Reversing the Irreversible: Thermodynamic Stabilization of LiAlH4 Nanoconfined Within a Nitrogen-Doped Carbon HostClick to copy article linkArticle link copied!
- YongJun ChoYongJun ChoSandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United StatesDepartment of Chemical and Biomolecular Engineering (BK21+ Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of KoreaMore by YongJun Cho
- Sichi LiSichi LiLawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United StatesMore by Sichi Li
- Jonathan L. SniderJonathan L. SniderSandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United StatesMore by Jonathan L. Snider
- Maxwell A. T. MarpleMaxwell A. T. MarpleLawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United StatesMore by Maxwell A. T. Marple
- Nicholas A. StrangeNicholas A. StrangeSLAC National Accelerator Laboratory, Menlo Park, California 94025, United StatesMore by Nicholas A. Strange
- Joshua D. SugarJoshua D. SugarSandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United StatesMore by Joshua D. Sugar
- Farid El GabalyFarid El GabalySandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United StatesMore by Farid El Gabaly
- Andreas SchneemannAndreas SchneemannSandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United StatesMore by Andreas Schneemann
- Sungsu KangSungsu KangCenter for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of KoreaSchool of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of KoreaMore by Sungsu Kang
- Min-ho KangMin-ho KangCenter for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of KoreaSchool of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of KoreaMore by Min-ho Kang
- Hayoung ParkHayoung ParkCenter for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of KoreaSchool of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of KoreaMore by Hayoung Park
- Jungwon ParkJungwon ParkCenter for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of KoreaSchool of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of KoreaMore by Jungwon Park
- Liwen F. WanLiwen F. WanLawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United StatesMore by Liwen F. Wan
- Harris E. MasonHarris E. MasonLawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United StatesMore by Harris E. Mason
- Mark D. AllendorfMark D. AllendorfSandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United StatesMore by Mark D. Allendorf
- Brandon C. Wood*Brandon C. Wood*Email: [email protected]Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United StatesMore by Brandon C. Wood
- Eun Seon Cho*Eun Seon Cho*Email: [email protected]Department of Chemical and Biomolecular Engineering (BK21+ Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of KoreaMore by Eun Seon Cho
- Vitalie Stavila*Vitalie Stavila*Email: [email protected]Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United StatesMore by Vitalie Stavila
Abstract

A general problem when designing functional nanomaterials for energy storage is the lack of control over the stability and reactivity of metastable phases. Using the high-capacity hydrogen storage candidate LiAlH4 as an exemplar, we demonstrate an alternative approach to the thermodynamic stabilization of metastable metal hydrides by coordination to nitrogen binding sites within the nanopores of N-doped CMK-3 carbon (NCMK-3). The resulting LiAlH4@NCMK-3 material releases H2 at temperatures as low as 126 °C with full decomposition below 240 °C, bypassing the usual Li3AlH6 intermediate observed in bulk. Moreover, >80% of LiAlH4 can be regenerated under 100 MPa H2, a feat previously thought to be impossible. Nitrogen sites are critical to these improvements, as no reversibility is observed with undoped CMK-3. Density functional theory predicts a drastically reduced Al–H bond dissociation energy and supports the observed change in the reaction pathway. The calculations also provide a rationale for the solid-state reversibility, which derives from the combined effects of nanoconfinement, Li adatom formation, and charge redistribution between the metal hydride and the host.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 36 publications.
