Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

High-Performance Organic Vertical Thin Film Transistor Using Graphene as a Tunable Contact

View Author Information
‡ § Department of Materials Science and Engineering, Department of Chemistry and Biochemistry, and §California Nanosystems Institute, University of California, Los Angeles, California 90095, United States
*Address correspondence to [email protected], [email protected]
Cite this: ACS Nano 2015, 9, 11, 11102–11108
Publication Date (Web):October 15, 2015
https://doi.org/10.1021/acsnano.5b04612
Copyright © 2015 American Chemical Society

    Article Views

    4379

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Here we present a general strategy for the fabrication of high-performance organic vertical thin film transistors (OVTFTs) based on the heterostructure of graphene and different organic semiconductor thin films. Utilizing the unique tunable work function of graphene, we show that the vertical carrier transport across the graphene–organic semiconductor junction can be effectively modulated to achieve an ON/OFF ratio greater than 103. Importantly, with the OVTFT design, the channel length is determined by the organic thin film thickness rather than by lithographic resolution. It can thus readily enable transistors with ultrashort channel lengths (<200 nm) to afford a delivering current greatly exceeding that of conventional planar TFTs, thus enabling a respectable operation frequency (up to 0.4 MHz) while using low-mobility organic semiconductors and low-resolution lithography. With this vertical device architecture, the entire organic channel is sandwiched and naturally protected between the source and drain electrodes, which function as the self-passivation layer to ensure stable operation of both p- and n-type OVTFTs in ambient conditions and enable complementary circuits with voltage gain. The creation of high-performance and highly robust OVTFTs can open up exciting opportunities in large-area organic macroelectronics.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.5b04612.

    • Figure S1–S5 (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 85 publications.

    1. Likuan Ma, Yiliu Wang, Yuan Liu. van der Waals Contact for Two-Dimensional Transition Metal Dichalcogenides. Chemical Reviews 2024, 124 (5) , 2583-2616. https://doi.org/10.1021/acs.chemrev.3c00697
    2. Jin Young Oh, Da-Bin Yang, Bo-Kyeong Choi, Dong Wook Lee, Yang Liu, Dae-Shik Seo. Enhanced Electrical and Optical Properties of Bismuth Tantalum Oxide Thin Films through Graphene Oxide Doping. Langmuir 2024, 40 (4) , 2230-2241. https://doi.org/10.1021/acs.langmuir.3c03299
    3. Hye Ryun Sim, Sangjun Lee, Juhyeok Lee, Syed Zahid Hassan, Geon-Hee Nam, Chan So, Kyu Min Sim, Dae Sung Chung. Liquid-Film Rupture for Web-like Ag Nanowires toward High-Performance Organic Schottky Barrier Transistors. ACS Nano 2023, 17 (23) , 24374-24383. https://doi.org/10.1021/acsnano.3c10663
    4. Kun Qiao. C60-Modified Reduced-Graphene-Oxide-Based p-Type Vertical Organic Field-Effect Transistors for Future Complementary Circuits. ACS Applied Nano Materials 2023, 6 (19) , 18446-18453. https://doi.org/10.1021/acsanm.3c03800
