ACS Publications. Most Trusted. Most Cited. Most Read
Modulation of the Electronic Properties of MXene (Ti3C2Tx) via Surface-Covalent Functionalization with Diazonium
My Activity
    Article

    Modulation of the Electronic Properties of MXene (Ti3C2Tx) via Surface-Covalent Functionalization with Diazonium
    Click to copy article linkArticle link copied!

    • Hongyue Jing
      Hongyue Jing
      SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea
      More by Hongyue Jing
    • Hyeonwoo Yeo
      Hyeonwoo Yeo
      School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST),291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
      More by Hyeonwoo Yeo
    • Benzheng Lyu
      Benzheng Lyu
      SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea
      More by Benzheng Lyu
    • Junga Ryou
      Junga Ryou
      School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST),291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
      More by Junga Ryou
    • Seunghyuk Choi
      Seunghyuk Choi
      SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea
    • Jin-Hong Park
      Jin-Hong Park
      SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea
    • Byoung Hun Lee
      Byoung Hun Lee
      Department of Electrical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
    • Yong-Hoon Kim
      Yong-Hoon Kim
      School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST),291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
    • Sungjoo Lee*
      Sungjoo Lee
      SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea
      Department of Nano Engineering, Sungkyunkwan University, Suwon 440-746, Korea
      *Email: [email protected]
      More by Sungjoo Lee
    Other Access OptionsSupporting Information (1)

    ACS Nano

    Cite this: ACS Nano 2021, 15, 1, 1388–1396
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.0c08664
    Published January 5, 2021
    Copyright © 2021 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The physical and chemical properties of MXenes are strongly dependent on surface terminations; thus, the tailoring of surface functional groups in two-dimensional transition-metal carbides (MXenes) may extend the applicability of these compelling materials to a wider set of fields. In this work, we demonstrate the chemical modification of Ti3C2Tx MXene via diazonium covalent chemistry and the subsequent effects on the electrical properties of MXene. The 4-nitrophenyl group was grafted onto the surface of MXene through a solid–liquid reaction, which was confirmed by various characterization methods, including X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, electron energy loss spectroscopy, atomic force microscopy, and transmission electron microscopy. The degree of modification of MXene is expediently tunable by adjusting the concentration of the diazonium salt solution. The work function of functionalized MXene is modifiable by regulating the quantity of grafted diazonium surface groups, with an adjustable range of around 0.6 eV. Further, in this study, the electrical properties of modified MXene are investigated through the fabrication of field-effect-transistor devices that utilize modified MXene as a channel material. It was demonstrated that with increasing concentration of 4-nitrophenyl groups grafted onto the surface the on/off current ratio of the modified MXene was improved to as much as 3.56, with a corresponding decrease in conductivity and mobility. The proposed approach of controlled modification of surface groups in Ti3C2Tx may imbue Ti3C2Tx with favorable electronic behaviors and demonstrate prospects for use in electronic field applications.

    Copyright © 2021 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsnano.0c08664.

    • AFM images, thickness, and relevant roughness of pristine Ti3C2Tx and 0.01 mM f- Ti3C2Tx; Ti 2p XPS spectra of pristine Ti3C2Tx and 0.01 and 10 mM f-Ti3C2Tx; EDS investigations of pristine and f-Ti3C2Tx; XRD patterns of pristine Ti3C2Tx and 1 mM f-Ti3C2Tx; SEM images of pristine Ti3C2Tx and 1 mM f- Ti3C2Tx; TEM images of pristine Ti3C2Tx and 1 mM f- Ti3C2Tx; schematic diagram of the Kelvin probe force microscope; plot of ln(R) as a function of 1/T of 0.01 and 10 mM f-Ti3C2Tx; Hall measurement of pristine Ti3C2Tx; Hall mobility of 0.01 and 10 mM f-Ti3C2Tx; top and side views of ball-and-stick models for Ti3C2O2 and Ti3C2(OH)2 without an 4-NB molecule and with one, two, and three (NB3) 4-NB molecules absorbed on the surface (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 141 publications.

