ACS Publications. Most Trusted. Most Cited. Most Read
High-Density 2D Homo- and Hetero- Plasmonic Dimers with Universal Sub-10-nm Gaps
My Activity
    Article

    High-Density 2D Homo- and Hetero- Plasmonic Dimers with Universal Sub-10-nm Gaps
    Click to copy article linkArticle link copied!

    View Author Information
    † ‡ Materials Science and Engineering, Electrical Engineering, and §Stanford Nano Shared Facilities, Stanford University, Stanford, California, United States
    Department of Physics and Astronomy, Laboratory for Nanophotonics, Rice University, Houston, Texas, United States
    *Address correspondence to [email protected] (P. Nordlander); [email protected] (S. X. Wang).
    Other Access OptionsSupporting Information (1)

    ACS Nano

    Cite this: ACS Nano 2015, 9, 9, 9331–9339
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.5b03090
    Published July 22, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Fabrication of high-density plasmonic dimers on a large (wafer) scale is crucial for applications in surface-enhanced spectroscopy, bio- and molecular sensing, and optoelectronics. Here, we present an experimental approach based on nanoimprint lithography and shadow evaporation that allows for the fabrication of high-density, large-scale homo- (Au–Au and Ag–Ag) and hetero- (Au–Ag) dimer substrates with precise and consistent sub-10-nm gaps. We performed scanning electron, scanning transmission electron, and atomic force microscopy studies along with a complete electron energy-loss spectroscopy (EELS) characterization. We observed distinct plasmonic modes on these dimers, which are well interpreted by finite-difference time-domain (FDTD) and plasmon hybridization calculations.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Angular deposition; AFM imaging of dimer sample; high-magnification TEM images; ZLP for EELS measurement; additional EELS measurements of Ag–Ag, Au–Au, and Au–Ag dimers; FDTD geometry; plasmon hybridization of Ag–Ag nanospheres dimer. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.5b03090.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 53 publications.

    1. Zachary R. Lawson, Arin S. Preston, Matiyas T. Korsa, Nathaniel L. Dominique, Walker J. Tuff, Eli Sutter, Jon P. Camden, Jost Adam, Robert A. Hughes, Svetlana Neretina. Plasmonic Gold Trimers and Dimers with Air-Filled Nanogaps. ACS Applied Materials & Interfaces 2022, 14 (24) , 28186-28198. https://doi.org/10.1021/acsami.2c04800
    2. Li Tian, Chen Wang, Hongwei Zhao, Fuwei Sun, Hao Dong, Kai Feng, Peng Wang, Guokang He, Guangtao Li. Rational Approach to Plasmonic Dimers with Controlled Gap Distance, Symmetry, and Capability of Precisely Hosting Guest Molecules in Hotspot Regions. Journal of the American Chemical Society 2021, 143 (23) , 8631-8638. https://doi.org/10.1021/jacs.0c13377
    3. Pierre Bléteau, Mathieu Bastide, Sarra Gam-Derouich, Pascal Martin, Romeo Bonnet, Jean-Christophe Lacroix. Plasmon-Induced Grafting in the Gap of Gold Nanoparticle Dimers for Plasmonic Molecular Junctions. ACS Applied Nano Materials 2020, 3 (8) , 7789-7794. https://doi.org/10.1021/acsanm.0c01334
