ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Demonstration of Hole Transport and Voltage Equilibration in Self-Assembled π-Conjugated Peptide Nanostructures Using Field-Effect Transistor Architectures

View Author Information
† ‡ § Department of Materials Science and Engineering, Whiting School of Engineering, Department of Chemistry, Krieger School of Arts and Sciences, and §Institute of NanoBioTechnology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218 United States
*Address correspondence to [email protected]
Cite this: ACS Nano 2015, 9, 12, 12401–12409
Publication Date (Web):November 11, 2015
https://doi.org/10.1021/acsnano.5b05752
Copyright © 2015 American Chemical Society

    Article Views

    2062

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    π-Conjugated peptide materials are attractive for bioelectronics due to their unique photophysical characteristics, biofunctional interfaces, and processability under aqueous conditions. In order to be relevant for electrical applications, these types of materials must be able to support the passage of current and the transmission of applied voltages. Presented herein is an investigation of both the current and voltage transmission activities of one-dimensional π-conjugated peptide nanostructures. Observations of the nanostructures as both semiconducting and gate layers in organic field-effect transistors (OFETs) were made, and the effect of systematic changes in amino acid composition on the semiconducting/conducting functionality of the nanostructures was investigated. These molecular variations directly impacted the hole mobility values observed for the nanomaterial active layers over 3 orders of magnitude (∼0.02 to 5 × 10–5 cm2 V–1 s–1) when the nanostructures had quaterthiophene cores and the assembled peptide materials spanned source and drain electrodes. Peptides without the quaterthiophene core were used as controls and did not show field-effect currents, verifying that the transport properties of the nanostructures rely on the semiconducting behavior of the π-electron core and not just ionic rearrangements. We also showed that the nanomaterials could act as gate electrodes and assessed the effect of varying the gate dielectric layer thickness in devices where the conventional organic semiconductor pentacene spanned the source and drain electrodes in a top-contact OFET, showing an optimum performance with 35–40 nm dielectric thickness. This study shows that these peptides that self-assemble in aqueous environments can be used successfully to transmit electronic signals over biologically relevant distances.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.5b05752.

    • Synthetic procedures; characterization data for the peptides (1H NMR, ESI-MS, HPLC traces), Figures S1–S15; and supplementary data (absorption/emission spectra, microscopy images), Figures S16–S29 (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 55 publications.

    1. Leong-Hung Cheung, Jeffrey C. To, Wai-Ki Wong, Marc C. A. Stuart, Takashi Kajitani, Vincent W. Keng, Franco King-Chi Leung. Tailoring Multicontrolled Supramolecular Assemblies of Stiff-Stilbene Amphiphiles into Macroscopic Soft Scaffolds as Cell-Material Interfaces. ACS Applied Materials & Interfaces 2024, 16 (3) , 4056-4070. https://doi.org/10.1021/acsami.3c16795
    2. Jessie P. Dibble, Scott R. Deboer, Mahlet Mersha, Thomas J. Robinson, Ryan J. Felling, Steven R. Zeiler, John D. Tovar. In Vivo Formation and Tracking of π-Peptide Nanostructures. ACS Applied Materials & Interfaces 2023, 15 (21) , 25091-25097. https://doi.org/10.1021/acsami.2c04598