    1. See Wee Koh, Lavie Rekhi, Arramel, Muhammad Danang Birowosuto, Quang Thang Trinh, Junyu Ge, Wei Yu, Andrew T. S. Wee, Tej S. Choksi, Hong Li. Tuning the Work Function of MXene via Surface Functionalization. ACS Applied Materials & Interfaces 2024, 16 (49) , 66826-66836. https://doi.org/10.1021/acsami.3c11857
    2. Tufail Hassan, Jihyun Kim, Hung Ngo Manh, Aamir Iqbal, Zhenguo Gao, Hyerim Kim, Noushad Hussain, Shabbir Madad Naqvi, Shakir Zaman, Mugilan Narayanasamy, Sang Uck Lee, Joohoon Kang, Chong Min Koo. Semiconducting Properties of Delaminated Titanium Nitride Ti4N3Tx MXene with Gate-Tunable Electrical Conductivity. ACS Nano 2024, 18 (34) , 23477-23488. https://doi.org/10.1021/acsnano.4c06966
    3. Zhaorui Zhang, Jinkui Chu, Huashuai Hu, Haoming Sun, Xuefei Zhao, Haiying Du, Minghui Yang. Enhanced Room-Temperature NO2 Sensing through Deep Functional Group Hybridization in Nitrogen-Doped Monolayer Ti3C2Tx. ACS Sensors 2024, 9 (8) , 4134-4142. https://doi.org/10.1021/acssensors.4c01081
    4. Xin Zhao, Wan-Peng Li, Yanhui Cao, Arsenii Portniagin, Bing Tang, Shixun Wang, Qi Liu, Denis Y. W. Yu, Xiaoyan Zhong, Xuerong Zheng, Andrey L. Rogach. Dual-Atom Co/Ni Electrocatalyst Anchored at the Surface-Modified Ti3C2Tx MXene Enables Efficient Hydrogen and Oxygen Evolution Reactions. ACS Nano 2024, 18 (5) , 4256-4268. https://doi.org/10.1021/acsnano.3c09639
    5. Wenxiang Li, Limin Jin, Shengtao Jiang, Yanbiao Liu. Electrified Nitrogen-Doped MXene Membrane Electrode for Micropollutants Decontamination via Peroxymonosulfate Activation. ACS ES&T Engineering 2024, 4 (1) , 176-185. https://doi.org/10.1021/acsestengg.3c00222
    6. Dipankar Saha, Johnson Dalmieda, Vinay Patel. Surface-Modified MXenes: Simulation to Potential Applications. ACS Applied Electronic Materials 2023, 5 (6) , 2933-2955. https://doi.org/10.1021/acsaelm.3c00076
    7. Hwansoo Shin, Hyeonhoo Lee, Yeongbhin Seo, Woojae Jeong, Tae Hee Han. Grafting Behavior of Amine Ligands for Surface Modification of MXene. Langmuir 2023, 39 (6) , 2358-2367. https://doi.org/10.1021/acs.langmuir.2c03094
    8. Jehad K. El-Demellawi, Ahmed E. Mansour, Ahmed M. El-Zohry, Mohamed N. Hedhili, Jun Yin, Abdul-Hamid M. Emwas, Partha Maity, Xiangming Xu, Osman M. Bakr, Omar F. Mohammed, Husam N. Alshareef. Tuning the Work Function of Ti3C2Tx MXene by Molecular Doping without Changing its Surface Functional Groups. ACS Materials Letters 2022, 4 (12) , 2480-2490. https://doi.org/10.1021/acsmaterialslett.2c00796
    9. Lintai Tong, Kecheng Long, Libao Chen, Zhibin Wu, Yuejiao Chen. High-Capacity and Long-Lived Silicon Anodes Enabled by Three-Dimensional Porous Conductive Network Design and Surface Reconstruction. ACS Applied Energy Materials 2022, 5 (11) , 13877-13886. https://doi.org/10.1021/acsaem.2c02500
    10. G. Murali, Jeevan Kumar Reddy Modigunta, Young Ho Park, Jong-Hoon Lee, Jishu Rawal, Seul-Yi Lee, Insik In, Soo-Jin Park. A Review on MXene Synthesis, Stability, and Photocatalytic Applications. ACS Nano 2022, 16 (9) , 13370-13429. https://doi.org/10.1021/acsnano.2c04750
    11. Hui Li, Saiyi Chen, Danil W. Boukhvalov, Zhiyang Yu, Mark G. Humphrey, Zhipeng Huang, Chi Zhang. Switching the Nonlinear Optical Absorption of Titanium Carbide MXene by Modulation of the Surface Terminations. ACS Nano 2022, 16 (1) , 394-404. https://doi.org/10.1021/acsnano.1c07060
    12. Jinbo Pang, Bin Chang, Hong Liu, Weijia Zhou. Potential of MXene-Based Heterostructures for Energy Conversion and Storage. ACS Energy Letters 2022, 7 (1) , 78-96. https://doi.org/10.1021/acsenergylett.1c02132
    13. Jacob T. Lee, Brian C. Wyatt, Gregory A. Davis, Jr., Adrianna N. Masterson, Amber L. Pagan, Archit Shah, Babak Anasori, Rajesh Sardar. Covalent Surface Modification of Ti3C2Tx MXene with Chemically Active Polymeric Ligands Producing Highly Conductive and Ordered Microstructure Films. ACS Nano 2021, 15 (12) , 19600-19612. https://doi.org/10.1021/acsnano.1c06670
    14. Wenyu Zhou, Lichun Dong, Luxi Tan, Qing Tang. Enhancing the Surface Reactivity of Black Phosphorus on Hydrogen Evolution by Covalent Chemistry. The Journal of Physical Chemistry C 2021, 125 (14) , 7581-7589. https://doi.org/10.1021/acs.jpcc.1c01110