    5. Likuan Ma, Quanyang Tao, Yang Chen, Zheyi Lu, Liting Liu, Zhiwei Li, Donglin Lu, Yiliu Wang, Lei Liao, Yuan Liu. Realizing On/Off Ratios over 104 for Sub-2 nm Vertical Transistors. Nano Letters 2023, 23 (17) , 8303-8309. https://doi.org/10.1021/acs.nanolett.3c02518
    6. Yuting Zou, Yaru Shi, Bin Wang, Mingxiu Liu, Junru An, Nan Zhang, Liujian Qi, Weili Yu, Dabing Li, Shaojuan Li. Electrical and Optoelectrical Dual-Modulation in Perovskite-Based Vertical Field-Effect Transistors. ACS Photonics 2023, 10 (7) , 2280-2289. https://doi.org/10.1021/acsphotonics.2c01501
    7. Jacopo Oswald, Davide Beretta, Michael Stiefel, Roman Furrer, Sebastian Lohde, Dominique Vuillaume, Michel Calame. Field and Thermal Emission Limited Charge Injection in Au–C60–Graphene van der Waals Vertical Heterostructures for Organic Electronics. ACS Applied Nano Materials 2023, 6 (11) , 9444-9452. https://doi.org/10.1021/acsanm.3c01090
    8. Jacopo Oswald, Davide Beretta, Michael Stiefel, Roman Furrer, Alessia Romio, Michel Daher Mansour, Dominique Vuillaume, Michel Calame. Charge Transport Across Au–P3HT–Graphene van der Waals Vertical Heterostructures. ACS Applied Materials & Interfaces 2022, 14 (42) , 48240-48249. https://doi.org/10.1021/acsami.2c13148
    9. Kun Qiao, Shun Arakaki, Mitsuharu Suzuki, Ken-ichi Nakayama. Performance Improvement with an Ultrathin p-Type Interfacial Layer in n-Type Vertical Organic Field-Effect Transistors Based on Reduced Graphene Oxide Electrode. ACS Omega 2022, 7 (28) , 24468-24474. https://doi.org/10.1021/acsomega.2c02085
    10. Jeong Ik Lee, Miyeon Kim, Jun Hwa Park, Boseok Kang, Chang Yeon Lee, Yeong Don Park. Metal–Organic Framework as a Functional Analyte Channel of Organic-Transistor-Based Air Pollution Sensors. ACS Applied Materials & Interfaces 2021, 13 (20) , 24005-24012. https://doi.org/10.1021/acsami.1c04570
    11. Dong Un Lim, Sae Byeok Jo, Jeong Ho Cho. Cold-Trap-Mediated Broad Dynamic Photodetection in Graphene–Organic Hybrid Photonic Barristors. Journal of the American Chemical Society 2021, 143 (2) , 879-890. https://doi.org/10.1021/jacs.0c10634
    12. Keyu Geng, Ting He, Ruoyang Liu, Sasanka Dalapati, Ke Tian Tan, Zhongping Li, Shanshan Tao, Yifan Gong, Qiuhong Jiang, Donglin Jiang. Covalent Organic Frameworks: Design, Synthesis, and Functions. Chemical Reviews 2020, 120 (16) , 8814-8933. https://doi.org/10.1021/acs.chemrev.9b00550
    13. Megan E. Beck, Mark C. Hersam. Emerging Opportunities for Electrostatic Control in Atomically Thin Devices. ACS Nano 2020, 14 (6) , 6498-6518. https://doi.org/10.1021/acsnano.0c03299
    14. Yuan Liu, Jian Guo, Enbo Zhu, Peiqi Wang, Vincent Gambin, Yu Huang, Xiangfeng Duan. Maximizing the Current Output in Self-Aligned Graphene–InAs–Metal Vertical Transistors. ACS Nano 2019, 13 (1) , 847-854. https://doi.org/10.1021/acsnano.8b08617
    15. Yuan Fang, Xiaomin Wu, Shuqiong Lan, Jianfeng Zhong, Dawei Sun, Huipeng Chen, Tailiang Guo. Inkjet-Printed Vertical Organic Field-Effect Transistor Arrays and Their Image Sensors. ACS Applied Materials & Interfaces 2018, 10 (36) , 30587-30595. https://doi.org/10.1021/acsami.8b06625