    3. Andrew L. Ferguson, John D. Tovar. Evolution of π-Peptide Self-Assembly: From Understanding to Prediction and Control. Langmuir 2022, 38 (50) , 15463-15475. https://doi.org/10.1021/acs.langmuir.2c02399
    4. Sayak Subhra Panda, Kirill Shmilovich, Andrew L. Ferguson, John D. Tovar. Computationally Guided Tuning of Amino Acid Configuration Influences the Chiroptical Properties of Supramolecular Peptide-π-Peptide Nanostructures. Langmuir 2020, 36 (24) , 6782-6792. https://doi.org/10.1021/acs.langmuir.0c00961
    5. Edward R. Jira, Kirill Shmilovich, Tejaswini S. Kale, Andrew Ferguson, John D. Tovar, Charles M. Schroeder. Effect of Core Oligomer Length on the Phase Behavior and Assembly of π-Conjugated Peptides. ACS Applied Materials & Interfaces 2020, 12 (18) , 20722-20732. https://doi.org/10.1021/acsami.0c02095
    6. Taein Lee, Sayak Subhra Panda, John D. Tovar, Howard E. Katz. Unusually Conductive Organic–Inorganic Hybrid Nanostructures Derived from Bio-Inspired Mineralization of Peptide/Pi-Electron Assemblies. ACS Nano 2020, 14 (2) , 1846-1855. https://doi.org/10.1021/acsnano.9b07911
    7. Bryce A. Thurston, Ethan P. Shapera, John D. Tovar, André Schleife, Andrew L. Ferguson. Revealing the Sequence-Structure–Electronic Property Relation of Self-Assembling π-Conjugated Oligopeptides by Molecular and Quantum Mechanical Modeling. Langmuir 2019, 35 (47) , 15221-15231. https://doi.org/10.1021/acs.langmuir.9b02593
    8. Sayak Subhra Panda, Kirill Shmilovich, Andrew L. Ferguson, John D. Tovar. Controlling Supramolecular Chirality in Peptide−π-Peptide Networks by Variation of the Alkyl Spacer Length. Langmuir 2019, 35 (43) , 14060-14073. https://doi.org/10.1021/acs.langmuir.9b02683
    9. Tejaswini S. Kale, Herdeline Ann M. Ardoña, Alyssa Ertel, John D. Tovar. Torsional Impacts on Quaterthiophene Segments Confined within Peptidic Nanostructures. Langmuir 2019, 35 (6) , 2270-2282. https://doi.org/10.1021/acs.langmuir.8b03708
    10. Xinan Zhang, Binghao Wang, Wei Huang, Gang Wang, Weigang Zhu, Zhi Wang, Weifeng Zhang, Antonio Facchetti, Tobin J. Marks. Oxide–Polymer Heterojunction Diodes with a Nanoscopic Phase-Separated Insulating Layer. Nano Letters 2019, 19 (1) , 471-476. https://doi.org/10.1021/acs.nanolett.8b04284
    11. Franco King-Chi Leung, Tobias van den Enk, Takashi Kajitani, Jiawen Chen, Marc C. A. Stuart, Jeroen Kuipers, Takanori Fukushima, Ben L. Feringa. Supramolecular Packing and Macroscopic Alignment Controls Actuation Speed in Macroscopic Strings of Molecular Motor Amphiphiles. Journal of the American Chemical Society 2018, 140 (50) , 17724-17733. https://doi.org/10.1021/jacs.8b10778
    12. Nicole L. Ing, Mohamed Y. El-Naggar, Allon I. Hochbaum. Going the Distance: Long-Range Conductivity in Protein and Peptide Bioelectronic Materials. The Journal of Physical Chemistry B 2018, 122 (46) , 10403-10423. https://doi.org/10.1021/acs.jpcb.8b07431
    13. Rachael A. Mansbach, Andrew L. Ferguson. Patchy Particle Model of the Hierarchical Self-Assembly of π-Conjugated Optoelectronic Peptides. The Journal of Physical Chemistry B 2018, 122 (44) , 10219-10236. https://doi.org/10.1021/acs.jpcb.8b05781
    14. Mathieu Arribat, Emmanuelle Rémond, Sébastien Clément, Arie Van Der Lee, and Florine Cavelier . Phospholyl(borane) Amino Acids and Peptides: Stereoselective Synthesis and Fluorescent Properties with Large Stokes Shift. Journal of the American Chemical Society 2018, 140 (3) , 1028-1034. https://doi.org/10.1021/jacs.7b10954