    15. Sin-Yi Pang, Weng Fu Io, Feng Guo, Yuqian Zhao, Jianhua Hao. Two-dimensional MXene-based devices for information technology. Materials Science and Engineering: R: Reports 2025, 163 , 100894. https://doi.org/10.1016/j.mser.2024.100894
    16. Mei Liu, Yimeng Fu, Pengfei Jiang, Xin Zhou, Zhiyong He, Tian Gan, Bin Wang, Feng Jiang, Can Wu. Alkalized Ti3C2Tx modified laser-induced graphene electrode devices for efficient micro-droplet electrochemical detection of Sunset Yellow. Sensors and Actuators B: Chemical 2025, 427 , 137223. https://doi.org/10.1016/j.snb.2024.137223
    17. Jianjian Zhong, Zhen Wang, Yunhao Wu, Jianling Li. Functionalized Ti3C2Tx assisted by natural phytic acid for high-power application in lithium-ion capacitors. Journal of Energy Storage 2025, 109 , 115159. https://doi.org/10.1016/j.est.2024.115159
    18. Wei Li, Zhiyuan Xu, Yu Yan, Qianfeng Gao, Yaya Song, Taiqiang Wang, Hongyu Dun, Mingyu Yang, Qian Huang, Xiaodan Zhang, Ying Zhao, Guofu Hou. 2D MXenes: Synthesis, Properties, and Applications in Silicon‐Based Optoelectronic Devices. Small 2025, 187 https://doi.org/10.1002/smll.202410001
    19. Oleksandr Stroyuk, Oleksandra Raievska, Jens Hauch, Christoph J. Brabec. Atomically thin 2D materials for solution-processable emerging photovoltaics. Chemical Communications 2025, 5 https://doi.org/10.1039/D4CC05133E
    20. Ranran Zhang, Zichao Yan, Ming Gao, Bingxin Zheng, Bin Yue, Meng Qiu. Recent advances in two-dimensional materials for drug delivery. Journal of Materials Chemistry B 2024, 12 (48) , 12437-12469. https://doi.org/10.1039/D4TB01787K
    21. Linh Chi T. Cao, P.-S. Chen, Y.-H. Lin, Yuki Nagao, Sakoolkan Boonruang, Chao-An Jong, Shu-Han Hsu. Ti3C2Tx/MoO3 composite as an ultrasensitive and selective sensing material for a room-temperature nitrogen dioxide sensor. Applied Surface Science 2024, 676 , 161025. https://doi.org/10.1016/j.apsusc.2024.161025
    22. Parveen Kumar, Praveen Negi, Puneet Kumar Deshwal, Ashavani Kumar. Microwave absorption parameters over 2–18 GHz frequency range for the MXene composite – Ti3C2Tx @MnCo2O4. Materials Research Bulletin 2024, 180 , 113055. https://doi.org/10.1016/j.materresbull.2024.113055
    23. Chao Xie, Yu Cheng, Shisi Liu, Shijie Xu, Xisheng Cui, Liangpan Yang, Wenhua Yang, Zhixiang Huang. Enhanced Photocurrent and Suppressed Dark Current of MXene/Ge Heterostructure-Based Near-Infrared Photodetectors Enabled by Surface Charge Transfer Induced Inversion Layer. IEEE Transactions on Electron Devices 2024, 71 (12) , 7602-7608. https://doi.org/10.1109/TED.2024.3480891
    24. Jiafeng Song, Hongwu Chen, Yilin Sun, Zhifang Liu. Layered MXene Films via Self‐Assembly. Small 2024, 20 (51) https://doi.org/10.1002/smll.202406855
    25. Mengrui Li, Xiaoxiao Dong, Qinzhu Li, Yaru Liu, Shuang Cao, Chun‐Chao Hou, Tong Sun. Engineering MXene Surface via Oxygen Functionalization and Au Nanoparticle Deposition for Enhanced Electrocatalytic Hydrogen Evolution Reaction. Small Methods 2024, 10 https://doi.org/10.1002/smtd.202401569
    26. Yang Zhao, Zihao Guan, Zhiyuan Wei, Lulu Fu, Lu Chen, Zhipeng Huang, Mark G. Humphrey, Chi Zhang. Enhanced nonlinear optical properties of MXene (Ti3C2Tx) via surface-covalent functionalization with porphyrin. Materials Today Physics 2024, 48 , 101577. https://doi.org/10.1016/j.mtphys.2024.101577
    27. Chao Xie, Xisheng Cui, Shijie Xu, Yu Cheng, Liangpan Yang, Wenhua Yang, Zhixiang Huang. Self-Driven β -Ga 2 O 3 Solar-Blind Deep-Ultraviolet Photodetectors With Asymmetric MXene Electrodes. IEEE Transactions on Electron Devices 2024, 71 (11) , 6804-6808. https://doi.org/10.1109/TED.2024.3454590
    28. Zhongshi Ju, Yusheng Chen, Peng Li, Jiangang Ma, Haiyang Xu, Yichun Liu, Paolo Samorì. Dressing AgNWs with MXenes Nanosheets: Transparent Printed Electrodes Combining High‐Conductivity and Tunable Work Function for High‐Performance Opto‐Electronics. Advanced Materials 2024, 36 (48) https://doi.org/10.1002/adma.202412512
    29. Basiru O. Yusuf, Mustapha Umar, Mansur Aliyu, Aliyu M. Alhassan, Mohammed Mosaad Awad, Omer A. Taialla, Abdulhakam Shafiu Abdullahi, Jamilu Nura Musa, Khalid R. Alhooshani, Saheed A. Ganiyu. Recent advances and future prospects of MXene-based photocatalysts in environmental remediations.. Journal of Environmental Chemical Engineering 2024, 239 , 114812. https://doi.org/10.1016/j.jece.2024.114812