    16. Xinning Luan, Jiang Liu, Huaping Li. Electrolyte-Gated Vertical Organic Transistor and Circuit. The Journal of Physical Chemistry C 2018, 122 (26) , 14615-14620. https://doi.org/10.1021/acs.jpcc.8b03600
    17. Yongli Che, Yating Zhang, Xiaolong Cao, Haiting Zhang, Xiaoxian Song, Mingxuan Cao, Yu Yu, Haitao Dai, Junbo Yang, Guizhong Zhang, and Jianquan Yao . Ambipolar Graphene–Quantum Dot Hybrid Vertical Photodetector with a Graphene Electrode. ACS Applied Materials & Interfaces 2017, 9 (37) , 32001-32007. https://doi.org/10.1021/acsami.7b06629
    18. Bing Sun, Chen-Hui Zhu, Yi Liu, Cheng Wang, Li-Jun Wan, and Dong Wang . Oriented Covalent Organic Framework Film on Graphene for Robust Ambipolar Vertical Organic Field-Effect Transistor. Chemistry of Materials 2017, 29 (10) , 4367-4374. https://doi.org/10.1021/acs.chemmater.7b00800
    19. Yuan Liu, Guo Zhang, Hailong Zhou, Zheng Li, Rui Cheng, Yang Xu, Vincent Gambin, Yu Huang, and Xiangfeng Duan . Ambipolar Barristors for Reconfigurable Logic Circuits. Nano Letters 2017, 17 (3) , 1448-1454. https://doi.org/10.1021/acs.nanolett.6b04417
    20. Bing Wu, Yinghe Zhao, Haiyan Nan, Ziyi Yang, Yuhan Zhang, Huijuan Zhao, Daowei He, Zonglin Jiang, Xiaolong Liu, Yun Li, Yi Shi, Zhenhua Ni, Jinlan Wang, Jian-Bin Xu, and Xinran Wang . Precise, Self-Limited Epitaxy of Ultrathin Organic Semiconductors and Heterojunctions Tailored by van der Waals Interactions. Nano Letters 2016, 16 (6) , 3754-3759. https://doi.org/10.1021/acs.nanolett.6b01108
    21. Hyeonggeun Yu, Zhipeng Dong, Jing Guo, Doyoung Kim, and Franky So . Vertical Organic Field-Effect Transistors for Integrated Optoelectronic Applications. ACS Applied Materials & Interfaces 2016, 8 (16) , 10430-10435. https://doi.org/10.1021/acsami.6b00182
    22. Xiaqing Fu, Zhifang Liu, Huaipeng Wang, Dan Xie, Yilin Sun. Small Feature‐Size Transistors Based on Low‐Dimensional Materials: From Structure Design to Nanofabrication Techniques. Advanced Science 2024, 26 https://doi.org/10.1002/advs.202400500
    23. Kun Qiao, Tingfeng Dai, Tao Zou. A design strategy for high-performance vertical organic field-effect transistors based on reduced graphene oxide electrodes. Journal of Materials Chemistry C 2024, 12 (21) , 7513-7519. https://doi.org/10.1039/D4TC01699H
    24. Jin Young Oh, Bo-Kyeong Choi, Yang Liu, Dae-Shik Seo. Enhancement of electro-optical properties of aluminum magnesium oxide thin films through controlled graphene oxide doping. Journal of Materials Science: Materials in Electronics 2024, 35 (16) https://doi.org/10.1007/s10854-024-12871-3
    25. Douglas Henrique Vieira, Gabriel Leonardo Nogueira, Leandro Merces, Carlos César Bof Bufon, Neri Alves. Electrolyte‐Gated Vertical Transistor Charge Transport Enables Photo‐Switching. Advanced Electronic Materials 2024, 10 (6) https://doi.org/10.1002/aelm.202300562
    26. Taehyun Park, Minseo Kim, Eun Kwang Lee, Jaehyun Hur, Hocheon Yoo. Overcoming Downscaling Limitations in Organic Semiconductors: Strategies and Progress. Small 2024, 20 (9) https://doi.org/10.1002/smll.202306468
