ACS Publications. Most Trusted. Most Cited. Most Read
Reversing the Irreversible: Thermodynamic Stabilization of LiAlH4 Nanoconfined Within a Nitrogen-Doped Carbon Host
My Activity
    Article

    Reversing the Irreversible: Thermodynamic Stabilization of LiAlH4 Nanoconfined Within a Nitrogen-Doped Carbon Host
    Click to copy article linkArticle link copied!

    • YongJun Cho
      YongJun Cho
      Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
      Department of Chemical and Biomolecular Engineering (BK21+ Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
      More by YongJun Cho
    • Sichi Li
      Sichi Li
      Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
      More by Sichi Li
    • Jonathan L. Snider
      Jonathan L. Snider
      Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
    • Maxwell A. T. Marple
      Maxwell A. T. Marple
      Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
    • Nicholas A. Strange
      Nicholas A. Strange
      SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
    • Joshua D. Sugar
      Joshua D. Sugar
      Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
    • Farid El Gabaly
      Farid El Gabaly
      Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
    • Andreas Schneemann
      Andreas Schneemann
      Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
    • Sungsu Kang
      Sungsu Kang
      Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
      School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
      More by Sungsu Kang
    • Min-ho Kang
      Min-ho Kang
      Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
      School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
      More by Min-ho Kang
    • Hayoung Park
      Hayoung Park
      Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
      School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
      More by Hayoung Park
    • Jungwon Park
      Jungwon Park
      Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
      School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
      More by Jungwon Park
    • Liwen F. Wan
      Liwen F. Wan
      Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
      More by Liwen F. Wan
    • Harris E. Mason
      Harris E. Mason
      Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
    • Mark D. Allendorf
      Mark D. Allendorf
      Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
    • Brandon C. Wood*
      Brandon C. Wood
      Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
      *Email: [email protected]
    • Eun Seon Cho*
      Eun Seon Cho
      Department of Chemical and Biomolecular Engineering (BK21+ Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
      *Email: [email protected]
      More by Eun Seon Cho
    • Vitalie Stavila*
      Vitalie Stavila
      Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
      *Email: [email protected]
    Other Access OptionsSupporting Information (1)

    ACS Nano

    Cite this: ACS Nano 2021, 15, 6, 10163–10174
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.1c02079
    Published May 24, 2021
    Copyright © 2021 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A general problem when designing functional nanomaterials for energy storage is the lack of control over the stability and reactivity of metastable phases. Using the high-capacity hydrogen storage candidate LiAlH4 as an exemplar, we demonstrate an alternative approach to the thermodynamic stabilization of metastable metal hydrides by coordination to nitrogen binding sites within the nanopores of N-doped CMK-3 carbon (NCMK-3). The resulting LiAlH4@NCMK-3 material releases H2 at temperatures as low as 126 °C with full decomposition below 240 °C, bypassing the usual Li3AlH6 intermediate observed in bulk. Moreover, >80% of LiAlH4 can be regenerated under 100 MPa H2, a feat previously thought to be impossible. Nitrogen sites are critical to these improvements, as no reversibility is observed with undoped CMK-3. Density functional theory predicts a drastically reduced Al–H bond dissociation energy and supports the observed change in the reaction pathway. The calculations also provide a rationale for the solid-state reversibility, which derives from the combined effects of nanoconfinement, Li adatom formation, and charge redistribution between the metal hydride and the host.

    Copyright © 2021 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsnano.1c02079.

    • Figures of pore size distributions, FTIR spectra, PXRD patterns, 7Li MAS NMR spectra, N 1s spectra, schematic illustration of N-functionalities, brightness analysis, HAADF-STEM line profile, EDS signals, EELS profile, hydrogen desorption kinetic curve, high-angle annular dark field EDS map image, relaxed geometries, schematic representation of spontaneous interdiffusion, optimized structures of graphene sheets, ex situ N K-edge soft TEY X-ray absorption spectra, isosurface of charge density difference, and electronic density of states, tables of BET surface areas and total pore volumes, relative amount of various nitrogen functionalities, and NMR parameters, and notes of synthesis and storage methods, identification of the origin of partial LiAlH4 decomposition upon solvent infiltration, detailed description of MAS NMR measurements, and detailed description of theoretical calculations (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 36 publications.

