ACS Publications. Most Trusted. Most Cited. Most Read
Stretchable Neuromorphic Transistor That Combines Multisensing and Information Processing for Epidermal Gesture Recognition
My Activity
    Article

    Stretchable Neuromorphic Transistor That Combines Multisensing and Information Processing for Epidermal Gesture Recognition
    Click to copy article linkArticle link copied!

    • Lu Liu
      Lu Liu
      Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin, 300350, P. R. China
      Key Laboratory of Optoelectronic Thin Film Devices and Technology of TianjinNankai University, Tianjin, 300350, P. R. China
      Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, Nankai University, Tianjin, 300350, P. R. China
      National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
      More by Lu Liu
    • Wenlong Xu
      Wenlong Xu
      Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin, 300350, P. R. China
      Key Laboratory of Optoelectronic Thin Film Devices and Technology of TianjinNankai University, Tianjin, 300350, P. R. China
      Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, Nankai University, Tianjin, 300350, P. R. China
      National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
      More by Wenlong Xu
    • Yao Ni
      Yao Ni
      Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin, 300350, P. R. China
      Key Laboratory of Optoelectronic Thin Film Devices and Technology of TianjinNankai University, Tianjin, 300350, P. R. China
      Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, Nankai University, Tianjin, 300350, P. R. China
      National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
      More by Yao Ni
    • Zhipeng Xu
      Zhipeng Xu
      Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin, 300350, P. R. China
      Key Laboratory of Optoelectronic Thin Film Devices and Technology of TianjinNankai University, Tianjin, 300350, P. R. China
      Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, Nankai University, Tianjin, 300350, P. R. China
      National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
      More by Zhipeng Xu
    • Binbin Cui
      Binbin Cui
      Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin, 300350, P. R. China
      Key Laboratory of Optoelectronic Thin Film Devices and Technology of TianjinNankai University, Tianjin, 300350, P. R. China
      Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, Nankai University, Tianjin, 300350, P. R. China
      National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
      More by Binbin Cui
    • Jiaqi Liu
      Jiaqi Liu
      Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin, 300350, P. R. China
      Key Laboratory of Optoelectronic Thin Film Devices and Technology of TianjinNankai University, Tianjin, 300350, P. R. China
      Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, Nankai University, Tianjin, 300350, P. R. China
      National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
      More by Jiaqi Liu
    • Huanhuan Wei
      Huanhuan Wei
      Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin, 300350, P. R. China
      Key Laboratory of Optoelectronic Thin Film Devices and Technology of TianjinNankai University, Tianjin, 300350, P. R. China
      Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, Nankai University, Tianjin, 300350, P. R. China
      National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
      More by Huanhuan Wei
    • Wentao Xu*
      Wentao Xu
      Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin, 300350, P. R. China
      Key Laboratory of Optoelectronic Thin Film Devices and Technology of TianjinNankai University, Tianjin, 300350, P. R. China
      Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, Nankai University, Tianjin, 300350, P. R. China
      National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
      *Email: [email protected]; [email protected]
      More by Wentao Xu
    Other Access OptionsSupporting Information (3)

    ACS Nano

    Cite this: ACS Nano 2022, 16, 2, 2282–2291
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.1c08482
    Published January 27, 2022
    Copyright © 2022 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We fabricated a nanowire-channel intrinsically stretchable neuromorphic transistor (NISNT) that perceives both tactile and visual information and emulates neuromorphic processing capabilities. The device demonstrated excellent stretching endurance of 1000 stretch cycles while retaining stable electrical properties. The device was then applied as a multisensitive afferent nerve that processes information in parallel. Compatible with skin deformation, the devices are attached to fingers to serve as conformal strain sensors and neuromorphic information-processing units for gesture recognition. The excitatory postsynaptic current in each device represents shape changes and is then analyzed using softmax activation processing of the neural network to recognize gestures. A multistage neural network that uses NISNT was used to further confirm the gestures. This work demonstrated an idea toward multisensory artificial nerves and neuromorphic systems.

