ACS Publications. Most Trusted. Most Cited. Most Read
Voltage-Controlled Reconfigurable Magnonic Crystal at the Sub-micrometer Scale
My Activity
    Article

    Voltage-Controlled Reconfigurable Magnonic Crystal at the Sub-micrometer Scale
    Click to copy article linkArticle link copied!

    • Hugo Merbouche
      Hugo Merbouche
      Unité Mixte de Physique CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
    • Isabella Boventer*
      Isabella Boventer
      Unité Mixte de Physique CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
      *(I.B.) Email: [email protected]
    • Victor Haspot
      Victor Haspot
      Unité Mixte de Physique CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
    • Stéphane Fusil
      Stéphane Fusil
      Unité Mixte de Physique CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
      Université d’Evry, Université Paris-Saclay, 91000 Evry, France
    • Vincent Garcia
      Vincent Garcia
      Unité Mixte de Physique CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
    • Diane Gouéré
      Diane Gouéré
      Unité Mixte de Physique CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
    • Cécile Carrétéro
      Cécile Carrétéro
      Unité Mixte de Physique CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
    • Aymeric Vecchiola
      Aymeric Vecchiola
      Unité Mixte de Physique CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
    • Romain Lebrun
      Romain Lebrun
      Unité Mixte de Physique CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
    • Paolo Bortolotti
      Paolo Bortolotti
      Unité Mixte de Physique CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
    • Laurent Vila
      Laurent Vila
      Université Grenoble Alpes, CEA, CNRS, Grenoble INP, Spintec, 38000 Grenoble, France
      More by Laurent Vila
    • Manuel Bibes
      Manuel Bibes
      Unité Mixte de Physique CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
      More by Manuel Bibes
    • Agnès Barthélémy
      Agnès Barthélémy
      Unité Mixte de Physique CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
    • Abdelmadjid Anane*
      Abdelmadjid Anane
      Unité Mixte de Physique CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
      *(A.A.) Email: [email protected]
    Other Access OptionsSupporting Information (1)

    ACS Nano

    Cite this: ACS Nano 2021, 15, 6, 9775–9781
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.1c00499
    Published May 20, 2021
    Copyright © 2021 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Multiferroics offer an elegant means to implement voltage control and on the fly reconfigurability in microscopic, nanoscaled systems based on ferromagnetic materials. These properties are particularly interesting for the field of magnonics, where spin waves are used to perform advanced logical or analogue functions. Recently, the emergence of nanomagnonics is expected to eventually lead to the large-scale integration of magnonic devices. However, a compact voltage-controlled, on demand reconfigurable magnonic system has yet to be shown. Here, we introduce the combination of multiferroics with ferromagnets in a fully epitaxial heterostructure to achieve such voltage-controlled and reconfigurable magnonic systems. Imprinting a remnant electrical polarization in thin multiferroic BiFeO3 with a periodicity of 500 nm yields a modulation of the effective magnetic field in the micrometer-scale, ferromagnetic La2/3Sr1/3MnO3 magnonic waveguide. We evidence the magnetoelectric coupling by characterizing the spin wave propagation spectrum in this artificial, voltage induced, magnonic crystal and demonstrate the occurrence of a robust magnonic band gap with >20 dB rejection.

    Copyright © 2021 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsnano.1c00499.

    • Material’s characterizations including a RHEED diffraction pattern; measured scattering parameters and deduced inductance matrix; characterization of dynamic magnetic properties including ferromagnetic resonance measurements of the unpatterned BFO/LSMO bilayer (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 19 publications.