    15. Yuecheng Zhou, Bo Li, Songsong Li, Herdeline Ann M. Ardoña, William L. Wilson, John D. Tovar, and Charles M. Schroeder . Concentration-Driven Assembly and Sol–Gel Transition of π-Conjugated Oligopeptides. ACS Central Science 2017, 3 (9) , 986-994. https://doi.org/10.1021/acscentsci.7b00260
    16. Herdeline Ann M. Ardoña, Tejaswini S. Kale, Alyssa Ertel, and John D. Tovar . Nonresonant and Local Field Effects in Peptidic Nanostructures Bearing Oligo(p-phenylenevinylene) Units. Langmuir 2017, 33 (30) , 7435-7445. https://doi.org/10.1021/acs.langmuir.7b01023
    17. Tejaswini S. Kale, Jeannette E. Marine, and John D. Tovar . Self-Assembly and Associated Photophysics of Dendron-Appended Peptide-π-Peptide Triblock Macromolecules. Macromolecules 2017, 50 (14) , 5315-5322. https://doi.org/10.1021/acs.macromol.7b00821
    18. Herdeline Ann M. Ardoña, Emily R. Draper, Francesca Citossi, Matthew Wallace, Louise C. Serpell, Dave J. Adams, and John D. Tovar . Kinetically Controlled Coassembly of Multichromophoric Peptide Hydrogelators and the Impacts on Energy Transport. Journal of the American Chemical Society 2017, 139 (25) , 8685-8692. https://doi.org/10.1021/jacs.7b04006
    19. Wathsala Liyanage, Herdeline Ann M. Ardoña, Hai-Quan Mao, and John D. Tovar . Cross-Linking Approaches to Tuning the Mechanical Properties of Peptide π-Electron Hydrogels. Bioconjugate Chemistry 2017, 28 (3) , 751-759. https://doi.org/10.1021/acs.bioconjchem.6b00593
    20. Bo Li, Songsong Li, Yuecheng Zhou, Herdeline Ann M. Ardoña, Lawrence R. Valverde, William L. Wilson, John D. Tovar, and Charles M. Schroeder . Nonequilibrium Self-Assembly of π-Conjugated Oligopeptides in Solution. ACS Applied Materials & Interfaces 2017, 9 (4) , 3977-3984. https://doi.org/10.1021/acsami.6b15068
    21. Yi Ren, Jia Gao, Anna K. Hailey, Thomas Baumgartner, and Yueh-Lin Loo . Cooperative Assembly of Phosphole Lipids and Single-Walled Carbon Nanotubes. Chemistry of Materials 2016, 28 (22) , 8407-8414. https://doi.org/10.1021/acs.chemmater.6b03987
    22. Jessie P. Dibble, Sayak S. Panda, John D. Tovar. Constitutional and Configurational Isomerism within Peptide/π–Electron Self‐Assembling Molecules and Their Impacts on Supramolecular Nanostructures. 2023, 215-229. https://doi.org/10.1002/9783527834044.ch6
    23. Ayyanu Ravikumar, Vishal Natraj, Adarsh Verma, Subramaniyam Sivagnanam, Yuvaraj Sivalingam, Priyadip Das, Velappa Jayaraman Surya, WeiHua Han, Nan Liu. Wearable sensors for real-time physiological monitoring based on self-assembled diphenylalanine peptide nanostructures. Surfaces and Interfaces 2023, 39 , 102986. https://doi.org/10.1016/j.surfin.2023.102986
    24. Ze‐Fan Yao, Yuyao Kuang, Phillip Kohl, Youli Li, Herdeline Ann M. Ardoña. Carbodiimide‐Fueled Assembly of π‐Conjugated Peptides Regulated by Electrostatic Interactions**. ChemSystemsChem 2023, 5 (4) https://doi.org/10.1002/syst.202300003
    25. Taein Lee, Sayak Subhra Panda, Grant E. K. Hall, Yunjia Song, John D. Tovar, Howard E. Katz. Relation among absorbance shifts, mineralization morphology, and electronic conductivity of π-peptide aggregates with different amino acid residues. Materials Advances 2023, 4 (8) , 1964-1977. https://doi.org/10.1039/D2MA00979J
    26. Ze‐Fan Yao, Emil Lundqvist, Yuyao Kuang, Herdeline Ann M. Ardoña. Engineering Multi‐Scale Organization for Biotic and Organic Abiotic Electroactive Systems. Advanced Science 2023, 10 (10) https://doi.org/10.1002/advs.202205381
    27. Marta Martínez-Abadía, Rajeev K. Dubey, Mercedes Fernández, Miguel Martín-Arroyo, Robert Aguirresarobe, Akinori Saeki, Aurelio Mateo-Alonso. Molecular nanoribbon gels. Chemical Science 2022, 13 (36) , 10773-10778. https://doi.org/10.1039/D2SC02637F