    Copyright © 2022 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsnano.1c08482.

    • Comparison of recent works relating to neuromorphic device; comparison of recent works relating to stretchable synaptic device; additional figures supporting the text (PDF)

    • Video of the current response in the extended state when an NISNT was attached to a finger (MP4)

    • Video of the current response in the flexed state when an NISNT was attached to a finger (MP4)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 39 publications.

    1. Guanglong Ding, Hang Li, JiYu Zhao, Kui Zhou, Yongbiao Zhai, Ziyu Lv, Meng Zhang, Yan Yan, Su-Ting Han, Ye Zhou. Nanomaterials for Flexible Neuromorphics. Chemical Reviews 2024, 124 (22) , 12738-12843. https://doi.org/10.1021/acs.chemrev.4c00369
    2. Jingying Luo, Xin Tong, Shuai Yue, Keming Wu, Xin Li, Hongyang Zhao, Binyu Wang, Zhuojian Li, Xinfeng Liu, Zhiming M. Wang. Tailored Environment-Friendly Reverse Type-I Colloidal Quantum Dots for a Near-Infrared Optical Synapse and Artificial Vision System. ACS Nano 2024, 18 (43) , 29991-30003. https://doi.org/10.1021/acsnano.4c10795
    3. Chuanyu Fu, Mengjiao Pei, Hangyuan Cui, Shuo Ke, Yixin Zhu, Changjin Wan, Qing Wan. IGZO/PVP Composite Nanofiber Neuromorphic Transistors with Optoelectronic Synapse Emulation and Reservoir Computing. The Journal of Physical Chemistry Letters 2024, 15 (38) , 9585-9592. https://doi.org/10.1021/acs.jpclett.4c02234
    4. Jialin Meng, Jieru Song, Yuqing Fang, Tianyu Wang, Hao Zhu, Li Ji, Qing-Qing Sun, David Wei Zhang, Lin Chen. Ionic Diffusive Nanomemristors with Dendritic Competition and Cooperation Functions for Ultralow Voltage Neuromorphic Computing. ACS Nano 2024, 18 (12) , 9150-9159. https://doi.org/10.1021/acsnano.4c00424
    5. Cui Sun, Xuerong Liu, Quanxing Yao, Qian Jiang, Xiangling Xia, Youfeng Shen, Xiaoyu Ye, Hongwei Tan, Runsheng Gao, Xiaojian Zhu, Run-Wei Li. A Discolorable Flexible Synaptic Transistor for Wearable Health Monitoring. ACS Nano 2024, 18 (1) , 515-525. https://doi.org/10.1021/acsnano.3c08357
    6. Ke He, Cong Wang, Yongli He, Jiangtao Su, Xiaodong Chen. Artificial Neuron Devices. Chemical Reviews 2023, 123 (23) , 13796-13865. https://doi.org/10.1021/acs.chemrev.3c00527
    7. Jun Hyung Jeong, Min Ho Park, Hanseok Jeong, Wonsik Kim, Soohyung Park, Woojin Jeon, Seong Jun Kang. Boosting the Visible Light Optoelectronic Synaptic Characteristics of Solution-Processed IGZO Transistors via Vertically Diffused Cd Dopants. ACS Applied Electronic Materials 2023, 5 (11) , 6275-6285. https://doi.org/10.1021/acsaelm.3c01158
    8. Minglu Hu, Pei He, Weikai Zhao, Xianghui Zeng, Jiaorui He, Yucheng Chen, Xiaowen Xu, Jia Sun, Zheling Li, Junliang Yang. Machine Learning-Enabled Intelligent Gesture Recognition and Communication System Using Printed Strain Sensors. ACS Applied Materials & Interfaces 2023, 15 (44) , 51360-51369. https://doi.org/10.1021/acsami.3c10846