    27. Zijing Zhao, Junzhe Kang, Shaloo Rakheja, Wenjuan Zhu. Control-gate-free reconfigurable transistor based on 2D MoTe2 with asymmetric gating. Applied Physics Letters 2024, 124 (7) https://doi.org/10.1063/5.0177275
    28. Livia Janice Widiapradja, Sungjae Hong, Yeonsu Jeong, Seongil Im. Maximizing Schottky barrier modulation in graphene-WSe2/MoSe2 heterojunction barristor through Dirac-cone induced phenomenon. Carbon 2024, 13 , 118920. https://doi.org/10.1016/j.carbon.2024.118920
    29. Kun Qiao, Qing Ma, Junjia Wang, Binghao Wang. Low-temperature vapor reduction of graphene oxide electrodes for vertical organic field-effect transistors. Journal of Materials Chemistry C 2024, 14 https://doi.org/10.1039/D3TC04217K
    30. Cheng Liu, Cheng Fu, Lingyu Tang, Jianghua Wu, Zhangyan Mu, Yamei Sun, Yanghang Pan, Bailin Tian, Kai Bao, Jing Ma, Qiyuan He, Mengning Ding. Molecule-based vertical transistor via intermolecular charge transport through π-π stacking. Nano Research 2023, 1 https://doi.org/10.1007/s12274-023-6252-3
    31. Patrik Tholen, Lukas Wagner, Jean G. A. Ruthes, Konrad Siemensmeyer, Thi Hai Yen Beglau, Dominik Muth, Yunus Zorlu, Mustafa Okutan, Jan Christoph Goldschmidt, Christoph Janiak, Volker Presser, Özgür Yavuzçetin, Gündoğ Yücesan. A New Family of Layered Metal‐Organic Semiconductors: Cu/V‐Organophosphonates. Small 2023, 19 (47) https://doi.org/10.1002/smll.202304057
    32. Guanglong Ding, JiYu Zhao, Kui Zhou, Qi Zheng, Su-Ting Han, Xiaojun Peng, Ye Zhou. Porous crystalline materials for memories and neuromorphic computing systems. Chemical Society Reviews 2023, 52 (20) , 7071-7136. https://doi.org/10.1039/D3CS00259D
    33. Zhikai Le, Xiao Liu, Yunxin Li, Liting Liu, Yuan Liu. Vertical transistors based on two-dimensional semiconductors. Chinese Science Bulletin 2023, 68 (22) , 2901-2910. https://doi.org/10.1360/TB-2023-0081
    34. Michel Daher Mansour, Jacopo Oswald, Davide Beretta, Michael Stiefel, Roman Furrer, Michel Calame, Dominique Vuillaume. Nanoscale electronic transport at graphene/pentacene van der Waals interfaces. Nanoscale 2023, 15 (20) , 9203-9213. https://doi.org/10.1039/D2NR06682C
    35. Hyuna Lee, Kyung-Geun Lim, Chang-Hyun Kim. Vertical organic transistors with a permeable base: from fundamentals to performance prediction. Journal of Materials Chemistry C 2023, 11 (16) , 5422-5430. https://doi.org/10.1039/D3TC00299C
    36. Ali Nawaz, Leandro Merces, Letícia M. M. Ferro, Prashant Sonar, Carlos C. B. Bufon. Impact of Planar and Vertical Organic Field‐Effect Transistors on Flexible Electronics. Advanced Materials 2023, 35 (11) https://doi.org/10.1002/adma.202204804
    37. Jacopo Oswald, Davide Beretta, Michael Stiefel, Roman Furrer, Dominique Vuillaume, Michel Calame. The Effect of C60 and Pentacene Adsorbates on the Electrical Properties of CVD Graphene on SiO2. Nanomaterials 2023, 13 (6) , 1134. https://doi.org/10.3390/nano13061134
    38. Andrea Spanu, Tommaso Losi, Antonello Mascia, Annalisa Bonfiglio, Mario Caironi, Piero Cosseddu. Submicrometer‐Channel Organic Transistors with MHz Operation Range on Flexible Substrates by a Low‐Resolution Fabrication Technique. Advanced Materials Technologies 2023, 8 (1) https://doi.org/10.1002/admt.202200891