    30. Ying Song, Yaqing Liu, Qi Ao, Lin Jiang, Xiaoxiao Lv, Xinglai Tong, Tuohao Jiang, Yuanqing Yao, Jun Tang. Efficient utilization of the active sites of MXene: MXene/PSSNa films with a 3D-stabilized porous structure as high-capacitance and high-rate electrodes for flexible supercapacitors. Journal of Materials Chemistry A 2024, 12 (42) , 29230-29240. https://doi.org/10.1039/D4TA05925E
    31. Dongyue Wang, Dongzhi Zhang, Hao Zhang, Zihu Wang, Jianghao Wang, Guangshuai Xi. Quantitative detection of multi-component chemical gas via MXene-based sensor array driven by triboelectric nanogenerators with CNN-GRU model. Sensors and Actuators B: Chemical 2024, 417 , 136101. https://doi.org/10.1016/j.snb.2024.136101
    32. Lin Yang, Ziyan Liu, Tianfang Zheng, Peng Li, Jiangang Ma, Xintong Zhang, Hancheng Zhu, Xiao‐Feng Wang, Yichun Liu. Oxide Derivatives of Nb 2 CT x MXene and Their Application as Electron Transport Layers in Perovskite Solar Cells: Unraveling the Oxidation Process and Functionalization. Small 2024, 20 (43) https://doi.org/10.1002/smll.202403460
    33. Amar M. Patil, Arti A. Jadhav, Nilesh R. Chodankar, Ajay T. Avatare, Jongwoo Hong, Suprimkumar D. Dhas, Umakant M. Patil, Seong Chan Jun. Recent progress of MXene synthesis, properties, microelectrode fabrication techniques for microsupercapacitors and microbatteries energy storage devices and integration: A comprehensive review. Coordination Chemistry Reviews 2024, 517 , 216020. https://doi.org/10.1016/j.ccr.2024.216020
    34. Yongfang Liang, Hailong Shen, Jianghai Li, Hongying Zhao, Jiaheng Xu, Haifu Huang, Shuaikai Xu, Xianqing Liang, Wenzheng Zhou, Jin Guo. Tailoring surface terminals of Ti3C2Tx MXene microgels via interlayer domain-confined polyphosphate ammonium for flexible supercapacitor applications. Chemical Engineering Journal 2024, 497 , 154775. https://doi.org/10.1016/j.cej.2024.154775
    35. Mengni Jiang, Di Wang, Young‐Hwan Kim, Chunying Duan, Dmitri V. Talapin, Chenkun Zhou. Evolution of Surface Chemistry in Two‐Dimensional MXenes: From Mixed to Tunable Uniform Terminations. Angewandte Chemie 2024, 136 (37) https://doi.org/10.1002/ange.202409480
    36. Nujud Badawi, Mrutunjaya Bhuyan, Mohammad Luqman, Rayed S. Alshareef, Mohammad Rafe Hatshan, Abdulrahman Al-Warthan, Syed Farooq Adil. MXenes the future of solid-state supercapacitors: Status, challenges, prospects, and applications. Arabian Journal of Chemistry 2024, 17 (9) , 105866. https://doi.org/10.1016/j.arabjc.2024.105866
    37. Xiaoyang Liu, Hongbo Tong, Yali Li, Guodong Wan, Wenxuan Li, Zhe Gao, Hongyun Ma, Qiming Liu, Yujun Fu, Deyan He, Zhenguo Li, Junshuai Li. Construction of back-heterojunction crystalline silicon solar cells using Fermi-level-adjusted MXene by CuCl2. Journal of Power Sources 2024, 614 , 235046. https://doi.org/10.1016/j.jpowsour.2024.235046
    38. Li Li, Xinhe Zhang, Yutong Duan, Dengyun Shen, Hengyue Li, Weiguang Yang. Boosting Synergistic Hole Separation and Transfer in the TiO2-MXene Photoanode by Depositing Amorphous NiOOH/CoOOH Cocatalysts. Journal of Alloys and Compounds 2024, 44 , 176507. https://doi.org/10.1016/j.jallcom.2024.176507
    39. Jiangtao Chen, Tiancheng Song, Xinyi Wang, Yarong Zhou, Ting Wang, Xuqiang Zhang, Yun Zhao, Bingjun Yang, Yi Zhang, Jianbiao Chen, Kai Chen, Yan Li, Weihua Han. Ultrasensitive and Wide-Range MXene/PDMS Piezoresistive Sensors Inspired by Rose Petals. Nano Energy 2024, 4 , 110285. https://doi.org/10.1016/j.nanoen.2024.110285
    40. Mengni Jiang, Di Wang, Young‐Hwan Kim, Chunying Duan, Dmitri V. Talapin, Chenkun Zhou. Evolution of Surface Chemistry in Two‐Dimensional MXenes: From Mixed to Tunable Uniform Terminations. Angewandte Chemie International Edition 2024, 5 https://doi.org/10.1002/anie.202409480
    41. Aamir Rasheed, Sara Ajmal, Peihong Wang, Seung Goo Lee. Energizing the future: Unveiling challenges and prospects in MXene-based piezoelectric and triboelectric nanogenerators for micro- and nanoscale energy harvesting applications. Applied Materials Today 2024, 39 , 102270. https://doi.org/10.1016/j.apmt.2024.102270