    1. Maxwell Tsipoaka, Ali A. Rownaghi, Fateme Rezaei. Mo2N-Activated Metal Borohydride Nanocomposites for H2 Storage. ACS Applied Materials & Interfaces 2025, 17 (16) , 23923-23936. https://doi.org/10.1021/acsami.5c00336
    2. HyeonJi Kim, Seunghyuck Chi, ShinYoung Kang, Brandon C. Wood, Minkee Choi, Eun Seon Cho. Elucidating the Interfacial Effects of Nonmetallic Elements on the Dehydrogenation Behavior of Nanoconfined NaAlH4 in Zeolite-Templated Carbon. ACS Applied Nano Materials 2025, 8 (8) , 4159-4169. https://doi.org/10.1021/acsanm.4c07192
    3. Mohana Shivanna, Timothy A. Elmslie, Catalin D. Spataru, Sakun Duwal, Nicholas Porcellino, Sergio Mouzaya, Christopher P. Pakhanyan, Farid El Gabaly, Saori Kawaguchi-Imada, Jinghua Guo, Zengqing Zhuo, Min-Jae Kim, Blake T. Sturtevant, Joseph Anthony Teprovich, Mark D. Allendorf, Peter A. Sharma, Vitalie Stavila. Nanoconfinement of High Hydrogen-to-Metal Ratio Lanthanum Hydrides in Functionalized Carbon Hosts. ACS Applied Energy Materials 2025, 8 (1) , 7-15. https://doi.org/10.1021/acsaem.4c02100
    4. Nicholas Porcellino, Christopher Pakhanyan, Timothy Elmslie, Mohana Shivanna, Sakun Duwal, Catalin D. Spataru, Rachel Lindvall, Maddury Somayazulu, Patrick A. Ward, Saori I. Kawaguchi, Vitalie Stavila, Peter Anand Sharma, Joseph Anthony Teprovich. Pressure-Dependent Phase Behavior of Chemically Synthesized Ytterbium Hydride Nanoparticles and Confinement in CMK-3. ACS Applied Energy Materials 2024, 7 (21) , 9608-9615. https://doi.org/10.1021/acsaem.4c01673
    5. YongJun Cho, Hyun Cho, Eun Seon Cho. Nanointerface Engineering of Metal Hydrides for Advanced Hydrogen Storage. Chemistry of Materials 2023, 35 (2) , 366-385. https://doi.org/10.1021/acs.chemmater.2c02628
    6. Chulaluck Pratthana, Kondo-Francois Aguey-Zinsou. LiAlH4 Nanoparticles Encapsulated within Metallic Titanium Shells for Enhanced Hydrogen Storage. ACS Applied Nano Materials 2022, 5 (11) , 16413-16422. https://doi.org/10.1021/acsanm.2c03483
    7. YongJun Cho, ShinYoung Kang, Brandon C. Wood, Eun Seon Cho. Heteroatom-Doped Graphenes as Actively Interacting 2D Encapsulation Media for Mg-Based Hydrogen Storage. ACS Applied Materials & Interfaces 2022, 14 (18) , 20823-20834. https://doi.org/10.1021/acsami.1c23837
    8. Huilin Liu, Yunfeng Lei, Khai Chen Tan, Yazhou Wang, Xiaohua Ju, Hailiang Chu, Yongjin Zou, Teng He, Yong Shen Chua. Enhanced hydrogen storage through the synergistic integration of LiAlH4 and carbazole-based liquid organic hydrogen carrier. International Journal of Hydrogen Energy 2025, 120 , 276-281. https://doi.org/10.1016/j.ijhydene.2025.03.318
    9. Yong Pan, Youwang Zhu. New insight into the structural, hydrogen storage capacity, dehydrogenated mechanism and physical properties of Alkali metal AMAlH4 hydrides. Journal of Alloys and Compounds 2025, 1021 , 179661. https://doi.org/10.1016/j.jallcom.2025.179661