    39. Enlong Li, Changsong Gao, Rengjian Yu, Xiumei Wang, Lihua He, Yuanyuan Hu, Huajie Chen, Huipeng Chen, Tailiang Guo. MXene based saturation organic vertical photoelectric transistors with low subthreshold swing. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-30527-w
    40. Gang Hu, Huabiao Zhu, Qinyong Dai, Chaoqun Jiang, Yingquan Peng, Wenli Lv, Sunan Xu, Lei Sun, Lin Jiang, Grégory F. Schneider. Operation voltage and illumination intensity dependent space-charge limited current conductions in vertical organic phototransistors based on CuPc/C60 heterojunction and graphene. Applied Physics Letters 2022, 121 (12) https://doi.org/10.1063/5.0108964
    41. Marco Höppner, Bahman Kheradmand‐Boroujeni, Jörn Vahland, Michael Franz Sawatzki, David Kneppe, Frank Ellinger, Hans Kleemann. High‐Frequency Operation of Vertical Organic Field‐Effect Transistors. Advanced Science 2022, 9 (24) https://doi.org/10.1002/advs.202201660
    42. Shengliang Cai, Huabiao Zhu, Chaoqun Jiang, Xinyu Wang, Sunan Xu, Wenli Lv, Lei Sun, Yingquan Peng. Vertical Organic Phototransistors With Metal/Insulator Strips as the Source Electrode/Barrier Layer. IEEE Photonics Technology Letters 2022, 34 (15) , 803-806. https://doi.org/10.1109/LPT.2022.3188327
    43. Goeun Pyo, Gwang Jun Lee, Seungchul Lee, Jae Hoon Yang, Su Jin Heo, Gyeong Hyeon Choi, SeungNam Cha, Jae Eun Jang. Vertical Thin Film Transistor Based on Conductivity Modulation of Graphene Electrode by Micro‐Hole Patterning. Advanced Electronic Materials 2022, 8 (4) https://doi.org/10.1002/aelm.202101000
    44. Zhuoli Zhou, Xinlei Cui, Huabiao Zhu, Changfeng Gu, Qinyong Dai, Yingquan Peng, Sunan Xu, Lei Sun, Wenli Lv, Dongning Wang. Vertical organic phototransistors realized by femtosecond laser ablation patterned metal/insulator bilayer source electrodes: Performance and numerical modeling. Organic Electronics 2022, 102 , 106437. https://doi.org/10.1016/j.orgel.2022.106437
    45. Jeong Ik Lee, Miyeon Kim, Kyoung Chul Park, Chang Yeon Lee, Yeong Don Park. Polythiophene hybrid film with zirconium–porphyrin metal–organic framework for improved charge carrier transport and NO2 gas sensing. Materials Chemistry and Physics 2022, 278 , 125661. https://doi.org/10.1016/j.matchemphys.2021.125661
    46. Federico Chianese, Sandra Fusco, Mario Barra, Fabio Chiarella, Antonio Carella, Antonio Cassinese. Space-charge accumulation and band bending at conductive P3HT/PDIF-CN 2 interfaces investigated by scanning-Kelvin probe microscopy. Journal of Materials Chemistry C 2021, 9 (47) , 17143-17151. https://doi.org/10.1039/D1TC04840F
    47. Khayalethu Ngqeza, Nelesh Dhanpat. Investigating the effects of employee empowerment on turnover intention in a mining organisation. SA Journal of Human Resource Management 2021, 19 https://doi.org/10.4102/sajhrm.v19i0.1564
    48. Xincan Qiu, Jing Guo, Ping‐An Chen, Kaixuan Chen, Yu Liu, Chao Ma, Huajie Chen, Yuanyuan Hu. Doped Vertical Organic Field‐Effect Transistors Demonstrating Superior Bias‐Stress Stability. Small 2021, 17 (32) https://doi.org/10.1002/smll.202101325
    49. Peiqi Wang, Xiangfeng Duan. Probing and pushing the limit of emerging electronic materials via van der Waals integration. MRS Bulletin 2021, 46 (6) , 534-546. https://doi.org/10.1557/s43577-021-00130-3