- Maxwell Tsipoaka, Ali A. Rownaghi, Fateme Rezaei. Mo2N-Activated Metal Borohydride Nanocomposites for H2 Storage. ACS Applied Materials & Interfaces 2025, 17
(16)
, 23923-23936. https://doi.org/10.1021/acsami.5c00336
- HyeonJi Kim, Seunghyuck Chi, ShinYoung Kang, Brandon C. Wood, Minkee Choi, Eun Seon Cho. Elucidating the Interfacial Effects of Nonmetallic Elements on the Dehydrogenation Behavior of Nanoconfined NaAlH4 in Zeolite-Templated Carbon. ACS Applied Nano Materials 2025, 8
(8)
, 4159-4169. https://doi.org/10.1021/acsanm.4c07192
- Mohana Shivanna, Timothy A. Elmslie, Catalin D. Spataru, Sakun Duwal, Nicholas Porcellino, Sergio Mouzaya, Christopher P. Pakhanyan, Farid El Gabaly, Saori Kawaguchi-Imada, Jinghua Guo, Zengqing Zhuo, Min-Jae Kim, Blake T. Sturtevant, Joseph Anthony Teprovich, Mark D. Allendorf, Peter A. Sharma, Vitalie Stavila. Nanoconfinement of High Hydrogen-to-Metal Ratio Lanthanum Hydrides in Functionalized Carbon Hosts. ACS Applied Energy Materials 2025, 8
(1)
, 7-15. https://doi.org/10.1021/acsaem.4c02100
- Nicholas Porcellino, Christopher Pakhanyan, Timothy Elmslie, Mohana Shivanna, Sakun Duwal, Catalin D. Spataru, Rachel Lindvall, Maddury Somayazulu, Patrick A. Ward, Saori I. Kawaguchi, Vitalie Stavila, Peter Anand Sharma, Joseph Anthony Teprovich. Pressure-Dependent Phase Behavior of Chemically Synthesized Ytterbium Hydride Nanoparticles and Confinement in CMK-3. ACS Applied Energy Materials 2024, 7
(21)
, 9608-9615. https://doi.org/10.1021/acsaem.4c01673
- YongJun Cho, Hyun Cho, Eun Seon Cho. Nanointerface Engineering of Metal Hydrides for Advanced Hydrogen Storage. Chemistry of Materials 2023, 35
(2)
, 366-385. https://doi.org/10.1021/acs.chemmater.2c02628
- Chulaluck Pratthana, Kondo-Francois Aguey-Zinsou. LiAlH4 Nanoparticles Encapsulated within Metallic Titanium Shells for Enhanced Hydrogen Storage. ACS Applied Nano Materials 2022, 5
(11)
, 16413-16422. https://doi.org/10.1021/acsanm.2c03483
- YongJun Cho, ShinYoung Kang, Brandon C. Wood, Eun Seon Cho. Heteroatom-Doped Graphenes as Actively Interacting 2D Encapsulation Media for Mg-Based Hydrogen Storage. ACS Applied Materials & Interfaces 2022, 14
(18)
, 20823-20834. https://doi.org/10.1021/acsami.1c23837
- Huilin Liu, Yunfeng Lei, Khai Chen Tan, Yazhou Wang, Xiaohua Ju, Hailiang Chu, Yongjin Zou, Teng He, Yong Shen Chua. Enhanced hydrogen storage through the synergistic integration of LiAlH4 and carbazole-based liquid organic hydrogen carrier. International Journal of Hydrogen Energy 2025, 120 , 276-281. https://doi.org/10.1016/j.ijhydene.2025.03.318
- Yong Pan, Youwang Zhu. New insight into the structural, hydrogen storage capacity, dehydrogenated mechanism and physical properties of Alkali metal AMAlH4 hydrides. Journal of Alloys and Compounds 2025, 1021 , 179661. https://doi.org/10.1016/j.jallcom.2025.179661
- Darvaish Khan, Wee‐Jun Ong. Tailoring Hydrogen Storage Materials Kinetics and Thermodynamics Through Nanostructuring, and Nanoconfinement With In‐Situ Catalysis. Interdisciplinary Materials 2025, 4
(2)
, 249-283. https://doi.org/10.1002/idm2.12234
- Valeria Lionetti, Simone Bartucci, Carlo Poselle Bonaventura, Giuseppe Conte, Giovanni Desiderio, Alfonso Policicchio, Raffaele Giuseppe Agostino. Optimized activation of coffee-ground carbons for hydrogen storage. International Journal of Hydrogen Energy 2025, 6 https://doi.org/10.1016/j.ijhydene.2025.03.188
- Shiwei Fang, Yaxiong Yang, Zhenglong Li, Yan Chu, Yingjue Chen, Yong Gao, Yanxia Liu, Wengang Cui, Xinqiang Wang, Jian Miao, Mingxia Gao, Yongfeng Liu, Wenping Sun, Jian Chen. Direct mechanochemical synthesis of nano-LiAlH4 promoted by 0.696 wt% TiCl4 catalyst surface-modified Al powder. Journal of Alloys and Compounds 2024, 1008 , 176537. https://doi.org/10.1016/j.jallcom.2024.176537