    42. Wenchao Bi, Shuo Li, Wenshun Wang, Yuan Liu, Jun Shen, Guohua Gao, Zenghai Zhang, Guangming Wu, Guozhong Cao. MXenes and their composites as electrodes for sodium ion batteries. Energy Storage Materials 2024, 71 , 103568. https://doi.org/10.1016/j.ensm.2024.103568
    43. Penghui Cui, Hejing Wang, Bowen Yang, Shu Dong, Menggai Jiao, Ruizheng Zhao, Kai Zhu, Yong‐Zheng Fang, Zhen Zhou, Dianxue Cao. Enhancing Electrochemical Performance through Swift Functional Group Tuning of MXenes. Batteries & Supercaps 2024, 7 (8) https://doi.org/10.1002/batt.202400274
    44. Li Tan, Wenyi Zhang, Ziqi Lian, Yu Wang, Wenjing Gao, Tao Zeng, Yun Chen, Meng Yu, Benlin Hong, Rongkai Ye, Ying Ma, Yuchan Liu, Jianqiang Hu, Jiaju Mo, Aiqing Li. Ultrasensitive electrochemiluminescence biosensor constructed by luminol-diazonium ion functionalized Au/MXene nanocomposites for early stage detection of disease in human. Electrochimica Acta 2024, 95 , 144961. https://doi.org/10.1016/j.electacta.2024.144961
    45. Ali Mohammad Amani, Lobat Tayebi, Ehsan Vafa, Alireza Jahanbin, Milad Abbasi, Ahmad Vaez, Hesam Kamyab, Shreeshivadasan Chelliapan. Innovation applications of MXenes in biomedicine. Materials Today Communications 2024, 40 , 109929. https://doi.org/10.1016/j.mtcomm.2024.109929
    46. Xiaoru Zhao, Chunpeng Ruan, Yuanhua Sang, Shuhua Wang, Hong Liu. MXenes and their composites for advanced cathodes in multivalent ion batteries. Energy Materials 2024, 4 (6) https://doi.org/10.20517/energymater.2024.48
    47. Yuchen Pang, Junxiao Li, Kangle Lv, Dingguo Tang, Qin Li. A review on surface modulation of MXenes and the impact on their work functions and stability. New Journal of Chemistry 2024, 48 (28) , 12477-12495. https://doi.org/10.1039/D4NJ02315C
    48. Jizhen Zhang, Dylan Hegh, Peter A. Lynch, Joselito M. Razal. Guidelines on MXene Handling and Storage Strategies. 2024, 163-188. https://doi.org/10.1002/9781119869528.ch8
    49. Sowjanya Vallem, Sada Venkateswarlu, Seunghyun Song, Jihyun Kim, Yang Li, Joonho Bae. Flexible MXene-conjugated polymer nanoarchitectures: Current developments and future frontiers in battery technology. Coordination Chemistry Reviews 2024, 510 , 215778. https://doi.org/10.1016/j.ccr.2024.215778
    50. Tahir Rasheed, A.A. Sorour. Unveiling the power of MXenes: Solid lubrication perspectives and future directions. Advances in Colloid and Interface Science 2024, 329 , 103186. https://doi.org/10.1016/j.cis.2024.103186
    51. Huamin Chen, Shujun Guo, Shaochun Zhang, Yu Xiao, Wei Yang, Zhaoyang Sun, Xu Cai, Run Fang, Huining Wang, Yun Xu, Jun Wang, Zhou Li. Improved Flexible Triboelectric Nanogenerator Based on Tile‐Nanostructure for Wireless Human Health Monitor. ENERGY & ENVIRONMENTAL MATERIALS 2024, 7 (4) https://doi.org/10.1002/eem2.12654
    52. Dongjoon Rhee, Deep Jariwala, Jeong Ho Cho, Joohoon Kang. Solution-processed 2D van der Waals networks: Fabrication strategies, properties, and scalable device applications. Applied Physics Reviews 2024, 11 (2) https://doi.org/10.1063/5.0205192
    53. Wensen Wang, Xinsheng Peng, Chrystelle Salameh, Zhiyuan Zeng, Damien Voiry. Functionalized 2D nanolaminate membranes for nanofluidics and molecular sieving. Trends in Chemistry 2024, 6 (6) , 285-301. https://doi.org/10.1016/j.trechm.2024.04.006
    54. Naying Shan, Zihao Guan, Zhiyuan Wei, Lulu Fu, Yang Zhao, Fang Liu, Lu Chen, Yanyan Xue, Zhipeng Huang, Mark G. Humphrey, Jun Xu, Chi Zhang. N-terminalized titanium carbide MXene coupled with graphene oxide toward optimized temporal domain-dependent nonlinear absorption. Journal of Materials Chemistry C 2024, 12 (16) , 5737-5747. https://doi.org/10.1039/D4TC00366G
    55. Ayoub Benmoumen, Marie-Laure David, Eric Gautron, Simon Hurand, Sophia Tangui, Lola Loupias, Aurélien Habrioux, Stéphane Célérier, Philippe Moreau, Vincent Mauchamp. Structural and property engineering of 2D titanium carbides (MXene) thin films using ion irradiation. Applied Surface Science 2024, 652 , 159206. https://doi.org/10.1016/j.apsusc.2023.159206