    10. Darvaish Khan, Wee‐Jun Ong. Tailoring Hydrogen Storage Materials Kinetics and Thermodynamics Through Nanostructuring, and Nanoconfinement With In‐Situ Catalysis. Interdisciplinary Materials 2025, 4 (2) , 249-283. https://doi.org/10.1002/idm2.12234
    11. Valeria Lionetti, Simone Bartucci, Carlo Poselle Bonaventura, Giuseppe Conte, Giovanni Desiderio, Alfonso Policicchio, Raffaele Giuseppe Agostino. Optimized activation of coffee-ground carbons for hydrogen storage. International Journal of Hydrogen Energy 2025, 6 https://doi.org/10.1016/j.ijhydene.2025.03.188
    12. Shiwei Fang, Yaxiong Yang, Zhenglong Li, Yan Chu, Yingjue Chen, Yong Gao, Yanxia Liu, Wengang Cui, Xinqiang Wang, Jian Miao, Mingxia Gao, Yongfeng Liu, Wenping Sun, Jian Chen. Direct mechanochemical synthesis of nano-LiAlH4 promoted by 0.696 wt% TiCl4 catalyst surface-modified Al powder. Journal of Alloys and Compounds 2024, 1008 , 176537. https://doi.org/10.1016/j.jallcom.2024.176537
    13. Amanuel Gidey Gebretatios, Fawzi Banat, Chin Kui Cheng. A critical review of hydrogen storage: toward the nanoconfinement of complex hydrides from the synthesis and characterization perspectives. Sustainable Energy & Fuels 2024, 8 (22) , 5091-5130. https://doi.org/10.1039/D4SE00353E
    14. Yiting Bu, Lixian Sun, Fen Xu, Yumei Luo, Chenchen Zhang, Sheng Wei, Guorong Zhang, Hongge Pan, Julan Zeng, Zhong Cao. Improved dehydrogenation of LiAlH4 by hollow 3D flower-like bimetallic composites M-NC@TiO2 (M=Ni, Co, Fe, Cu). Ceramics International 2024, 50 (18) , 34251-34263. https://doi.org/10.1016/j.ceramint.2024.06.244
    15. Qingyun Shi, Yuxing Gao, Shaolei Zhao, Chunmin Zhang, Cong Liu, Chunli Wang, Shaohua Wang, Yongzhi Li, Dongming Yin, Limin Wang, Yong Cheng. Interfacial Engineering of Fluorinated TiO 2 Nanosheets with Abundant Oxygen Vacancies for Boosting the Hydrogen Storage Performance of MgH 2. Small 2024, 20 (18) https://doi.org/10.1002/smll.202307965
    16. M.A. Motalib Hossain, M.A. Hannan, Sieh Kiong Tiong, Pin Jern Ker, Sayem M. Abu, Richard TK. Wong, T.M. Indra Mahlia. Exploring nanoporous carbon architectures for enhanced solid-state hydrogen storage: Recent progress and future prospects. International Journal of Hydrogen Energy 2024, 110 , 271-299. https://doi.org/10.1016/j.ijhydene.2025.02.262
    17. Yunting Wang, Yudong Xue, Andreas Züttel. Nanoscale engineering of solid-state materials for boosting hydrogen storage. Chemical Society Reviews 2024, 53 (2) , 972-1003. https://doi.org/10.1039/D3CS00706E
    18. Pavle Ramah, Rasmus Palm, Kenneth Tuul, Jaan Aruväli, Martin Månsson, Enn Lust. Confinement of LiAlH4 in a Mesoporous Carbon Black for Improved Near-Ambient Release of H2. Reactions 2023, 4 (4) , 635-646. https://doi.org/10.3390/reactions4040035
    19. Siyu Zhou, Marc Figueras‐Valls, Yifeng Shi, Yong Ding, Manos Mavrikakis, Younan Xia. Fast and Non‐equilibrium Uptake of Hydrogen by Pd Icosahedral Nanocrystals. Angewandte Chemie 2023, 135 (42) https://doi.org/10.1002/ange.202306906