    28. Kirill Shmilovich, Sayak Subhra Panda, Anna Stouffer, John D. Tovar, Andrew L. Ferguson. Hybrid computational–experimental data-driven design of self-assembling π-conjugated peptides. Digital Discovery 2022, 1 (4) , 448-462. https://doi.org/10.1039/D1DD00047K
    29. Kirill Shmilovich, Yifan Yao, John D. Tovar, Howard E. Katz, André Schleife, Andrew L. Ferguson. Computational discovery of high charge mobility self-assembling π-conjugated peptides. Molecular Systems Design & Engineering 2022, 7 (5) , 447-459. https://doi.org/10.1039/D2ME00017B
    30. Chulwon Lee, Sejeong Kim, Yong‐Hoon Cho. Silk and Paper: Progress and Prospects in Green Photonics and Electronics. Advanced Sustainable Systems 2022, 6 (2) https://doi.org/10.1002/adsu.202000216
    31. Bilal Özen, Nicolas Candau, Cansel Temiz, Ferdinand C. Grozema, Grégory Stoclet, Christopher J. G. Plummer, Holger Frauenrath. Semiaromatic polyamides with enhanced charge carrier mobility. Polymer Chemistry 2021, 12 (47) , 6914-6926. https://doi.org/10.1039/D1PY01203G
    32. Hakan ERDOĞAN. Colorimetric Determination of Cu2+ by Glycine-Histidine Dipeptide Functionalized-Gold Nanoparticles. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 2021, 9 (4) , 1469-1482. https://doi.org/10.29130/dubited.884511
    33. Randall A. Scanga, James F. Reuther. Helical polymer self-assembly and chiral nanostructure formation. Polymer Chemistry 2021, 12 (13) , 1857-1897. https://doi.org/10.1039/D0PY01558J
    34. Sayak Subhra Panda, John D. Tovar. Aqueous Self-Assembly of Peptide–Diketopyrrolopyrrole Conjugates with Variation of N-Alkyl Side Chain and π-Core Lengths. Organic Materials 2021, 03 (02) , 353-361. https://doi.org/10.1055/a-1503-5912
    35. Jiaqi Ding, Nan Xu, Manh Tien Nguyen, Qi Qiao, Yao Shi, Yi He, Qing Shao. Machine learning for molecular thermodynamics. Chinese Journal of Chemical Engineering 2021, 31 , 227-239. https://doi.org/10.1016/j.cjche.2020.10.044
    36. Bilal Özen, Farzaneh Fadaei Tirani, Kurt Schenk, Kun‐Han Lin, Rosario Scopelliti, Clémence Corminboeuf, Holger Frauenrath. Structure–Property Relationships in Bithiophenes with Hydrogen‐Bonded Substituents. Chemistry – A European Journal 2021, 27 (10) , 3348-3360. https://doi.org/10.1002/chem.202003113
    37. Yonghun Lee, Kyung Won Kim, Nguyen Xuan Duong, Hyeok Park, Jinhong Park, Chang Won Ahn, In Woo Park, Seok Cheon Jang, Dong Hoe Kim, Minbaek Lee, Woo‐Jae Chung, Tae Heon Kim, Hyungwoo Lee, Kwang Heo. Large‐Scale Assembly of Peptide‐Based Hierarchical Nanostructures and Their Antiferroelectric Properties. Small 2020, 16 (45) https://doi.org/10.1002/smll.202003986
    38. Regina J. Hafner, Daniel Görl, Andrzej Sienkiewicz, Sandor Balog, Holger Frauenrath. Long‐Lived Photocharges in Supramolecular Polymers of Low‐Band‐Gap Chromophores. Chemistry – A European Journal 2020, 26 (43) , 9506-9517. https://doi.org/10.1002/chem.201904561
    39. Franco King‐Chi Leung, Takashi Kajitani, Marc C. A. Stuart, Takanori Fukushima, Ben L. Feringa. Dual‐Controlled Macroscopic Motions in a Supramolecular Hierarchical Assembly of Motor Amphiphiles. Angewandte Chemie 2019, 131 (32) , 11101-11105. https://doi.org/10.1002/ange.201905445
    40. Franco King‐Chi Leung, Takashi Kajitani, Marc C. A. Stuart, Takanori Fukushima, Ben L. Feringa. Dual‐Controlled Macroscopic Motions in a Supramolecular Hierarchical Assembly of Motor Amphiphiles. Angewandte Chemie International Edition 2019, 58 (32) , 10985-10989. https://doi.org/10.1002/anie.201905445