    56. Wenchao Bi, Guohua Gao, Chao Li, Guangming Wu, Guozhong Cao. Synthesis, properties, and applications of MXenes and their composites for electrical energy storage. Progress in Materials Science 2024, 142 , 101227. https://doi.org/10.1016/j.pmatsci.2023.101227
    57. J. Liew, L. Liu, K.H. Loh, Shahid Bashir, K. Ramesh, S. Ramesh. How viable are MXenes? Recent developments of MXene synthesis and its application in solid-state electrolytes. Journal of Energy Storage 2024, 84 , 110868. https://doi.org/10.1016/j.est.2024.110868
    58. Mohammad Shariq, Khairiah Alshehri, Souhail Mohammed Bouzgarrou, Syed Kashif Ali, Yousef Alqurashi, K.F. Hassan, R.E. Azooz. Progress in development of MXene-based nanocomposites for supercapacitor application-A review. FlatChem 2024, 44 , 100609. https://doi.org/10.1016/j.flatc.2024.100609
    59. Zhaorui Zhang, Jiahao Liu, Haiying Du, Xufei Zhao, Haoming Sun, Minghui Yang, Jinkui Chu. Key to unlocking NO2 sensing performance of monolayer Ti3C2Tx: Regulating OH/F functional groups. Chemical Engineering Journal 2024, 484 , 149620. https://doi.org/10.1016/j.cej.2024.149620
    60. Vahid Karimi, Viktoriia E. Babicheva. MXene-antenna electrode with collective multipole resonances. Nanoscale 2024, 16 (9) , 4656-4667. https://doi.org/10.1039/D3NR03828A
    61. M. Sai Bhargava Reddy, Shampa Aich. Recent progress in surface and heterointerface engineering of 2D MXenes for gas sensing applications. Coordination Chemistry Reviews 2024, 500 , 215542. https://doi.org/10.1016/j.ccr.2023.215542
    62. Jose Muñoz. Rational Design of Stimuli‐Responsive Inorganic 2D Materials via Molecular Engineering: Toward Molecule‐Programmable Nanoelectronics. Advanced Materials 2024, 36 (8) https://doi.org/10.1002/adma.202305546
    63. Rosaiah Pitcheri, Suresh Kumar Chittibabu, Sambasivam Sangaraju, Bhagyalakshmi Jarsangi, Bandar Ali Al-Asbahi, Vasudeva Reddy Minnam Reddy, Woo Kyoung Kim. Emerging trends of 3D architectonic MXene-based flexible pressure sensors as multimodal medical devices. Coordination Chemistry Reviews 2024, 499 , 215527. https://doi.org/10.1016/j.ccr.2023.215527
    64. Naseem Akhtar, Malika Rani, Kiran Batool, Aqeel Ahmad Shah, Mohamed A. Habila, Mika Sillanpää, Maryam Arshad, Hafiza Saba. Synthesis and Optical Properties Investigation of Nanosized Two-Dimensional (Fe 1−x Sr x Cr 2 O 4 )/MXene Nanocomposite. ECS Journal of Solid State Science and Technology 2024, 13 (1) , 011003. https://doi.org/10.1149/2162-8777/ad177e
    65. Zhengyi Huang, Die Ling Zhao, Liguo Shen, Hongjun Lin, Cheng Chen, Yanchao Xu, Bisheng Li, Jiaheng Teng, Lei Han, Tai-Shung Chung. Mxenes for membrane separation: from fabrication strategies to advanced applications. Science Bulletin 2024, 69 (1) , 125-140. https://doi.org/10.1016/j.scib.2023.11.008
    66. Jun-Ge Liang, Lijia Pan. MXenes and their applications in sensors. 2024, 281-353. https://doi.org/10.1016/B978-0-323-99472-9.00008-0
    67. Ghulam Yasin, Mohammad Tabish, Saira Ajmal, Anuj Kumar, Tuan Anh Nguyen. MXene for green energy: an introduction. 2024, 453-466. https://doi.org/10.1016/B978-0-323-95515-7.00020-0
    68. Zixuan Zhu, Xinyi Pan, Yaning He. One-step photo-induced modification of carbon nanotubes via polymeric diazonium chemistry. Polymer Chemistry 2024, 437 https://doi.org/10.1039/D3PY01364B
    69. Jianjian Zhong, Zhen Wang, Yunhao Wu, Jianling Li. Functionalized Ti3c2tx Assisted by Natural Phytic Acid for High-Power Application in Lithium-Ion Capacitors. 2024https://doi.org/10.2139/ssrn.4811412
    70. Sakthivel Kogularasu, Yung-Lung Chen, Yen-Yi Lee, Bo-Wun Huang, Perumal Murugesan, Guo-Ping Chang-Chien, Mani Govindasamy. Two-dimensional MXenes for toxin management: Advanced electrocatalytic detection, degradation, and adsorption dynamics. Environmental Chemistry and Ecotoxicology 2024, 6 , 390-407. https://doi.org/10.1016/j.enceco.2024.08.005
    71. Yakubu Adekunle Alli, Abayomi Bamisaye, Parvathy Nancy, Suji Mary Zachariah, Peter Olusakin Oladoye, Owolabi Mutolib Bankole, Damilola O. Akamo, Soulaima Chkirida, Hazleen Anuar, Sabu Thomas. MXene composites: Properties, synthesis and its emerging application in rechargeable batteries. Journal of Energy Storage 2024, 77 , 109954. https://doi.org/10.1016/j.est.2023.109954