    4. Peng Sun, Wanlin Wang, Wang Zhang, Shuqian Zhang, Jiajun Gu, Lan Yang, Dejan Pantelić, Branislav Jelenković, Di Zhang. 3D Interconnected Gyroid Au–CuS Materials for Efficient Solar Steam Generation. ACS Applied Materials & Interfaces 2020, 12 (31) , 34837-34847. https://doi.org/10.1021/acsami.0c06701
    5. Hyeon-Ho Jeong, Melanie C. Adams, Jan-Philipp Günther, Mariana Alarcón-Correa, Insook Kim, Eunjin Choi, Cornelia Miksch, Alison F. Mark, Andrew G. Mark, Peer Fischer. Arrays of Plasmonic Nanoparticle Dimers with Defined Nanogap Spacers. ACS Nano 2019, 13 (10) , 11453-11459. https://doi.org/10.1021/acsnano.9b04938
    6. Mingliang Zhang, Victor Pacheco-Peña, Yao Yu, Wenxiang Chen, Nicholas J. Greybush, Aaron Stein, Nader Engheta, Christopher B. Murray, Cherie R. Kagan. Nanoimprinted Chiral Plasmonic Substrates with Three-Dimensional Nanostructures. Nano Letters 2018, 18 (11) , 7389-7394. https://doi.org/10.1021/acs.nanolett.8b03785
    7. Jeong-Eun Park, Yoonjae Jung, Minho Kim, Jwa-Min Nam. Quantitative Nanoplasmonics. ACS Central Science 2018, 4 (10) , 1303-1314. https://doi.org/10.1021/acscentsci.8b00423
    8. Songbo Ni, Heiko Wolf, and Lucio Isa . Programmable Assembly of Hybrid Nanoclusters. Langmuir 2018, 34 (7) , 2481-2488. https://doi.org/10.1021/acs.langmuir.7b03944
    9. Qi Hao, Hao Huang, Xingce Fan, Yin Yin, Jiawei Wang, Wan Li, Teng Qiu, Libo Ma, Paul K. Chu, and Oliver G. Schmidt . Controlled Patterning of Plasmonic Dimers by Using an Ultrathin Nanoporous Alumina Membrane as a Shadow Mask. ACS Applied Materials & Interfaces 2017, 9 (41) , 36199-36205. https://doi.org/10.1021/acsami.7b11428
    10. Dmitry Kurouski, Nicolas Large, Naihao Chiang, Anne-Isabelle Henry, Tamar Seideman, George C. Schatz, and Richard P. Van Duyne . Unraveling the Near- and Far-Field Relationship of 2D Surface-Enhanced Raman Spectroscopy Substrates Using Wavelength-Scan Surface-Enhanced Raman Excitation Spectroscopy. The Journal of Physical Chemistry C 2017, 121 (27) , 14737-14744. https://doi.org/10.1021/acs.jpcc.7b04787
    11. Valentin Flauraud, Gabriel D. Bernasconi, Jérémy Butet, Duncan T. L. Alexander, Olivier J. F. Martin, and Jürgen Brugger . Mode Coupling in Plasmonic Heterodimers Probed with Electron Energy Loss Spectroscopy. ACS Nano 2017, 11 (4) , 3485-3495. https://doi.org/10.1021/acsnano.6b08589
    12. Gabriel D. Bernasconi, Jérémy Butet, Valentin Flauraud, Duncan Alexander, Juergen Brugger, and Olivier J. F. Martin . Where Does Energy Go in Electron Energy Loss Spectroscopy of Nanostructures?. ACS Photonics 2017, 4 (1) , 156-164. https://doi.org/10.1021/acsphotonics.6b00761
    13. Sadegh Yazdi, Josée R. Daniel, Nicolas Large, George C. Schatz, Denis Boudreau, and Emilie Ringe . Reversible Shape and Plasmon Tuning in Hollow AgAu Nanorods. Nano Letters 2016, 16 (11) , 6939-6945. https://doi.org/10.1021/acs.nanolett.6b02946
    14. Chong Chen, Bin Ai, Yu Wang, Zifan Xiao, Ge Xiao, Gang Zhang. In Situ Asymmetric Patterning for Information Encryption. Advanced Functional Materials 2024, https://doi.org/10.1002/adfm.202409004
    15. Wenpeng Liu, Kyungwha Chung, Subin Yu, Luke P. Lee. Nanoplasmonic biosensors for environmental sustainability and human health. Chemical Society Reviews 2024, 53 (21) , 10491-10522. https://doi.org/10.1039/D3CS00941F