    9. Zhaoying Dang, Feng Guo, Huan Duan, Qiyue Zhao, Yuxiang Fu, Wenjing Jie, Kui Jin, Jianhua Hao. Black Phosphorus/Ferroelectric P(VDF-TrFE) Field-Effect Transistors with High Mobility for Energy-Efficient Artificial Synapse in High-Accuracy Neuromorphic Computing. Nano Letters 2023, 23 (14) , 6752-6759. https://doi.org/10.1021/acs.nanolett.3c01687
    10. Rui Qiu, Jiaxin Wang, Qinqi Ren, Weihong Huang, Jiahao Zhu, Dexing Liu, Xinyu Gao, Wanting Wang, Qi Liu, Min Zhang. Bilingual Bidirectional Stretchable Self-Healing Neuristors with Proprioception. ACS Nano 2023, 17 (13) , 12652-12662. https://doi.org/10.1021/acsnano.3c03212
    11. Yifei Luo, Mohammad Reza Abidian, Jong-Hyun Ahn, Deji Akinwande, Anne M. Andrews, Markus Antonietti, Zhenan Bao, Magnus Berggren, Christopher A. Berkey, Christopher John Bettinger, Jun Chen, Peng Chen, Wenlong Cheng, Xu Cheng, Seon-Jin Choi, Alex Chortos, Canan Dagdeviren, Reinhold H. Dauskardt, Chong-an Di, Michael D. Dickey, Xiangfeng Duan, Antonio Facchetti, Zhiyong Fan, Yin Fang, Jianyou Feng, Xue Feng, Huajian Gao, Wei Gao, Xiwen Gong, Chuan Fei Guo, Xiaojun Guo, Martin C. Hartel, Zihan He, John S. Ho, Youfan Hu, Qiyao Huang, Yu Huang, Fengwei Huo, Muhammad M. Hussain, Ali Javey, Unyong Jeong, Chen Jiang, Xingyu Jiang, Jiheong Kang, Daniil Karnaushenko, Ali Khademhosseini, Dae-Hyeong Kim, Il-Doo Kim, Dmitry Kireev, Lingxuan Kong, Chengkuo Lee, Nae-Eung Lee, Pooi See Lee, Tae-Woo Lee, Fengyu Li, Jinxing Li, Cuiyuan Liang, Chwee Teck Lim, Yuanjing Lin, Darren J. Lipomi, Jia Liu, Kai Liu, Nan Liu, Ren Liu, Yuxin Liu, Yuxuan Liu, Zhiyuan Liu, Zhuangjian Liu, Xian Jun Loh, Nanshu Lu, Zhisheng Lv, Shlomo Magdassi, George G. Malliaras, Naoji Matsuhisa, Arokia Nathan, Simiao Niu, Jieming Pan, Changhyun Pang, Qibing Pei, Huisheng Peng, Dianpeng Qi, Huaying Ren, John A. Rogers, Aaron Rowe, Oliver G. Schmidt, Tsuyoshi Sekitani, Dae-Gyo Seo, Guozhen Shen, Xing Sheng, Qiongfeng Shi, Takao Someya, Yanlin Song, Eleni Stavrinidou, Meng Su, Xuemei Sun, Kuniharu Takei, Xiao-Ming Tao, Benjamin C. K. Tee, Aaron Voon-Yew Thean, Tran Quang Trung, Changjin Wan, Huiliang Wang, Joseph Wang, Ming Wang, Sihong Wang, Ting Wang, Zhong Lin Wang, Paul S. Weiss, Hanqi Wen, Sheng Xu, Tailin Xu, Hongping Yan, Xuzhou Yan, Hui Yang, Le Yang, Shuaijian Yang, Lan Yin, Cunjiang Yu, Guihua Yu, Jing Yu, Shu-Hong Yu, Xinge Yu, Evgeny Zamburg, Haixia Zhang, Xiangyu Zhang, Xiaosheng Zhang, Xueji Zhang, Yihui Zhang, Yu Zhang, Siyuan Zhao, Xuanhe Zhao, Yuanjin Zheng, Yu-Qing Zheng, Zijian Zheng, Tao Zhou, Bowen Zhu, Ming Zhu, Rong Zhu, Yangzhi Zhu, Yong Zhu, Guijin Zou, Xiaodong Chen. Technology Roadmap for Flexible Sensors. ACS Nano 2023, 17 (6) , 5211-5295. https://doi.org/10.1021/acsnano.2c12606