    50. Liting Liu, Lingan Kong, Qianyuan Li, Chenglin He, Liwang Ren, Quanyang Tao, Xiangdong Yang, Jun Lin, Bei Zhao, Zhiwei Li, Yang Chen, Wanying Li, Wenjing Song, Zheyi Lu, Guoli Li, Siyu Li, Xidong Duan, Anlian Pan, Lei Liao, Yuan Liu. Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors. Nature Electronics 2021, 4 (5) , 342-347. https://doi.org/10.1038/s41928-021-00566-0
    51. Hongming Chen, Wei Huang, Tobin J. Marks, Antonio Facchetti, Hong Meng. Recent Advances in Multi‐Layer Light‐Emitting Heterostructure Transistors. Small 2021, 17 (13) https://doi.org/10.1002/smll.202007661
    52. Peiqi Wang, Chuancheng Jia, Yu Huang, Xiangfeng Duan. Van der Waals Heterostructures by Design: From 1D and 2D to 3D. Matter 2021, 4 (2) , 552-581. https://doi.org/10.1016/j.matt.2020.12.015
    53. Yongli Che, Xiaolong Cao, Yating Zhang, Jianquan Yao. PbS nanocrystal and poly(3-hexylthiophene) hybrid vertical photodetector using a graphene electrode. Photonics and Nanostructures - Fundamentals and Applications 2021, 43 , 100866. https://doi.org/10.1016/j.photonics.2020.100866
    54. Ali Nawaz, Leandro Merces, Denise M. de Andrade, Davi H. S. de Camargo, Carlos C. Bof Bufon. Edge-driven nanomembrane-based vertical organic transistors showing a multi-sensing capability. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-14661-x
    55. Liting Liu, Yuan Liu, Xiangfeng Duan. Graphene-based vertical thin film transistors. Science China Information Sciences 2020, 63 (10) https://doi.org/10.1007/s11432-020-2806-8
    56. Jian Zhou, Lei Xie, Xiufeng Song, Ziming Wang, Chengxue Huo, Yunhai Xiong, Zichao Cheng, Yue Wang, Shengli Zhang, Xiang Chen, Haibo Zeng. High-performance vertical field-effect transistors based on all-inorganic perovskite microplatelets. Journal of Materials Chemistry C 2020, 8 (36) , 12632-12637. https://doi.org/10.1039/D0TC03296D
    57. Sang-Joon Park, Megha A. Deshmukh, Byeong-Cheol Kang, Jun-Young Jeon, Chiaying Chen, Tae-Jun Ha. Review—A Review of Advanced Electronic Applications Based on Carbon Nanomaterials. ECS Journal of Solid State Science and Technology 2020, 9 (7) , 071002. https://doi.org/10.1149/2162-8777/abb035
    58. Jui-Fen Chang, Kun-Shao Hou, Yaw-Wen Yang, Chia-Hsin Wang, Yu-Xiang Chen, Hung-Da Ke. Enhanced mobility for increasing on-current and switching ratio of vertical organic field-effect transistors by surface modification with phosphonic acid self-assembled monolayer. Organic Electronics 2020, 81 , 105689. https://doi.org/10.1016/j.orgel.2020.105689
    59. Hans Kleemann, Kevin Krechan, Axel Fischer, Karl Leo. A Review of Vertical Organic Transistors. Advanced Functional Materials 2020, 30 (20) https://doi.org/10.1002/adfm.201907113
    60. Yena Ji, Seonjeong Lee, Han Ju Lee, Kyoung Soon Choi, Cheolho Jeon, Keun Hyung Lee, Kihyon Hong. Solution processed vertical p-channel thin film transistors using copper( i ) thiocyanate. Journal of Materials Chemistry C 2020, 8 (16) , 5587-5593. https://doi.org/10.1039/D0TC00815J