    16. Muhammad Aamir Iqbal, Wang Lin, Wang Pengyun, Jianrong Qiu, Xiaofeng Liu. Ultrafast Plasmonics for All-Optical Switching and Pulsed Lasers. Ultrafast Science 2024, 4 https://doi.org/10.34133/ultrafastscience.0048
    17. Chengjie Zhou, Wencheng Niu, Lei Li, Dandan Hao, Hao Huang, Houqiang Fu, Xingqiang Liu, Xuming Zou, Fukai Shan, Zhenyu Yang. Surface-plasmon-enhanced MoS2 multifunctional optoelectronic memory for emulating human retinal imaging. Applied Physics Letters 2023, 123 (12) https://doi.org/10.1063/5.0168362
    18. Jang‐Hwan Han, Doeun Kim, Juhwan Kim, Gyurin Kim, Peer Fischer, Hyeon‐Ho Jeong. Plasmonic Nanostructure Engineering with Shadow Growth. Advanced Materials 2023, 35 (34) https://doi.org/10.1002/adma.202107917
    19. Chia‐Ping Su, Kari Ruotsalainen, Alessandro Nicolaou, Matteo Gatti, Alexandre Gloter. Plasmonic Properties of SrVO 3 Bulk and Nanostructures. Advanced Optical Materials 2023, 11 (6) https://doi.org/10.1002/adom.202202415
    20. Fuwei Sun, Li Tian, Guokang He, Ning Gao, Hongwei Zhao, Weigang Liu, Chao Liu, Qi An, Chen Wang, Guangtao Li. Creation of Assembled Plasmonic Network Architectures with Selective Capture of Guest Molecules in Hotspots Region. Advanced Optical Materials 2023, 11 (6) https://doi.org/10.1002/adom.202201911
    21. Chen Wang, Fuwei Sun, Guokang He, Hongwei Zhao, Li Tian, Yibo Cheng, Guangtao Li. Noble metal nanoparticles meet molecular cages: A tale of integration and synergy. Current Opinion in Colloid & Interface Science 2023, 63 , 101660. https://doi.org/10.1016/j.cocis.2022.101660
    22. Naby Hadilou, Somayeh Souri, H. A. Navid, Rasoul Sadighi Bonabi, Abbas Anvari. Nanoengineering of conductively coupled metallic nanoparticles towards selective resonance modes within the near-infrared regime. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-11539-4
    23. An Cao, Jingyi Tan, Dilong Liu, Zhiming Chen, Liguang Dou, Zhiqiang Liu, Yue Li. Mass-determining role in the electrophoretic separation of colloidal plasmonic nanoparticle oligomers. Nanoscale 2022, 14 (38) , 14161-14168. https://doi.org/10.1039/D2NR03585E
    24. Mengmeng Zhang, Yue Xu, Xudong Peng, Hongyu Chen, Hong Wang. Controllable synthesis of gold nanoparticle dimers via site-selective growth. Chemical Communications 2022, 58 (57) , 7932-7935. https://doi.org/10.1039/D2CC00801G
    25. Jichuan Qiu, Quynh N. Nguyen, Zhiheng Lyu, Qiuxiang Wang, Younan Xia. Bimetallic Janus Nanocrystals: Syntheses and Applications. Advanced Materials 2022, 34 (1) https://doi.org/10.1002/adma.202102591
    26. Gao-feng Wu, Jian Zhu, Guo-jun Weng, Jian-jun Li, Jun-wu Zhao. Heterodimers of metal nanoparticles: synthesis, properties, and biological applications. Microchimica Acta 2021, 188 (10) https://doi.org/10.1007/s00604-021-05002-w
    27. Huimin Shi, Xupeng Zhu, Shi Zhang, Guilin Wen, Mengjie Zheng, Huigao Duan. Plasmonic metal nanostructures with extremely small features: new effects, fabrication and applications. Nanoscale Advances 2021, 3 (15) , 4349-4369. https://doi.org/10.1039/D1NA00237F
    28. Junais Habeeb Mokkath. Nanoscale field enhancement of a close-packed nanoparticle cluster. Physica E: Low-dimensional Systems and Nanostructures 2021, 129 , 114670. https://doi.org/10.1016/j.physe.2021.114670