- Amanuel Gidey Gebretatios, Fawzi Banat, Chin Kui Cheng. A critical review of hydrogen storage: toward the nanoconfinement of complex hydrides from the synthesis and characterization perspectives. Sustainable Energy & Fuels 2024, 8
(22)
, 5091-5130. https://doi.org/10.1039/D4SE00353E
- Yiting Bu, Lixian Sun, Fen Xu, Yumei Luo, Chenchen Zhang, Sheng Wei, Guorong Zhang, Hongge Pan, Julan Zeng, Zhong Cao. Improved dehydrogenation of LiAlH4 by hollow 3D flower-like bimetallic composites M-NC@TiO2 (M=Ni, Co, Fe, Cu). Ceramics International 2024, 50
(18)
, 34251-34263. https://doi.org/10.1016/j.ceramint.2024.06.244
- Qingyun Shi, Yuxing Gao, Shaolei Zhao, Chunmin Zhang, Cong Liu, Chunli Wang, Shaohua Wang, Yongzhi Li, Dongming Yin, Limin Wang, Yong Cheng. Interfacial Engineering of Fluorinated TiO
2
Nanosheets with Abundant Oxygen Vacancies for Boosting the Hydrogen Storage Performance of MgH
2. Small 2024, 20
(18)
https://doi.org/10.1002/smll.202307965
- M.A. Motalib Hossain, M.A. Hannan, Sieh Kiong Tiong, Pin Jern Ker, Sayem M. Abu, Richard TK. Wong, T.M. Indra Mahlia. Exploring nanoporous carbon architectures for enhanced solid-state hydrogen storage: Recent progress and future prospects. International Journal of Hydrogen Energy 2024, 110 , 271-299. https://doi.org/10.1016/j.ijhydene.2025.02.262
- Yunting Wang, Yudong Xue, Andreas Züttel. Nanoscale engineering of solid-state materials for boosting hydrogen storage. Chemical Society Reviews 2024, 53
(2)
, 972-1003. https://doi.org/10.1039/D3CS00706E
- Pavle Ramah, Rasmus Palm, Kenneth Tuul, Jaan Aruväli, Martin Månsson, Enn Lust. Confinement of LiAlH4 in a Mesoporous Carbon Black for Improved Near-Ambient Release of H2. Reactions 2023, 4
(4)
, 635-646. https://doi.org/10.3390/reactions4040035
- Siyu Zhou, Marc Figueras‐Valls, Yifeng Shi, Yong Ding, Manos Mavrikakis, Younan Xia. Fast and Non‐equilibrium Uptake of Hydrogen by Pd Icosahedral Nanocrystals. Angewandte Chemie 2023, 135
(42)
https://doi.org/10.1002/ange.202306906
- Siyu Zhou, Marc Figueras‐Valls, Yifeng Shi, Yong Ding, Manos Mavrikakis, Younan Xia. Fast and Non‐equilibrium Uptake of Hydrogen by Pd Icosahedral Nanocrystals. Angewandte Chemie International Edition 2023, 62
(42)
https://doi.org/10.1002/anie.202306906
- Chaochao Dun, Sichi Li, Linfeng Chen, Robert D. Horton, Mark D. Allendorf, Brandon C. Wood, Vitalie Stavila, Jeffrey J. Urban. A Nanoscale Ternary Amide‐rGO Composite with Boosted Kinetics for Reversible H
2
Storage. Advanced Materials Interfaces 2023, 10
(27)
https://doi.org/10.1002/admi.202300310
- Yongfeng Liu, Wenxuan Zhang, Xin Zhang, Limei Yang, Zhenguo Huang, Fang Fang, Wenping Sun, Mingxia Gao, Hongge Pan. Nanostructured light metal hydride: Fabrication strategies and hydrogen storage performance. Renewable and Sustainable Energy Reviews 2023, 184 , 113560. https://doi.org/10.1016/j.rser.2023.113560
- Chunmin Zhang, Long Liang, Shaolei Zhao, Zhijian Wu, Shaohua Wang, Dongming Yin, Qingshuang Wang, Limin Wang, Chunli Wang, Yong Cheng. Dehydrogenation behavior and mechanism of LiAlH4 adding nano-CeO2 with different morphologies. Nano Research 2023, 16
(7)
, 9426-9434. https://doi.org/10.1007/s12274-023-5636-8
- Nur Syazwani Che Mazlan, Muhammad Firdaus Asyraf Abdul Halim Yap, Mohammad Ismail, Muhammad Syarifuddin Yahya, Nurul Amirah Ali, Noratiqah Sazelee, Yew Been Seok. Reinforce the dehydrogenation process of LiAlH4 by accumulating porous activated carbon. International Journal of Hydrogen Energy 2023, 48
(43)
, 16381-16391. https://doi.org/10.1016/j.ijhydene.2023.01.080
- Harini Gunda, Keith G. Ray, Leonard E. Klebanoff, Chaochao Dun, Maxwell A. T. Marple, Sichi Li, Peter Sharma, Raymond W. Friddle, Joshua D. Sugar, Jonathan L. Snider, Robert D. Horton, Brendan C. Davis, Jeffery M. Chames, Yi‐Sheng Liu, Jinghua Guo, Harris E. Mason, Jeffrey J. Urban, Brandon C. Wood, Mark D. Allendorf, Kabeer Jasuja, Vitalie Stavila. Hydrogen Storage in Partially Exfoliated Magnesium Diboride Multilayers. Small 2023, 19