    61. Kang Lib Kim, Min Koo, Cheolmin Park. Controlled polymer crystal/two-dimensional material heterostructures for high-performance photoelectronic applications. Nanoscale 2020, 12 (9) , 5293-5307. https://doi.org/10.1039/C9NR10911K
    62. Fakhra Aziz, Afiq Anuar, Zubair Ahmad, Nur Adilah Roslan, Abdullah Haaziq Ahmad Makinudin, Tahani M. Bawazeer, Nourah Alsenany, Mohammad S. Alsoufi, Azzuliani Supangat. Enhancing the Electrical Properties of Vertical OFETs Using a P(VDF-TrFE) Dielectric Layer. Journal of Electronic Materials 2020, 49 (2) , 1362-1371. https://doi.org/10.1007/s11664-019-07805-3
    63. Yang Chen, Yuan‐Yuan Yue, Shi‐Rong Wang, Nan Zhang, Jing Feng, Hong‐Bo Sun. Graphene as a Transparent and Conductive Electrode for Organic Optoelectronic Devices. Advanced Electronic Materials 2019, 5 (10) https://doi.org/10.1002/aelm.201900247
    64. Jia Sun, Yongsuk Choi, Young Jin Choi, Seongchan Kim, Jin‐Hong Park, Sungjoo Lee, Jeong Ho Cho. 2D–Organic Hybrid Heterostructures for Optoelectronic Applications. Advanced Materials 2019, 31 (34) https://doi.org/10.1002/adma.201803831
    65. Jinyu Liu, Zhengsheng Qin, Haikuo Gao, Huanli Dong, Jia Zhu, Wenping Hu. Vertical Organic Field‐Effect Transistors. Advanced Functional Materials 2019, 29 (17) https://doi.org/10.1002/adfm.201808453
    66. Ali Nawaz, Ivo A. Hümmelgen. Poly(vinyl alcohol) gate dielectric in organic field-effect transistors. Journal of Materials Science: Materials in Electronics 2019, 30 (6) , 5299-5326. https://doi.org/10.1007/s10854-019-00873-5
    67. Junchi Liu, Xiao Liu, Zhuojun Chen, Lili Miao, Xingqiang Liu, Bo Li, Liming Tang, Keqiu Chen, Yuan Liu, Jingbo Li, Zhongming Wei, Xidong Duan. Tunable Schottky barrier width and enormously enhanced photoresponsivity in Sb doped SnS2 monolayer. Nano Research 2019, 12 (2) , 463-468. https://doi.org/10.1007/s12274-018-2243-1
    68. P.V. Ratnikov, A.P. Silin. Two-dimensional graphene electronics: current status and prospects. Uspekhi Fizicheskih Nauk 2018, 188 (12) , 1249-1287. https://doi.org/10.3367/UFNr.2017.11.038231
    69. Jinyu Liu, Ke Zhou, Jie Liu, Jia Zhu, Yonggang Zhen, Huanli Dong, Wenping Hu. Organic‐Single‐Crystal Vertical Field‐Effect Transistors and Phototransistors. Advanced Materials 2018, 30 (44) https://doi.org/10.1002/adma.201803655
    70. F. Chianese, A. Candini, M. Affronte, N. Mishra, C. Coletti, A. Cassinese. Linear conduction in N-type organic field effect transistors with nanometric channel lengths and graphene as electrodes. Applied Physics Letters 2018, 112 (21) https://doi.org/10.1063/1.5023659
    71. Daobing Hu, Xiumei Wang, Huipeng Chen, Tailiang Guo. High Performance Flexible Nonvolatile Memory Based on Vertical Organic Thin Film Transistor. Advanced Functional Materials 2017, 27 (41) https://doi.org/10.1002/adfm.201703541
    72. Luiz G.S. Albano, Miguel H. Boratto, Oswaldo Nunes-Neto, Carlos F.O. Graeff. Low voltage and high frequency vertical organic field effect transistor based on rod-coating silver nanowires grid electrode. Organic Electronics 2017, 50 , 311-316. https://doi.org/10.1016/j.orgel.2017.08.011
    73. Jinta Mathew, Saim Emin, Egon Pavlica, Matjaž Valant, Gvido Bratina. Interface-controlled growth of organic semiconductors on graphene. Surface Science 2017, 664 , 16-20. https://doi.org/10.1016/j.susc.2017.05.005
