Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Quantum Confinement in Epitaxial Armchair Graphene Nanoribbons on SiC Sidewalls
My Activity
    Article

    Quantum Confinement in Epitaxial Armchair Graphene Nanoribbons on SiC Sidewalls
    Click to copy article linkArticle link copied!

    Other Access Options

    ACS Nano

    Cite this: ACS Nano 2023, 17, 20, 20345–20352
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.3c06449
    Published October 3, 2023
    Copyright © 2023 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The integration of graphene into devices necessitates large-scale growth and precise nanostructuring. Epitaxial growth of graphene on SiC surfaces offers a solution by enabling both simultaneous and targeted realization of quantum structures. We investigated the impact of local variations in the width and edge termination of armchair graphene nanoribbons (AGNRs) on quantum confinement effects using scanning tunneling microscopy and spectroscopy (STM, STS), along with density-functional tight-binding (DFTB) calculations. AGNRs were grown as an ensemble on refaceted sidewalls of SiC mesas with adjacent AGNRs separated by SiC(0001) terraces hosting a buffer layer seamlessly connected to the AGNRs. Energy band gaps measured by STS at the centers of ribbons of different widths align with theoretical expectations, indicating that hybridization of π-electrons with the SiC substrate mimics sharp electronic edges. However, regardless of the ribbon width, band gaps near the edges of AGNRs are significantly reduced. DFTB calculations successfully replicate this effect by considering the role of edge passivation, while strain or electric fields do not account for the observed effect. Unlike idealized nanoribbons with uniform hydrogen passivation, AGNRs on SiC sidewalls generate additional energy bands with non-pz character and nonuniform distribution across the nanoribbon. In AGNRs terminated with Si, these additional states occur at the conduction band edge and rapidly decay into the bulk of the ribbon. This agrees with our experimental findings, demonstrating that edge passivation is crucial in determining the local electronic properties of epitaxial nanoribbons.

    Copyright © 2023 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article has not yet been cited by other publications.

    ACS Nano

    Cite this: ACS Nano 2023, 17, 20, 20345–20352
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.3c06449
    Published October 3, 2023
    Copyright © 2023 American Chemical Society

    Article Views

    887

    Altmetric

    -

    Citations

    -
    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.