    12. Shisheng Chen, Xueyang Ren, Jingfeng Xu, Yuehui Yuan, Jing Shi, Huaxu Ling, Yizhuo Yang, Wenjie Tang, Fangzhou Lu, Xiangqing Kong, Benhui Hu. In-Memory Tactile Sensor with Tunable Steep-Slope Region for Low-Artifact and Real-Time Perception of Mechanical Signals. ACS Nano 2023, 17 (3) , 2134-2147. https://doi.org/10.1021/acsnano.2c08110
    13. Zhenjia Chen, Rengjian Yu, Xipeng Yu, Enlong Li, Congyong Wang, Yaqian Liu, Tailiang Guo, Huipeng Chen. Bioinspired Artificial Motion Sensory System for Rotation Recognition and Rapid Self-Protection. ACS Nano 2022, 16 (11) , 19155-19164. https://doi.org/10.1021/acsnano.2c08328
    14. Ke He, Yaqing Liu, Jiancan Yu, Xintong Guo, Ming Wang, Liandong Zhang, Changjin Wan, Ting Wang, Changjiu Zhou, Xiaodong Chen. Artificial Neural Pathway Based on a Memristor Synapse for Optically Mediated Motion Learning. ACS Nano 2022, 16 (6) , 9691-9700. https://doi.org/10.1021/acsnano.2c03100
    15. Wei Sheng Wang, Li Qiang Zhu. Recent advances in neuromorphic transistors for artificial perception applications. Science and Technology of Advanced Materials 2023, 24 (1) https://doi.org/10.1080/14686996.2022.2152290
    16. Cui Sun, Xuerong Liu, Qian Jiang, Xiaoyu Ye, Xiaojian Zhu, Run-Wei Li. Emerging electrolyte-gated transistors for neuromorphic perception. Science and Technology of Advanced Materials 2023, 24 (1) https://doi.org/10.1080/14686996.2022.2162325
    17. Yunchao Xu, Gengming Zhang, Wanrong Liu, Chenxing Jin, Yiling Nie, Jia Sun, Junliang Yang. Flexible multiterminal photoelectronic neurotransistors based on self‐assembled rubber semiconductors for spatiotemporal information processing. SmartMat 2023, 4 (2) https://doi.org/10.1002/smm2.1162
    18. Fandi Chen, Shuo Zhang, Long Hu, Jiajun Fan, Chun‐Ho Lin, Peiyuan Guan, Yingze Zhou, Tao Wan, Shuhua Peng, Chun‐Hui Wang, Liao Wu, Teri McLean Furlong, Nagarajan Valanoor, Dewei Chu. Bio‐Inspired Artificial Perceptual Devices for Neuromorphic Computing and Gesture Recognition. Advanced Functional Materials 2023, 12 , 2300266. https://doi.org/10.1002/adfm.202300266
    19. Zhiyuan Li, Wei Tang, Beining Zhang, Rui Yang, Xiangshui Miao. Emerging memristive neurons for neuromorphic computing and sensing. Science and Technology of Advanced Materials 2023, 4 https://doi.org/10.1080/14686996.2023.2188878
    20. Tao Guo, Jiawei Ge, Yixuan Jiao, Youchao Teng, Bai Sun, Wen Huang, Hatameh Asgarimoghaddam, Kevin P. Musselman, Yin Fang, Y. Norman Zhou, Yimin A. Wu. Intelligent matter endows reconfigurable temperature and humidity sensations for in-sensor computing. Materials Horizons 2023, 10 (3) , 1030-1041. https://doi.org/10.1039/D2MH01491B
    21. Tao Zeng, Zhongqiang Wang, Ya Lin, YanKun Cheng, Xuanyu Shan, Ye Tao, Xiaoning Zhao, Haiyang Xu, Yichun Liu. Doppler Frequency‐Shift Information Processing in WO x ‐Based Memristive Synapse for Auditory Motion Perception. Advanced Science 2023, 20 , 2300030. https://doi.org/10.1002/advs.202300030