    20. Siyu Zhou, Marc Figueras‐Valls, Yifeng Shi, Yong Ding, Manos Mavrikakis, Younan Xia. Fast and Non‐equilibrium Uptake of Hydrogen by Pd Icosahedral Nanocrystals. Angewandte Chemie International Edition 2023, 62 (42) https://doi.org/10.1002/anie.202306906
    21. Chaochao Dun, Sichi Li, Linfeng Chen, Robert D. Horton, Mark D. Allendorf, Brandon C. Wood, Vitalie Stavila, Jeffrey J. Urban. A Nanoscale Ternary Amide‐rGO Composite with Boosted Kinetics for Reversible H 2 Storage. Advanced Materials Interfaces 2023, 10 (27) https://doi.org/10.1002/admi.202300310
    22. Yongfeng Liu, Wenxuan Zhang, Xin Zhang, Limei Yang, Zhenguo Huang, Fang Fang, Wenping Sun, Mingxia Gao, Hongge Pan. Nanostructured light metal hydride: Fabrication strategies and hydrogen storage performance. Renewable and Sustainable Energy Reviews 2023, 184 , 113560. https://doi.org/10.1016/j.rser.2023.113560
    23. Chunmin Zhang, Long Liang, Shaolei Zhao, Zhijian Wu, Shaohua Wang, Dongming Yin, Qingshuang Wang, Limin Wang, Chunli Wang, Yong Cheng. Dehydrogenation behavior and mechanism of LiAlH4 adding nano-CeO2 with different morphologies. Nano Research 2023, 16 (7) , 9426-9434. https://doi.org/10.1007/s12274-023-5636-8
    24. Nur Syazwani Che Mazlan, Muhammad Firdaus Asyraf Abdul Halim Yap, Mohammad Ismail, Muhammad Syarifuddin Yahya, Nurul Amirah Ali, Noratiqah Sazelee, Yew Been Seok. Reinforce the dehydrogenation process of LiAlH4 by accumulating porous activated carbon. International Journal of Hydrogen Energy 2023, 48 (43) , 16381-16391. https://doi.org/10.1016/j.ijhydene.2023.01.080
    25. Harini Gunda, Keith G. Ray, Leonard E. Klebanoff, Chaochao Dun, Maxwell A. T. Marple, Sichi Li, Peter Sharma, Raymond W. Friddle, Joshua D. Sugar, Jonathan L. Snider, Robert D. Horton, Brendan C. Davis, Jeffery M. Chames, Yi‐Sheng Liu, Jinghua Guo, Harris E. Mason, Jeffrey J. Urban, Brandon C. Wood, Mark D. Allendorf, Kabeer Jasuja, Vitalie Stavila. Hydrogen Storage in Partially Exfoliated Magnesium Diboride Multilayers. Small 2023, 19 (6) https://doi.org/10.1002/smll.202205487
    26. Cezar Comanescu. Paving the Way to the Fuel of the Future—Nanostructured Complex Hydrides. International Journal of Molecular Sciences 2023, 24 (1) , 143. https://doi.org/10.3390/ijms24010143
    27. Mark D. Allendorf, Vitalie Stavila, Jonathan L. Snider, Matthew Witman, Mark E. Bowden, Kriston Brooks, Ba L. Tran, Tom Autrey. Challenges to developing materials for the transport and storage of hydrogen. Nature Chemistry 2022, 14 (11) , 1214-1223. https://doi.org/10.1038/s41557-022-01056-2
    28. Erika Michela Dematteis, Mads B Amdisen, Tom Autrey, Jussara Barale, Mark E Bowden, Craig E Buckley, Young Whan Cho, Stefano Deledda, Martin Dornheim, Petra de Jongh, Jakob B Grinderslev, Gökhan Gizer, Valerio Gulino, Bjørn C Hauback, Michael Heere, Tae Wook Heo, Terry D Humphries, Torben R Jensen, Shin Young Kang, Young-Su Lee, Hai-Wen Li, Sichi Li, Kasper T Møller, Peter Ngene, Shin-ichi Orimo, Mark Paskevicius, Marek Polanski, Shigeyuki Takagi, Liwen Wan, Brandon C Wood, Michael Hirscher, Marcello Baricco. Hydrogen storage in complex hydrides: past activities and new trends. Progress in Energy 2022, 4 (3) , 032009. https://doi.org/10.1088/2516-1083/ac7499