    1. Fatemeh Ahmadzadeh, Ali Bahrami. Three-channel demultiplexer based on one-dimensional magnonic crystal waveguides using defect modes. Journal of Physics D: Applied Physics 2025, 58 (5) , 055001. https://doi.org/10.1088/1361-6463/ad8ed9
    2. Freddie Hendriks, Rafael R. Rojas-Lopez, Bert Koopmans, Marcos H. D. Guimarães. Electric control of optically-induced magnetization dynamics in a van der Waals ferromagnetic semiconductor. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-45623-2
    3. Maria A. Morozova, Oleg V. Matveev, Dmitry V. Romanenko, Vera V. Balaeva, Sergey A. Gusev, Nikita S. Gusev, Sergey A. Nikitov. Gap solitons in nanoscale YIG magnonic crystals. Physical Review B 2024, 110 (10) https://doi.org/10.1103/PhysRevB.110.104408
    4. Xiaoxi Huang, Xianzhe Chen, Yuhang Li, John Mangeri, Hongrui Zhang, Maya Ramesh, Hossein Taghinejad, Peter Meisenheimer, Lucas Caretta, Sandhya Susarla, Rakshit Jain, Christoph Klewe, Tianye Wang, Rui Chen, Cheng-Hsiang Hsu, Isaac Harris, Sajid Husain, Hao Pan, Jia Yin, Padraic Shafer, Ziqiang Qiu, Davi R. Rodrigues, Olle Heinonen, Dilip Vasudevan, Jorge Íñiguez, Darrell G. Schlom, Sayeef Salahuddin, Lane W. Martin, James G. Analytis, Daniel C. Ralph, Ran Cheng, Zhi Yao, Ramamoorthy Ramesh. Manipulating chiral spin transport with ferroelectric polarization. Nature Materials 2024, 23 (7) , 898-904. https://doi.org/10.1038/s41563-024-01854-8
    5. A. A. Grachev, S. E. Sheshukova, A. V. Sadovnikov. Strain-induced multi-band spin-wave logic gate based on alligator-type magnonic crystal/PZT structure. Applied Physics Letters 2024, 124 (16) https://doi.org/10.1063/5.0190281
    6. Albert Fert, Ramamoorthy Ramesh, Vincent Garcia, Fèlix Casanova, Manuel Bibes. Electrical control of magnetism by electric field and current-induced torques. Reviews of Modern Physics 2024, 96 (1) https://doi.org/10.1103/RevModPhys.96.015005
    7. Yixin Wang, Xinkai Xu, Lei Zhang, Lichuan Jin, Huaiwu Zhang. Frequency-selective coherent propagating spin waves induced by localized perpendicular magnetic anisotropy nanofilm stack. Applied Physics Letters 2024, 124 (6) https://doi.org/10.1063/5.0189584
    8. Aleksei A. Nikitin, Nikolai Kuznetsov, Sebastiaan van Dijken, Erkki Lähderanta. Dynamic electromagnonic crystals based on ferrite-ferroelectric thin film multilayers. Physical Review B 2024, 109 (2) https://doi.org/10.1103/PhysRevB.109.024440
    9. M.A. Morozova, N.D. Lobanov, O.V. Matveev, D.V. Romanenko, S.A. Nikitov. Bragg resonances in sandwich magnonic crystals with non-identical periods. Journal of Magnetism and Magnetic Materials 2023, 584 , 171051. https://doi.org/10.1016/j.jmmm.2023.171051
    10. Hanchen Wang, Yuben Yang, Jilei Chen, Jinlong Wang, Hao Jia, Peng Chen, Yuelin Zhang, Caihua Wan, Song Liu, Dapeng Yu, Xiufeng Han, Jean-Philippe Ansermet, Jinxing Zhang, Haiming Yu. Long-distance coherent propagation of magnon polarons in a ferroelectric-ferromagnetic heterostructure. Physical Review B 2023, 108 (14) https://doi.org/10.1103/PhysRevB.108.144425
    11. Bo Hu, Zu-yao Sun, Feng-quan Cui. Modulating the magnetization dynamic properties of zigzag magnetic nanowires by the four-fold magnetic anisotropy. Physica B: Condensed Matter 2023, 661 , 414930. https://doi.org/10.1016/j.physb.2023.414930
    12. C. Cheng, Z. R. Yan, Y. W. Xing, J. Dong, Y. Zhang, C. H. Wan, G. Q. Yu, Z. C. Xia, L. Li, X. F. Han. Magnon flatband effect in antiferromagnetically coupled magnonic crystals. Applied Physics Letters 2023, 122 (8) https://doi.org/10.1063/5.0137520