    22. Tingting Miao, Bin Cui, Cungang Huang, Di Wang, Long Liu, Weikang Liu, Yongzhe Li, Ruiyue Chu, Xue Ren, Liang Liu, Bin Cheng, Guangjun Zhou, Hongwei Qin, Guozhong Xing, Jifan Hu. Gate‐Tunable Anisotropic Oxygen Ion Migration in SrCoO x : Toward Emerging Oxide‐Based Artificial Synapses. Advanced Intelligent Systems 2023, 5 (3) https://doi.org/10.1002/aisy.202200287
    23. Minho Jin, Haeyeon Lee, Jae Hak Lee, Daeyoung Han, Changik Im, Jiyeon Kim, Moongu Jeon, Eungkyu Lee, Youn Sang Kim. Ferroelectrically modulated ion dynamics in Li + electrolyte-gated transistors for neuromorphic computing. Applied Physics Reviews 2023, 10 (1) , 011407. https://doi.org/10.1063/5.0130742
    24. Z Yousefi Darani, I Hachen, M E Diamond. Dynamics of the judgment of tactile stimulus intensity. Neuromorphic Computing and Engineering 2023, 3 (1) , 014014. https://doi.org/10.1088/2634-4386/acc08e
    25. Kuakua Lu, Longfei Li, Sai Jiang, Xu Chen, Qiong Chang, Yi Shi, Yun Li. Advanced Bioinspired Organic Sensors for Future‐Oriented Intelligent Applications. Advanced Sensor Research 2023, 22 , 2200066. https://doi.org/10.1002/adsr.202200066
    26. Yuping Deng, Mingyou Zhao, Yuan Ma, Shangbin Liu, Mingda Liu, Boyu Shen, Rongfeng Li, He Ding, Huanyu Cheng, Xing Sheng, Wangyang Fu, Zehui Li, Milin Zhang, Lan Yin. A Flexible and Biomimetic Olfactory Synapse with Gasotransmitter‐Mediated Plasticity. Advanced Functional Materials 2023, 7 , 2214139. https://doi.org/10.1002/adfm.202214139
    27. Gengxu Chen, Xipeng Yu, Changsong Gao, Yan Dai, Yanxue Hao, Rengjian Yu, Huipeng Chen, Tailiang Guo. Temperature-controlled multisensory neuromorphic devices for artificial visual dynamic capture enhancement. Nano Research 2023, 3 https://doi.org/10.1007/s12274-023-5456-x
    28. Xiumei Wang, Huihuang Yang, Enlong Li, Chunbin Cao, Wen Zheng, Huipeng Chen, Wenwu Li. Stretchable Transistor‐Structured Artificial Synapses for Neuromorphic Electronics. Small 2023, 2 , 2205395. https://doi.org/10.1002/smll.202205395
    29. Lu Liu, Yao Ni, Jiaqi Liu, Yihang Wang, Chengpeng Jiang, Wentao Xu. An Artificial Autonomic Nervous System That Implements Heart and Pupil as Controlled by Artificial Sympathetic and Parasympathetic Nerves. Advanced Functional Materials 2023, 33 (9) , 2210119. https://doi.org/10.1002/adfm.202210119
    30. P Monalisha, Shengyao Li, Tianli Jin, P S Anil Kumar, S N Piramanayagam. Synaptic plasticity investigation in permalloy based channel material for neuromorphic computing. Journal of Physics D: Applied Physics 2023, 56 (1) , 015302. https://doi.org/10.1088/1361-6463/ac9b6b
    31. Yeongjun Lee, Jin Young Oh, Tae‐Woo Lee. Neuromorphic Skin Based on Emerging Artificial Synapses. Advanced Materials Technologies 2022, 7 (12) , 2200193. https://doi.org/10.1002/admt.202200193