    29. Junais Habeeb Mokkath. A quantum mechanical study of optical excitations in nanodisk plasmonic oligomers. Physical Chemistry Chemical Physics 2019, 21 (48) , 26540-26548. https://doi.org/10.1039/C9CP04566J
    30. Mufasila Mumthaz Muhammed, Junais Habeeb Mokkath. Probing Subnanometric-Scale Hotspots in Metallic Interfaces. Plasmonics 2019, 14 (6) , 2031-2043. https://doi.org/10.1007/s11468-019-01001-z
    31. Ming Zhang, Xiaoliang Ma, Mingbo Pu, Kaipeng Liu, Yinghui Guo, Yijia Huang, Xin Xie, Xiong Li, Honglin Yu, Xiangang Luo. Large‐Area and Low‐Cost Nanoslit‐Based Flexible Metasurfaces for Multispectral Electromagnetic Wave Manipulation. Advanced Optical Materials 2019, 7 (23) https://doi.org/10.1002/adom.201900657
    32. Xinping Zhang, Jinghui Yang. Ultrafast Plasmonic Optical Switching Structures and Devices. Frontiers in Physics 2019, 7 https://doi.org/10.3389/fphy.2019.00190
    33. Mufasila Mumthaz Muhammed, Junais Habeeb Mokkath. Linear acene molecules in plasmonic cavities: mapping evolution of optical absorption spectra and electric field intensity enhancements. New Journal of Chemistry 2019, 43 (27) , 10774-10783. https://doi.org/10.1039/C9NJ02132A
    34. Junais Habeeb Mokkath. Optical properties of nanodisk heterodimers using quantum chemical calculations. Physica E: Low-dimensional Systems and Nanostructures 2019, 111 , 226-232. https://doi.org/10.1016/j.physe.2019.03.023
    35. Junais Habeeb Mokkath. Optical Response Tuning of Compositional Heterodimers: a TDDFT Study. Plasmonics 2019, 14 (3) , 539-545. https://doi.org/10.1007/s11468-018-0832-1
    36. Mufasila Mumthaz Muhammed, Junais Habeeb Mokkath. Optical resonance coupling in compositionally different nanocube–nanosphere heterodimers. New Journal of Chemistry 2019, 43 (18) , 6959-6964. https://doi.org/10.1039/C9NJ00855A
    37. Adriana Scarangella, Marvine Soumbo, Adnen Mlayah, Caroline Bonafos, Marie-Carmen Monje, Christine Roques, Cecile Marcelot, Nicolas Large, Thameur Dammak, Kremena Makasheva. Detection of the conformational changes of Discosoma red fluorescent proteins adhered on silver nanoparticles-based nanocomposites via surface-enhanced Raman scattering. Nanotechnology 2019, 30 (16) , 165101. https://doi.org/10.1088/1361-6528/aaff79
    38. Junais Habeeb Mokkath. Optical properties of aluminum intercalated magnesium nanoparticle square array: a computational study. Physical Chemistry Chemical Physics 2019, 21 (12) , 6750-6755. https://doi.org/10.1039/C9CP00867E
    39. Junais Habeeb Mokkath. Probing role of shell thickness in the optical response of core-shell nanorods. Chemical Physics Letters 2019, 717 , 175-181. https://doi.org/10.1016/j.cplett.2019.01.023
    40. Bin Ai, Yiping Zhao. Glancing angle deposition meets colloidal lithography: a new evolution in the design of nanostructures. Nanophotonics 2018, 8 (1) , 1-26. https://doi.org/10.1515/nanoph-2018-0105
    41. Jian Zhang, Xinping Zhang. Bimetallic Network with Hetero‐interfacial Plasmons. Advanced Materials Interfaces 2018, 5 (15) https://doi.org/10.1002/admi.201800580
    42. Mingliang Zhang, Jiacen Guo, Yao Yu, Yaoting Wu, Hongseok Yun, Davit Jishkariani, Wenxiang Chen, Nicholas J. Greybush, Christian Kübel, Aaron Stein, Christopher B. Murray, Cherie R. Kagan. 3D Nanofabrication via Chemo‐Mechanical Transformation of Nanocrystal/Bulk Heterostructures. Advanced Materials 2018, 30 (22) https://doi.org/10.1002/adma.201800233