    13. Yuelin Zhang, Jilei Chen, Jinxing Zhang, Haiming Yu. Oxide magnonics: Spin waves in functional magnetic oxides. Applied Physics Reviews 2022, 9 (4) https://doi.org/10.1063/5.0112794
    14. A. V. Chumak, P. Kabos, M. Wu, C. Abert, C. Adelmann, A. O. Adeyeye, J. Akerman, F. G. Aliev, A. Anane, A. Awad, C. H. Back, A. Barman, G. E. W. Bauer, M. Becherer, E. N. Beginin, V. A. S. V. Bittencourt, Y. M. Blanter, P. Bortolotti, I. Boventer, D. A. Bozhko, S. A. Bunyaev, J. J. Carmiggelt, R. R. Cheenikundil, F. Ciubotaru, S. Cotofana, G. Csaba, O. V. Dobrovolskiy, C. Dubs, M. Elyasi, K. G. Fripp, H. Fulara, I. A. Golovchanskiy, C. Gonzalez-Ballestero, P. Graczyk, D. Grundler, P. Gruszecki, G. Gubbiotti, K. Guslienko, A. Haldar, S. Hamdioui, R. Hertel, B. Hillebrands, T. Hioki, A. Houshang, C.-M. Hu, H. Huebl, M. Huth, E. Iacocca, M. B. Jungfleisch, G. N. Kakazei, A. Khitun, R. Khymyn, T. Kikkawa, M. Klaui, O. Klein, J. W. Klos, S. Knauer, S. Koraltan, M. Kostylev, M. Krawczyk, I. N. Krivorotov, V. V. Kruglyak, D. Lachance-Quirion, S. Ladak, R. Lebrun, Y. Li, M. Lindner, R. Macedo, S. Mayr, G. A. Melkov, S. Mieszczak, Y. Nakamura, H. T. Nembach, A. A. Nikitin, S. A. Nikitov, V. Novosad, J. A. Otalora, Y. Otani, A. Papp, B. Pigeau, P. Pirro, W. Porod, F. Porrati, H. Qin, B. Rana, T. Reimann, F. Riente, O. Romero-Isart, A. Ross, A. V. Sadovnikov, A. R. Safin, E. Saitoh, G. Schmidt, H. Schultheiss, K. Schultheiss, A. A. Serga, S. Sharma, J. M. Shaw, D. Suess, O. Surzhenko, K. Szulc, T. Taniguchi, M. Urbanek, K. Usami, A. B. Ustinov, T. van der Sar, S. van Dijken, V. I. Vasyuchka, R. Verba, S. Viola Kusminskiy, Q. Wang, M. Weides, M. Weiler, S. Wintz, S. P. Wolski, X. Zhang. Advances in Magnetics Roadmap on Spin-Wave Computing. IEEE Transactions on Magnetics 2022, 58 (6) , 1-72. https://doi.org/10.1109/TMAG.2022.3149664
    15. S. Mantion, N. Biziere. Cubic Anisotropy for a Reconfigurable Magnonic Crystal Based on Co 2 Mn Si Heusler Alloy. Physical Review Applied 2022, 17 (4) https://doi.org/10.1103/PhysRevApplied.17.044054
    16. S. Mantion, N. Biziere. Influence of Ga+ milling on the spin waves modes in a Co2MnSi Heusler magnonic crystal. Journal of Applied Physics 2022, 131 (11) https://doi.org/10.1063/5.0085623
    17. Oleksandr V. Dobrovolskiy, Andrii V. Chumak. Nonreciprocal magnon fluxonics upon ferromagnet/superconductor hybrids. Journal of Magnetism and Magnetic Materials 2022, 543 , 168633. https://doi.org/10.1016/j.jmmm.2021.168633
    18. Victor Haspot, Paul Noël, Jean-Philippe Attané, Laurent Vila, Manuel Bibes, Abdelmadjid Anane, Agnès Barthélémy. Temperature dependence of the Gilbert damping of La 0.7 Sr 0.3 MnO 3 thin films. Physical Review Materials 2022, 6 (2) https://doi.org/10.1103/PhysRevMaterials.6.024406
    19. Jianyu Zhang, Mingfeng Chen, Jilei Chen, Kei Yamamoto, Hanchen Wang, Mohammad Hamdi, Yuanwei Sun, Kai Wagner, Wenqing He, Yu Zhang, Ji Ma, Peng Gao, Xiufeng Han, Dapeng Yu, Patrick Maletinsky, Jean-Philippe Ansermet, Sadamichi Maekawa, Dirk Grundler, Ce-Wen Nan, Haiming Yu. Long decay length of magnon-polarons in BiFeO3/La0.67Sr0.33MnO3 heterostructures. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-27405-2

    ACS Nano

    Cite this: ACS Nano 2021, 15, 6, 9775–9781
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.1c00499
    Published May 20, 2021
    Copyright © 2021 American Chemical Society

    Article Views

    1286

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.