Rapid Deployment of Antiviral Drugs Using Single-Virus Tracking and Machine LearningClick to copy article linkArticle link copied!
- Meng-Die ZhuMeng-Die ZhuState Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. ChinaMore by Meng-Die Zhu
- Xue-Hui ShiXue-Hui ShiState Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. ChinaMore by Xue-Hui Shi
- Hui-Ping WenHui-Ping WenState Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. ChinaMore by Hui-Ping Wen
- Li-Ming ChenLi-Ming ChenState Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. ChinaMore by Li-Ming Chen
- Dan-Dan FuDan-Dan FuCollege of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. ChinaMore by Dan-Dan Fu
- Lei DuLei DuCollege of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. ChinaMore by Lei Du
- Jing LiJing LiCollege of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. ChinaMore by Jing Li
- Qian-Qian WanQian-Qian WanState Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. ChinaMore by Qian-Qian Wan
- Zhi-Gang WangZhi-Gang WangState Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. ChinaMore by Zhi-Gang Wang
- Chuanming YuChuanming YuState Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. ChinaMore by Chuanming Yu
- Dai-Wen PangDai-Wen PangState Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. ChinaMore by Dai-Wen Pang
- Shu-Lin Liu*Shu-Lin Liu*Email: [email protected]State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. ChinaMore by Shu-Lin Liu
Abstract
The outbreak of emerging acute viral diseases urgently requires the acceleration of specialized antiviral drug development, thus widely adopting phenotypic screening as a strategy for drug repurposing in antiviral research. However, traditional phenotypic screening methods typically require several days of experimental cycles and lack visual confirmation of a drug’s ability to inhibit viral infection. Here, we report a robust method that utilizes quantum-dot-based single-virus tracking and machine learning to generate unique single-virus infection fingerprint data from viral trajectories and detect the dynamic changes in viral movement following drug administration. Our findings demonstrated that this approach can successfully identify viral infection patterns at various infection phases and predict antiviral drug efficacy through machine learning within 90 min. This method provides valuable support for assessing the efficacy of antiviral drugs and offers promising applications for responding to future outbreaks of emerging viruses.
Cited By
This article has not yet been cited by other publications.
Article Views
Altmetric
Citations
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.