    74. Seongchan Kim, Young Jin Choi, Yongsuk Choi, Moon Sung Kang, Jeong Ho Cho. Large‐Area Schottky Barrier Transistors Based on Vertically Stacked Graphene–Metal Oxide Heterostructures. Advanced Functional Materials 2017, 27 (30) https://doi.org/10.1002/adfm.201700651
    75. Chen Wang, Xidong Duan, Xiangfeng Duan. Graphene Electronics. 2017, 159-179. https://doi.org/10.1017/9781316681619.010
    76. Deep Jariwala, Tobin J. Marks, Mark C. Hersam. Mixed-dimensional van der Waals heterostructures. Nature Materials 2017, 16 (2) , 170-181. https://doi.org/10.1038/nmat4703
    77. Zhongcheng Zhu, Imran Murtaza, Hong Meng, Wei Huang. Thin film transistors based on two dimensional graphene and graphene/semiconductor heterojunctions. RSC Advances 2017, 7 (28) , 17387-17397. https://doi.org/10.1039/C6RA27674A
    78. Subir Parui, Mário Ribeiro, Ainhoa Atxabal, Roger Llopis, Fèlix Casanova, Luis E. Hueso. Graphene as an electrode for solution-processed electron-transporting organic transistors. Nanoscale 2017, 9 (29) , 10178-10185. https://doi.org/10.1039/C7NR01007A
    79. Chang-Hyun Kim, Ioannis Kymissis. Graphene–organic hybrid electronics. J. Mater. Chem. C 2017, 5 (19) , 4598-4613. https://doi.org/10.1039/C7TC00664K
    80. Yongli Che, Yating Zhang, Xiaolong Cao, Xiaoxian Song, Haiting Zhang, Mingxuan Cao, Haitao Dai, Junbo Yang, Guizhong Zhang, Jianquan Yao. High-performance PbS quantum dot vertical field-effect phototransistor using graphene as a transparent electrode. Applied Physics Letters 2016, 109 (26) https://doi.org/10.1063/1.4972984
    81. Wang-Taek Hwang, Misook Min, Hyunhak Jeong, Dongku Kim, Jingon Jang, Daekyung Yoo, Yeonsik Jang, Jun-Woo Kim, Jiyoung Yoon, Seungjun Chung, Gyu-Chul Yi, Hyoyoung Lee, Gunuk Wang, Takhee Lee. Gate-dependent asymmetric transport characteristics in pentacene barristors with graphene electrodes. Nanotechnology 2016, 27 (47) , 475201. https://doi.org/10.1088/0957-4484/27/47/475201
    82. Xiaoxian Song, Yating Zhang, Haiting Zhang, Yu Yu, Mingxuan Cao, Yongli Che, Jianlong Wang, Haitao Dai, Junbo Yang, Xin Ding, Jianquan Yao. High-performance ambipolar self-assembled Au/Ag nanowire based vertical quantum dot field effect transistor. Nanotechnology 2016, 27 (40) , 405201. https://doi.org/10.1088/0957-4484/27/40/405201
    83. Yuan Liu, Nathan O. Weiss, Xidong Duan, Hung-Chieh Cheng, Yu Huang, Xiangfeng Duan. Van der Waals heterostructures and devices. Nature Reviews Materials 2016, 1 (9) https://doi.org/10.1038/natrevmats.2016.42
    84. Yuan Liu, Jiming Sheng, Hao Wu, Qiyuan He, Hung‐Chieh Cheng, Muhammad Imran Shakir, Yu Huang, Xiangfeng Duan. High‐Current‐Density Vertical‐Tunneling Transistors from Graphene/Highly Doped Silicon Heterostructures. Advanced Materials 2016, 28 (21) , 4120-4125. https://doi.org/10.1002/adma.201506173
    85. Jheng-Yuan Syu, Yu-Min Chen, Kai-Xiang Xu, Shih-Ming He, Wu-Ching Hung, Chien-Liang Chang, Ching-Yuan Su. Wide-range work-function tuning of active graphene transparent electrodes via hole doping. RSC Advances 2016, 6 (39) , 32746-32756. https://doi.org/10.1039/C6RA04449B