liangliang Xu, Zhong Chen, Haowen Zheng, Zhigong Tang, Qingyu Peng, Xiaodong He. Dual Protective Porous Ti 3 C 2 T x MXene/Polyimide Composite Film for Thermal Insulation and Electromagnetic Interference Shielding. Small 2023, 372 https://doi.org/10.1002/smll.202304946
    95. Aathilingam Vijayaprabhakaran, Murugavel Kathiresan. Fluorine-free synthesized tantalum carbide (Ta 2 C Mxene) as an efficient electrocatalyst for water reduction and nitro compound reduction. Materials Advances 2023, 4 (16) , 3593-3602. https://doi.org/10.1039/D3MA00223C
    96. Lengwan Li, Weiqian Tian, Armin VahidMohammadi, Jowan Rostami, Bin Chen, Kyle Matthews, Farsa Ram, Torbjörn Pettersson, Lars Wågberg, Tobias Benselfelt, Yury Gogotsi, Lars A. Berglund, Mahiar Max Hamedi. Ultrastrong Ionotronic Films Showing Electrochemical Osmotic Actuation. Advanced Materials 2023, https://doi.org/10.1002/adma.202301163
    97. Khai J. Wong, Joel J. Foo, Tan J. Siang, Wee‐Jun Ong. Transition metal carbide‐based photocatalysts for artificial photosynthesis. SmartMat 2023, 37 https://doi.org/10.1002/smm2.1238
    98. Chenkun Zhou, Di Wang, Francisco Lagunas, Benjamin Atterberry, Ming Lei, Huicheng Hu, Zirui Zhou, Alexander S. Filatov, De-en Jiang, Aaron J. Rossini, Robert F. Klie, Dmitri V. Talapin. Hybrid organic–inorganic two-dimensional metal carbide MXenes with amido- and imido-terminated surfaces. Nature Chemistry 2023, 2 https://doi.org/10.1038/s41557-023-01288-w
    99. Yiqian Du, Zhikai Yan, Wenbin You, Qiaoqiao Men, Guanyu Chen, Xiaowei Lv, Yuyang Wu, Kaicheng Luo, Biao Zhao, Jincang Zhang, Renchao Che. Balancing MXene Surface Termination and Interlayer Spacing Enables Superior Microwave Absorption. Advanced Functional Materials 2023, 33 (34) https://doi.org/10.1002/adfm.202301449
    100. Yuanjian Li, Xiang Feng, Wei Ying Lieu, Lin Fu, Chang Zhang, Tanmay Ghosh, Anupma Thakur, Brian C. Wyatt, Babak Anasori, Wei Liu, Qianfan Zhang, Jun Lu, Zhi Wei Seh. MXene‐Based Anode‐Free Magnesium Metal Battery. Advanced Functional Materials 2023, 33 (33) https://doi.org/10.1002/adfm.202303067
    Load more citations