    72. Muhammad Abiyyu Kenichi Purbayanto, Arramel, See Wee Koh, Francesco Maddalena, Dorota Moszczyńska, Jessie Manopo, Yudi Darma, Dominik Kowal, Hong Li, Muhammad Danang Birowosuto, Agnieszka Maria Jastrzębska. Interfacial interactions of doped-Ti 3 C 2 MXene/MAPbI 3 heterostructures: surfaces and the theoretical approach. Physical Chemistry Chemical Physics 2023, 25 (48) , 33081-33093. https://doi.org/10.1039/D3CP04018F
    73. Daniel Nframah Ampong, Emmanuel Agyekum, Frank Ofori Agyemang, Kwadwo Mensah-Darkwa, Anthony Andrews, Anuj Kumar, Ram K. Gupta. MXene: fundamentals to applications in electrochemical energy storage. Discover Nano 2023, 18 (1) https://doi.org/10.1186/s11671-023-03786-9
    74. Nguyen Tran Truc Phuong, Le Hong Tho, Tan Tai Nguyen, Nguyen Nhat Nam, Kieu The Loan Trinh. Application of Mxenes and their composites in plasmon-enhanced optical sensors: Review paper. Sensors and Actuators A: Physical 2023, 363 , 114714. https://doi.org/10.1016/j.sna.2023.114714
    75. Zilian Qi, Tianwei Zhang, Xiao-Dong Zhang, Qing Xu, Kun Cao, Rong Chen. MXene-based flexible pressure sensor with piezoresistive properties significantly enhanced by atomic layer infiltration. Nano Materials Science 2023, 5 (4) , 439-446. https://doi.org/10.1016/j.nanoms.2022.10.003
    76. Y. Yu, Q. Fan, Z. Li, P. Fu. MXene-based electrode materials for supercapacitors: Synthesis, properties, and optimization strategies. Materials Today Sustainability 2023, 24 , 100551. https://doi.org/10.1016/j.mtsust.2023.100551
    77. Gourhari Chakraborty, R. Padmashree, Arbind Prasad. Recent advancement of surface modification techniques of 2-D nanomaterials. Materials Science and Engineering: B 2023, 297 , 116817. https://doi.org/10.1016/j.mseb.2023.116817
    78. P. Baraneedharan, D. Shankari, A. Arulraj, Percy J. Sephra, R. V. Mangalaraja, Mohammad Khalid. Nanoengineering of MXene-Based Field-Effect Transistor Gas Sensors: Advancements in Next-Generation Electronic Devices. Journal of The Electrochemical Society 2023, 170 (10) , 107501. https://doi.org/10.1149/1945-7111/acfc2b
    79. Qiaoxia Zhu, Fangxia Xie, Jianxin Liu, Xuan Jian, Zhuobin Yu, Xiaoming Gao, Houfen Li, Xiaochao Zhang, Yawen Wang, Yunfang Wang, Caimei Fan, Rui Li. Anchoring Ru nanoparticles on Ti3C2Tx for accelerated alkaline hydrogen evolution reaction: The effect of electronic metal-support interaction. Journal of Alloys and Compounds 2023, 960 , 170764. https://doi.org/10.1016/j.jallcom.2023.170764
    80. Chengwen Huang, Jingyu Tian, Song Yang, Yujun Zhao, Huangzhong Yu. Amino acid modified Ti3C2Tx as electron transport layers for high-performance organic solar cells. Nano Energy 2023, 115 , 108691. https://doi.org/10.1016/j.nanoen.2023.108691
    81. Shravani Kale, Saurabh Parmar, Suwarna Datar, S.N. Kale. Tuneable work function of titanium carbide (Ti3C2Tx) by modification in surface termination groups. Materials Chemistry and Physics 2023, 306 , 128052. https://doi.org/10.1016/j.matchemphys.2023.128052
    82. Yangqing He, Mengyuan Mei, Qian Yang, Yuxing Yang, Zhanying Ma. Covalently grafting porphyrin on SnO2 nanorods for hydrogen evolution and tetracycline hydrochloride removal from real pharmaceutical wastewater with significantly improved efficiency. Chemical Engineering Journal 2023, 472 , 144859. https://doi.org/10.1016/j.cej.2023.144859
    83. Yizhou Wang, Tianchao Guo, Zhengnan Tian, Lin Shi, Sharat C. Barman, Husam N. Alshareef. MXenes for soft robotics. Matter 2023, 6 (9) , 2807-2833. https://doi.org/10.1016/j.matt.2023.07.013
    84. K.A.U. Madhushani, A.A.P.R. Perera, Anuj Kumar, Ram K. Gupta. MXene-based promising nanomaterials for electrochemical energy storage. Molecular Catalysis 2023, 547 , 113284. https://doi.org/10.1016/j.mcat.2023.113284
    85. Yiqian Du, Zhikai Yan, Wenbin You, Qiaoqiao Men, Guanyu Chen, Xiaowei Lv, Yuyang Wu, Kaicheng Luo, Biao Zhao, Jincang Zhang, Renchao Che. Balancing MXene Surface Termination and Interlayer Spacing Enables Superior Microwave Absorption. Advanced Functional Materials 2023, 33 (34) https://doi.org/10.1002/adfm.202301449
    86. Iwona Janica, Verónica Montes‐García, Francesca Urban, Payam Hashemi, Ali Shaygan Nia, Xinliang Feng, Paolo Samorì, Artur Ciesielski. Covalently Functionalized MXenes for Highly Sensitive Humidity Sensors. Small Methods 2023, 7 (8) https://doi.org/10.1002/smtd.202201651