    41. Nellie A. K. Ochs, Urszula Lewandowska, Wojciech Zajaczkowski, Stefano Corra, Stephan Reger, Andreas Herdlitschka, Sylvia Schmid, Wojciech Pisula, Klaus Müllen, Peter Bäuerle, Helma Wennemers. Oligoprolines guide the self-assembly of quaterthiophenes. Chemical Science 2019, 10 (20) , 5391-5396. https://doi.org/10.1039/C8SC05742G
    42. Nadav Amdursky, Eric Daniel Głowacki, Paul Meredith. Macroscale Biomolecular Electronics and Ionics. Advanced Materials 2019, 31 (3) https://doi.org/10.1002/adma.201802221
    43. Moran Amit, Sivan Yuran, Ehud Gazit, Meital Reches, Nurit Ashkenasy. Tailor‐Made Functional Peptide Self‐Assembling Nanostructures. Advanced Materials 2018, 30 (41) https://doi.org/10.1002/adma.201707083
    44. Bryce A. Thurston, Andrew L. Ferguson. Machine learning and molecular design of self-assembling -conjugated oligopeptides. Molecular Simulation 2018, 44 (11) , 930-945. https://doi.org/10.1080/08927022.2018.1469754
    45. Marta Martínez‐Abadía, Gabriella Antonicelli, Akinori Saeki, Aurelio Mateo‐Alonso. Readily Processable Hole‐Transporting Peropyrene Gels. Angewandte Chemie 2018, 130 (27) , 8341-8345. https://doi.org/10.1002/ange.201804453
    46. Marta Martínez‐Abadía, Gabriella Antonicelli, Akinori Saeki, Aurelio Mateo‐Alonso. Readily Processable Hole‐Transporting Peropyrene Gels. Angewandte Chemie International Edition 2018, 57 (27) , 8209-8213. https://doi.org/10.1002/anie.201804453
    47. Mark P. Del Borgo, Ketav Kulkarni, Mary A. Tonta, Jessie L. Ratcliffe, Rania Seoudi, Adam I. Mechler, Patrick Perlmutter, Helena C. Parkington, Marie-Isabel Aguilar. β3-tripeptides act as sticky ends to self-assemble into a bioscaffold. APL Bioengineering 2018, 2 (2) https://doi.org/10.1063/1.5020105
    48. Sayak Subhra Panda, Howard E. Katz, John D. Tovar. Solid-state electrical applications of protein and peptide based nanomaterials. Chemical Society Reviews 2018, 47 (10) , 3640-3658. https://doi.org/10.1039/C7CS00817A
    49. Marcello Berto, Chiara Diacci, Roberta D'Agata, Marcello Pinti, Elena Bianchini, Michele Di Lauro, Stefano Casalini, Andrea Cossarizza, Magnus Berggren, Daniel Simon, Giuseppe Spoto, Fabio Biscarini, Carlo A. Bortolotti. EGOFET Peptide Aptasensor for Label‐Free Detection of Inflammatory Cytokines in Complex Fluids. Advanced Biosystems 2018, 2 (2) https://doi.org/10.1002/adbi.201700072
    50. John D Tovar. Photon management in supramolecular peptide nanomaterials. Bioinspiration & Biomimetics 2018, 13 (1) , 015004. https://doi.org/10.1088/1748-3190/aa9685
    51. Jordi Triguero, David Zanuy, Carlos Alemán. Conformational analysis of a modified RGD adhesive sequence. Journal of Peptide Science 2017, 23 (2) , 172-181. https://doi.org/10.1002/psc.2937
    52. Olga A. Guskova. On the Inter-Ring Torsion Potential of 2,2′-Bithiophene: A Review of Open Problems and Current Proposals. 2017, 209-230. https://doi.org/10.1007/978-3-319-50255-7_13
    53. Shengju Zhou, Lin Wang, Mengjun Chen, Baoyong Liu, Xiaofeng Sun, Meirong Cai, Hongguang Li. Superstructures with diverse morphologies and highly ordered fullerene C 60 arrays from 1 : 1 and 2 : 1 adamantane–C 60 hybrid molecules. Nanoscale 2017, 9 (42) , 16375-16385. https://doi.org/10.1039/C7NR06112A
    54. Rika Iwaura. Visualization of periodic electric polarizability of helical nanofibers formed by self-assembly of nucleotide-bearing bolaamphiphiles and natural-source DNA as a template. Soft Matter 2017, 13 (44) , 8293-8299. https://doi.org/10.1039/C7SM01420A
    55. Vu Nguyen, Ren Zhu, Kory Jenkins, Rusen Yang. Self-assembly of diphenylalanine peptide with controlled polarization for power generation. Nature Communications 2016, 7 (1) https://doi.org/10.1038/ncomms13566

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect