ACS Publications. Most Trusted. Most Cited. Most Read
Raman Signatures of Polytypism in Molybdenum Disulfide
My Activity
    Article

    Raman Signatures of Polytypism in Molybdenum Disulfide
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Physics, Sogang University, Seoul 04107, Korea
    School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
    Other Access OptionsSupporting Information (1)

    ACS Nano

    Cite this: ACS Nano 2016, 10, 2, 1948–1953
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.5b05831
    Published January 12, 2016
    Copyright © 2016 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Since the stacking order sensitively affects various physical properties of layered materials, accurate determination of the stacking order is important for studying the basic properties of these materials as well as for device applications. Because 2H-molybdenum disulfide (MoS2) is most common in nature, most studies so far have focused on 2H-MoS2. However, we found that the 2H, 3R, and mixed stacking sequences exist in few-layer MoS2 exfoliated from natural molybdenite crystals. The crystal structures are confirmed by HR-TEM measurements. The Raman signatures of different polytypes are investigated by using three different excitation energies that are nonresonant and resonant with A and C excitons, respectively. The low-frequency breathing and shear modes show distinct differences for each polytype, whereas the high-frequency intralayer modes show little difference. For resonant excitations at 1.96 and 2.81 eV, distinct features are observed that enable determination of the stacking order.

    Copyright © 2016 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.5b05831.

    • Crystal structures and space group of polytypes of 3TL-MoS2, HR-TEM images of 2H- and 3R-MoS2, optical microscope images of 3R and mixed-phase samples, comparison of the PL spectra, peak positions of Raman modes as a function of the number of TLs with different stacking sequences, and Raman spectra of various few-layer MoS2 samples with different stacking sequences (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 99 publications.