    87. Hyunwoo Bark, Gurunathan Thangavel, Rui Jun Liu, Daniel H. C. Chua, Pooi See Lee. Effective Surface Modification of 2D MXene toward Thermal Energy Conversion and Management. Small Methods 2023, 7 (8) https://doi.org/10.1002/smtd.202300077
    88. Jizhen Zhang, Ken Aldren S. Usman, Mia Angela N. Judicpa, Dylan Hegh, Peter A. Lynch, Joselito M. Razal. Applications of X‐Ray‐Based Characterization in MXene Research. Small Methods 2023, 7 (8) https://doi.org/10.1002/smtd.202201527
    89. Zhiyun Wu, Shuiren Liu, Zijuan Hao, Xuying Liu. MXene Contact Engineering for Printed Electronics. Advanced Science 2023, 10 (19) https://doi.org/10.1002/advs.202207174
    90. Jiawang Hu, Dong Liu, Xuanjie Xia, Bin Wang, Donglei Pan, Yifan Cheng, Yuan Lu. MXene/perovskite-based bionic human odor sensor array with machine learning. Chemical Engineering Journal 2023, 468 , 143752. https://doi.org/10.1016/j.cej.2023.143752
    91. Ruhan E. Ustad, Somnath S. Kundale, Kasturi A. Rokade, Snehal L. Patil, Vijay D. Chavan, Kalyani D. Kadam, Harshada S. Patil, Sarita P. Patil, Rajanish K. Kamat, Deok-kee Kim, Tukaram D. Dongale. Recent progress in energy, environment, and electronic applications of MXene nanomaterials. Nanoscale 2023, 15 (23) , 9891-9926. https://doi.org/10.1039/D2NR06162G
    92. Yan Fang, Zhiyuan Wei, Zihao Guan, Naying Shan, Yang Zhao, Fang Liu, Lulu Fu, Zhipeng Huang, Mark G. Humphrey, Chi Zhang. Covalent chemical functionalization of Ti 3 C 2 T x MXene nanosheets with fullerenes C 60 and C 70 for enhanced nonlinear optical limiting. Journal of Materials Chemistry C 2023, 11 (22) , 7331-7344. https://doi.org/10.1039/D3TC00868A
    93. Shanglin Yang, Songmei Li, Juan Du, Chao Han, Zhiguo Du, Bin Li. Electrochemical tailoring MXene terminal to elevate operation voltage of Mo2CTx-protected current collector over 5 V. Applied Surface Science 2023, 619 , 156754. https://doi.org/10.1016/j.apsusc.2023.156754
    94. Yuanyuan Chen, Peng Zhao, Yi Liang, Yi Ma, Yiyi Liu, Jinsong Zhao, Jingzhou Hou, Changjun Hou, Danqun Huo. A sensitive electrochemical sensor based on 3D porous melamine-doped rGO/MXene composite aerogel for the detection of heavy metal ions in the environment. Talanta 2023, 256 , 124294. https://doi.org/10.1016/j.talanta.2023.124294
    95. Maiyong Zhu, Congcong Lu, Lingran Liu. Progress and challenges of emerging MXene based materials for thermoelectric applications. iScience 2023, 26 (5) , 106718. https://doi.org/10.1016/j.isci.2023.106718
    96. Zheng Li, Dongzhi Zhang, Xingwei Wang, Xichen Liu, Yan Yang, Chen Du, Jingyu Guo, Yating Zhang. Passive and wireless NFC tag-type trimethylamine gas detection based on WO3/MXene composite sensors. Journal of Alloys and Compounds 2023, 939 , 168730. https://doi.org/10.1016/j.jallcom.2023.168730
    97. Xiangming Xu, Tianchao Guo, Mario Lanza, Husam N. Alshareef. Status and prospects of MXene-based nanoelectronic devices. Matter 2023, 6 (3) , 800-837. https://doi.org/10.1016/j.matt.2023.01.019
    98. Shi Pu, Zixing Wang, Yanting Xie, Jintao Fan, Zhong Xu, Yihan Wang, Hanyu He, Xiong Zhang, Weiqing Yang, Haitao Zhang. Origin and Regulation of Self‐Discharge in MXene Supercapacitors. Advanced Functional Materials 2023, 33 (8) https://doi.org/10.1002/adfm.202208715
    99. Cecilia Wetzl, Alessandro Silvestri, Marina Garrido, Hui‐Lei Hou, Alejandro Criado, Maurizio Prato. The Covalent Functionalization of Surface‐Supported Graphene: An Update. Angewandte Chemie 2023, 135 (6) https://doi.org/10.1002/ange.202212857
    100. Cecilia Wetzl, Alessandro Silvestri, Marina Garrido, Hui‐Lei Hou, Alejandro Criado, Maurizio Prato. The Covalent Functionalization of Surface‐Supported Graphene: An Update. Angewandte Chemie International Edition 2023, 62 (6) https://doi.org/10.1002/anie.202212857
    Load all citations

    ACS Nano

    Cite this: ACS Nano 2021, 15, 1, 1388–1396
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.0c08664
    Published January 5, 2021
    Copyright © 2021 American Chemical Society

    Article Views

    6943

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.