    43. Junais Habeeb Mokkath. Optical properties of bimetallic compositional heterodimers. Physical Chemistry Chemical Physics 2018, 20 (28) , 19017-19022. https://doi.org/10.1039/C8CP03346C
    44. Sami Pekdemir, Sema Karabel, N. Burak Kiremitler, Xiaoying Liu, Paul F. Nealey, M. Serdar Onses. Modulating the Kinetics of Nanoparticle Adsorption for Simple and High‐Yield Fabrication of Plasmonic Heterostructures as SERS Substrates. ChemPhysChem 2017, 18 (15) , 2114-2122. https://doi.org/10.1002/cphc.201700368
    45. Hui‐Hsin Hsiao, Cheng Hung Chu, Din Ping Tsai. Fundamentals and Applications of Metasurfaces. Small Methods 2017, 1 (4) https://doi.org/10.1002/smtd.201600064
    46. Qi Hao, Hao Huang, Xingce Fan, Xiangyu Hou, Yin Yin, Wan Li, Lifang Si, Haiyan Nan, Huaiyu Wang, Yongfeng Mei, Teng Qiu, Paul K Chu. Facile design of ultra-thin anodic aluminum oxide membranes for the fabrication of plasmonic nanoarrays. Nanotechnology 2017, 28 (10) , 105301. https://doi.org/10.1088/1361-6528/aa596d
    47. Mingliang Zhang, Daniel J. Magagnosc, Iñigo Liberal, Yao Yu, Hongseok Yun, Haoran Yang, Yaoting Wu, Jiacen Guo, Wenxiang Chen, Young Jae Shin, Aaron Stein, James M. Kikkawa, Nader Engheta, Daniel S. Gianola, Christopher B. Murray, Cherie R. Kagan. High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture. Nature Nanotechnology 2017, 12 (3) , 228-232. https://doi.org/10.1038/nnano.2016.235
    48. Jon W. Stewart, Gleb M. Akselrod, David R. Smith, Maiken H. Mikkelsen. Toward Multispectral Imaging with Colloidal Metasurface Pixels. Advanced Materials 2017, 29 (6) https://doi.org/10.1002/adma.201602971
    49. Lingxiao Liu, Feifei Wu, Dongyang Xiao, Fei Teng, Daren Xu, Lei Feng, Nan Lu. Fabrication of plasmonic opposite metal spindles in nanowells by shadow deposition for sensing. RSC Advances 2017, 7 (8) , 4759-4762. https://doi.org/10.1039/C6RA25332F
    50. Hwan-Jin Jeon, Hyeon Su Jeong. The high-resolution nanostructuring of Si wafer surface with 10 nm scale using a combined ion bombarding technique and chemical reaction. Macromolecular Research 2016, 24 (11) , 1014-1019. https://doi.org/10.1007/s13233-016-4136-z
    51. Yang Yang, Zhipeng Hu, Yin Wang, Baoju Wang, Qiuqiang Zhan, Yuan Zhang, Xianyu Ao. Broadband SERS substrates by oblique angle deposition method. Optical Materials Express 2016, 6 (8) , 2644. https://doi.org/10.1364/OME.6.002644
    52. Abdul Rahim Ferhan, Dong-Hwan Kim. Nanoparticle polymer composites on solid substrates for plasmonic sensing applications. Nano Today 2016, 11 (4) , 415-434. https://doi.org/10.1016/j.nantod.2016.07.001
    53. Haibin Ni, Ming Wang, Hui Hao, Jing Zhou. Integration of tunable two-dimensional nanostructures on a chip by an improved nanosphere lithography method. Nanotechnology 2016, 27 (22) , 225301. https://doi.org/10.1088/0957-4484/27/22/225301

    ACS Nano

    Cite this: ACS Nano 2015, 9, 9, 9331–9339
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.5b03090
    Published July 22, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    2583

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.