    32. Kun Liang, Rui Wang, Huihui Ren, Dingwei Li, Yingjie Tang, Yan Wang, Yitong Chen, Chunyan Song, Fanfan Li, Guolei Liu, Hong Wang, Wan Ru Leow, Bowen Zhu. Printable Coffee‐Ring Structures for Highly Uniform All‐Oxide Optoelectronic Synaptic Transistors. Advanced Optical Materials 2022, 10 (24) , 2201754. https://doi.org/10.1002/adom.202201754
    33. Yang Li, Lina Yang, Zhanmei He, Yijian Liu, Hongfei Wang, Wenbin Zhang, Lu Teng, Da Chen, Ge Song. Low‐Cost Data Glove Based on Deep‐Learning‐Enhanced Flexible Multiwalled Carbon Nanotube Sensors for Real‐Time Gesture Recognition. Advanced Intelligent Systems 2022, 4 (11) , 2200128. https://doi.org/10.1002/aisy.202200128
    34. Qihan Liu, Li Yin, Chun Zhao, Jingyi Wang, Ziang Wu, Hao Lei, Yina Liu, Bowen Tian, Zhiyuan Zhang, Zishen Zhao, Ruofu Liu, Changzeng Ding, Yunfei Han, Chang-Qi Ma, Pengfei Song, Ivona Z. Mitrovic, Eng Gee Lim, Zhen Wen. Hybrid mixed-dimensional perovskite/metal-oxide heterojunction for all-in-one opto-electric artificial synapse and retinal-neuromorphic system. Nano Energy 2022, 102 , 107686. https://doi.org/10.1016/j.nanoen.2022.107686
    35. Sun-Woo Jo, Seongjae Cho, Chang-Hyun Kim. Key factors affecting contact resistance in coplanar organic thin-film transistors. Journal of Physics D: Applied Physics 2022, 55 (40) , 405101. https://doi.org/10.1088/1361-6463/ac8124
    36. Weixi Ye, Jiaming Lin, Xianghong Zhang, Qiming Lian, Yaqian Liu, Hui Wang, Shengyuan Wu, Huipeng Chen, Tailiang Guo. Self-powered perception system based on triboelectric nanogenerator and artificial neuron for fast-speed multilevel feature recognition. Nano Energy 2022, 100 , 107525. https://doi.org/10.1016/j.nanoen.2022.107525
    37. Hyunseok Shim, Seonmin Jang, Anish Thukral, Seongsik Jeong, Hyeseon Jo, Bin Kan, Shubham Patel, Guodan Wei, Wei Lan, Hae-Jin Kim, Cunjiang Yu. Artificial neuromorphic cognitive skins based on distributed biaxially stretchable elastomeric synaptic transistors. Proceedings of the National Academy of Sciences 2022, 119 (23) https://doi.org/10.1073/pnas.2204852119
    38. Chenxing Jin, Wanrong Liu, Yulong Huang, Yunchao Xu, Yiling Nie, Gengming Zhang, Pei He, Jia Sun, Junliang Yang. Printable ion-gel-gated In 2 O 3 synaptic transistor array for neuro-inspired memory. Applied Physics Letters 2022, 120 (23) , 233701. https://doi.org/10.1063/5.0092968
    39. Zi-Han Jiang, Shuo Ke, Ying Zhu, Yi-Xin Zhu, Li Zhu, Chang-Jin Wan, Qing Wan, . Flexible neuromorphic transistors and their biomimetric sensing application. Acta Physica Sinica 2022, 71 (14) , 147301. https://doi.org/10.7498/aps.71.20220308

    ACS Nano

    Cite this: ACS Nano 2022, 16, 2, 2282–2291
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.1c08482
    Published January 27, 2022
    Copyright © 2022 American Chemical Society

    Article Views

    5240

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.