(6)
https://doi.org/10.1002/smll.202205487
- Cezar Comanescu. Paving the Way to the Fuel of the Future—Nanostructured Complex Hydrides. International Journal of Molecular Sciences 2023, 24
(1)
, 143. https://doi.org/10.3390/ijms24010143
- Mark D. Allendorf, Vitalie Stavila, Jonathan L. Snider, Matthew Witman, Mark E. Bowden, Kriston Brooks, Ba L. Tran, Tom Autrey. Challenges to developing materials for the transport and storage of hydrogen. Nature Chemistry 2022, 14
(11)
, 1214-1223. https://doi.org/10.1038/s41557-022-01056-2
- Erika Michela Dematteis, Mads B Amdisen, Tom Autrey, Jussara Barale, Mark E Bowden, Craig E Buckley, Young Whan Cho, Stefano Deledda, Martin Dornheim, Petra de Jongh, Jakob B Grinderslev, Gökhan Gizer, Valerio Gulino, Bjørn C Hauback, Michael Heere, Tae Wook Heo, Terry D Humphries, Torben R Jensen, Shin Young Kang, Young-Su Lee, Hai-Wen Li, Sichi Li, Kasper T Møller, Peter Ngene, Shin-ichi Orimo, Mark Paskevicius, Marek Polanski, Shigeyuki Takagi, Liwen Wan, Brandon C Wood, Michael Hirscher, Marcello Baricco. Hydrogen storage in complex hydrides: past activities and new trends. Progress in Energy 2022, 4
(3)
, 032009. https://doi.org/10.1088/2516-1083/ac7499
- Cezar Comanescu. Recent Development in Nanoconfined Hydrides for Energy Storage. International Journal of Molecular Sciences 2022, 23
(13)
, 7111. https://doi.org/10.3390/ijms23137111
- Chulaluck Pratthana, Kondo-Francois Aguey-Zinsou. Surfactant Induced Synthesis of LiAlH4 and NaAlH4 Nanoparticles for Hydrogen Storage. Applied Sciences 2022, 12
(9)
, 4742. https://doi.org/10.3390/app12094742
- Shaolei Zhao, Long Liang, Baozhong Liu, Limin Wang, Fei Liang. Superior Dehydrogenation Performance of α‐AlH
3
Catalyzed by Li
3
N: Realizing 8.0 wt.% Capacity at 100 °C. Small 2022, 18
(17)
https://doi.org/10.1002/smll.202107983
- Zhijie Chen, Kent O. Kirlikovali, Karam B. Idrees, Megan C. Wasson, Omar K. Farha. Porous materials for hydrogen storage. Chem 2022, 8
(3)
, 693-716. https://doi.org/10.1016/j.chempr.2022.01.012
- Vitalie Stavila, Sichi Li, Chaochao Dun, Maxwell A. T. Marple, Harris E. Mason, Jonathan L. Snider, Joseph E. Reynolds, Farid El Gabaly, Joshua D. Sugar, Catalin D. Spataru, Xiaowang Zhou, Brennan Dizdar, Eric H. Majzoub, Ruchira Chatterjee, Junko Yano, Hendrik Schlomberg, Bettina V. Lotsch, Jeffrey J. Urban, Brandon C. Wood, Mark D. Allendorf. Defying Thermodynamics: Stabilization of Alane Within Covalent Triazine Frameworks for Reversible Hydrogen Storage. Angewandte Chemie 2021, 133
(49)
, 26019-26028. https://doi.org/10.1002/ange.202107507
- Vitalie Stavila, Sichi Li, Chaochao Dun, Maxwell A. T. Marple, Harris E. Mason, Jonathan L. Snider, Joseph E. Reynolds, Farid El Gabaly, Joshua D. Sugar, Catalin D. Spataru, Xiaowang Zhou, Brennan Dizdar, Eric H. Majzoub, Ruchira Chatterjee, Junko Yano, Hendrik Schlomberg, Bettina V. Lotsch, Jeffrey J. Urban, Brandon C. Wood, Mark D. Allendorf. Defying Thermodynamics: Stabilization of Alane Within Covalent Triazine Frameworks for Reversible Hydrogen Storage. Angewandte Chemie International Edition 2021, 60
(49)
, 25815-25824. https://doi.org/10.1002/anie.202107507
- Uiseok Jeong, HyeonJi Kim, Sreerangappa Ramesh, Nesibe A. Dogan, Sirinapa Wongwilawan, Sungsu Kang, Jungwon Park, Eun Seon Cho, Cafer T. Yavuz. Rapid Access to Ordered Mesoporous Carbons for Chemical Hydrogen Storage. Angewandte Chemie 2021, 133
(41)
, 22652-22660. https://doi.org/10.1002/ange.202109215
- Uiseok Jeong, HyeonJi Kim, Sreerangappa Ramesh, Nesibe A. Dogan, Sirinapa Wongwilawan, Sungsu Kang, Jungwon Park, Eun Seon Cho, Cafer T. Yavuz. Rapid Access to Ordered Mesoporous Carbons for Chemical Hydrogen Storage. Angewandte Chemie International Edition 2021, 60
(41)
, 22478-22486. https://doi.org/10.1002/anie.202109215
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.