    29. Cezar Comanescu. Recent Development in Nanoconfined Hydrides for Energy Storage. International Journal of Molecular Sciences 2022, 23 (13) , 7111. https://doi.org/10.3390/ijms23137111
    30. Chulaluck Pratthana, Kondo-Francois Aguey-Zinsou. Surfactant Induced Synthesis of LiAlH4 and NaAlH4 Nanoparticles for Hydrogen Storage. Applied Sciences 2022, 12 (9) , 4742. https://doi.org/10.3390/app12094742
    31. Shaolei Zhao, Long Liang, Baozhong Liu, Limin Wang, Fei Liang. Superior Dehydrogenation Performance of α‐AlH 3 Catalyzed by Li 3 N: Realizing 8.0 wt.% Capacity at 100 °C. Small 2022, 18 (17) https://doi.org/10.1002/smll.202107983
    32. Zhijie Chen, Kent O. Kirlikovali, Karam B. Idrees, Megan C. Wasson, Omar K. Farha. Porous materials for hydrogen storage. Chem 2022, 8 (3) , 693-716. https://doi.org/10.1016/j.chempr.2022.01.012
    33. Vitalie Stavila, Sichi Li, Chaochao Dun, Maxwell A. T. Marple, Harris E. Mason, Jonathan L. Snider, Joseph E. Reynolds, Farid El Gabaly, Joshua D. Sugar, Catalin D. Spataru, Xiaowang Zhou, Brennan Dizdar, Eric H. Majzoub, Ruchira Chatterjee, Junko Yano, Hendrik Schlomberg, Bettina V. Lotsch, Jeffrey J. Urban, Brandon C. Wood, Mark D. Allendorf. Defying Thermodynamics: Stabilization of Alane Within Covalent Triazine Frameworks for Reversible Hydrogen Storage. Angewandte Chemie 2021, 133 (49) , 26019-26028. https://doi.org/10.1002/ange.202107507
    34. Vitalie Stavila, Sichi Li, Chaochao Dun, Maxwell A. T. Marple, Harris E. Mason, Jonathan L. Snider, Joseph E. Reynolds, Farid El Gabaly, Joshua D. Sugar, Catalin D. Spataru, Xiaowang Zhou, Brennan Dizdar, Eric H. Majzoub, Ruchira Chatterjee, Junko Yano, Hendrik Schlomberg, Bettina V. Lotsch, Jeffrey J. Urban, Brandon C. Wood, Mark D. Allendorf. Defying Thermodynamics: Stabilization of Alane Within Covalent Triazine Frameworks for Reversible Hydrogen Storage. Angewandte Chemie International Edition 2021, 60 (49) , 25815-25824. https://doi.org/10.1002/anie.202107507
    35. Uiseok Jeong, HyeonJi Kim, Sreerangappa Ramesh, Nesibe A. Dogan, Sirinapa Wongwilawan, Sungsu Kang, Jungwon Park, Eun Seon Cho, Cafer T. Yavuz. Rapid Access to Ordered Mesoporous Carbons for Chemical Hydrogen Storage. Angewandte Chemie 2021, 133 (41) , 22652-22660. https://doi.org/10.1002/ange.202109215
    36. Uiseok Jeong, HyeonJi Kim, Sreerangappa Ramesh, Nesibe A. Dogan, Sirinapa Wongwilawan, Sungsu Kang, Jungwon Park, Eun Seon Cho, Cafer T. Yavuz. Rapid Access to Ordered Mesoporous Carbons for Chemical Hydrogen Storage. Angewandte Chemie International Edition 2021, 60 (41) , 22478-22486. https://doi.org/10.1002/anie.202109215

    ACS Nano

    Cite this: ACS Nano 2021, 15, 6, 10163–10174
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.1c02079
    Published May 24, 2021
    Copyright © 2021 American Chemical Society

    Article Views

    2545

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.