    1. Aiqing Fan, Qing Zhang, Zebin Ren, Lin Li, Ziyi Han, Weijie Ma, Xianfeng Shen, Jichen Dong, Xi Yu, Dechao Geng, Wenping Hu. Layer Number and Stacking Engineering of MoS2 Crystals for High-Performance Polarization-Sensitive Photodetector. ACS Applied Materials & Interfaces 2024, 16 (43) , 59626-59636. https://doi.org/10.1021/acsami.4c14501
    2. Peilei Wang, Jingwen Wu, Xiaolin Xiao, Yujiang Fan, Xianglong Han, Yong Sun. Engineering Injectable Coassembled Hydrogel by Photothermal Driven Chitosan-Stabilized MoS2 Nanosheets for Infected Wound Healing. ACS Nano 2024, 18 (39) , 26961-26974. https://doi.org/10.1021/acsnano.4c08883
    3. Aditya Deshpande, Koki Hojo, Koichi Tanaka, Pedro Arias, Hicham Zaid, Michael Liao, Mark Goorsky, Suneel Kumar Kodambaka. hBN-Layer-Promoted Heteroepitaxy in Reactively Sputter-Deposited MoSx≈2(0001)/Al2O3(0001) Thin Films: Implications for Nanoelectronics. ACS Applied Nano Materials 2023, 6 (4) , 2908-2916. https://doi.org/10.1021/acsanm.2c05290
    4. Weiyang Liu, Siwei Luo, Xiang Qi, Gencai Guo, Jun Li, Han Tang, Xu Li, Xixi Huang, Zhiyuan Tang, Jianxin Zhong. Inversion Symmetry and Exotic Interlayer Exciton Behavior in Twisted Trilayer MoS2 Produced by Vapor Deposition. ACS Applied Materials & Interfaces 2023, 15 (3) , 4724-4732. https://doi.org/10.1021/acsami.2c18687
    5. Hongli Wang, Yingjie Huang, Zhen Shi, Xingping Zhou, Zhigang Xue. Disulfide Metathesis-Assisted Lithium-Ion Conduction for PEO-Based Polymer Electrolytes. ACS Macro Letters 2022, 11 (8) , 991-998. https://doi.org/10.1021/acsmacrolett.2c00404
    6. Louis Maduro, Sabrya E. van Heijst, Sonia Conesa-Boj. First-Principles Calculation of Optoelectronic Properties in 2D Materials: The Polytypic WS2 Case. ACS Physical Chemistry Au 2022, 2 (3) , 191-198. https://doi.org/10.1021/acsphyschemau.1c00038
    7. Jyah Strachan, Anthony F. Masters, Thomas Maschmeyer. 3R-MoS2 in Review: History, Status, and Outlook. ACS Applied Energy Materials 2021, 4 (8) , 7405-7418. https://doi.org/10.1021/acsaem.1c00638
    8. Sol Lee, Joong-Eon Jung, Han-gyu Kim, Yangjin Lee, Je Myoung Park, Jeongsu Jang, Sangho Yoon, Arnab Ghosh, Minseol Kim, Joonho Kim, Woongki Na, Jonghwan Kim, Hyoung Joon Choi, Hyeonsik Cheong, Kwanpyo Kim. γ-GeSe: A New Hexagonal Polymorph from Group IV–VI Monochalcogenides. Nano Letters 2021, 21 (10) , 4305-4313. https://doi.org/10.1021/acs.nanolett.1c00714
    9. Xiaojia Du, Yangjin Lee, Yan Zhang, Tianhao Yu, Kwanpyo Kim, Nan Liu. Electronically Weak Coupled Bilayer MoS2 at Various Twist Angles via Folding. ACS Applied Materials & Interfaces 2021, 13 (19) , 22819-22827. https://doi.org/10.1021/acsami.1c03135
    10. Yeryun Cheon, Soo Yeon Lim, Kangwon Kim, Hyeonsik Cheong. Structural Phase Transition and Interlayer Coupling in Few-Layer 1T′ and Td MoTe2. ACS Nano 2021, 15 (2) , 2962-2970. https://doi.org/10.1021/acsnano.0c09162
    11. Lunfeng Chen, Hanghang Feng, Rui Zhang, Suhang Wang, Xueyan Zhang, Zhijie Wei, Yuanmin Zhu, Meng Gu, Chenyang Zhao. Phase-Controlled Synthesis of 2H/3R-MoSe2 Nanosheets on P-Doped Carbon for Synergistic Hydrogen Evolution. ACS Applied Nano Materials 2020, 3 (7) , 6516-6523. https://doi.org/10.1021/acsanm.0c00988
    12. Michael F. Mazza, Miguel Cabán-Acevedo, Joshua D. Wiensch, Annelise C. Thompson, Nathan S. Lewis. Defect-Seeded Atomic Layer Deposition of Metal Oxides on the Basal Plane of 2D Layered Materials. Nano Letters 2020, 20 (4) , 2632-2638. https://doi.org/10.1021/acs.nanolett.0c00179
    13. Guanmeng Li, Xiaoli Wang, Bo Han, Weifeng Zhang, Shuyan Qi, Yan Zhang, Jiakang Qiu, Peng Gao, Shaoshi Guo, Run Long, Zhenquan Tan, Xue-Zhi Song, Nan Liu. Direct Growth of Continuous and Uniform MoS2 Film on SiO2/Si Substrate Catalyzed by Sodium Sulfate. The Journal of Physical Chemistry Letters 2020, 11 (4) , 1570-1577. https://doi.org/10.1021/acs.jpclett.9b03879
    14. Getachew Solomon, Raffaello Mazzaro, Shujie You, Marta Maria Natile, Vittorio Morandi, Isabella Concina, Alberto Vomiero. Ag2S/MoS2 Nanocomposites Anchored on Reduced Graphene Oxide: Fast Interfacial Charge Transfer for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces 2019, 11 (25) , 22380-22389. https://doi.org/10.1021/acsami.9b05086
    15. David G. Hopkinson, Viktor Zólyomi, Aidan P. Rooney, Nick Clark, Daniel J. Terry, Matthew Hamer, David J. Lewis, Christopher S. Allen, Angus I. Kirkland, Yuri Andreev, Zakhar Kudrynskyi, Zakhar Kovalyuk, Amalia Patanè, Vladimir I. Fal’ko, Roman Gorbachev, Sarah J. Haigh. Formation and Healing of Defects in Atomically Thin GaSe and InSe. ACS Nano 2019, 13 (5) , 5112-5123. https://doi.org/10.1021/acsnano.8b08253
    16. Bernhard C. Bayer, Reinhard Kaindl, Mohammad Reza Ahmadpour Monazam, Toma Susi, Jani Kotakoski, Tushar Gupta, Dominik Eder, Wolfgang Waldhauser, Jannik C. Meyer. Atomic-Scale in Situ Observations of Crystallization and Restructuring Processes in Two-Dimensional MoS2 Films. ACS Nano 2018, 12 (8) , 8758-8769. https://doi.org/10.1021/acsnano.8b04945
    17. Nicholas D. Cultrara, Yaxian Wang, Maxx Q. Arguilla, Michael R. Scudder, Shishi Jiang, Wolfgang Windl, Svilen Bobev, and Joshua E. Goldberger . Synthesis of 1T, 2H, and 6R Germanane Polytypes. Chemistry of Materials 2018, 30 (4) , 1335-1343. https://doi.org/10.1021/acs.chemmater.7b04990
    18. Liangbo Liang, Jun Zhang, Bobby G. Sumpter, Qing-Hai Tan, Ping-Heng Tan, and Vincent Meunier . Low-Frequency Shear and Layer-Breathing Modes in Raman Scattering of Two-Dimensional Materials. ACS Nano 2017, 11 (12) , 11777-11802. https://doi.org/10.1021/acsnano.7b06551
    19. Hai Li, Jiang-Bin Wu, Feirong Ran, Miao-Ling Lin, Xue-Lu Liu, Yanyuan Zhao, Xin Lu, Qihua Xiong, Jun Zhang, Wei Huang, Hua Zhang, and Ping-Heng Tan . Interfacial Interactions in van der Waals Heterostructures of MoS2 and Graphene. ACS Nano 2017, 11 (11) , 11714-11723. https://doi.org/10.1021/acsnano.7b07015
    20. Si Zhou, Shanshan Wang, Huashan Li, Wenshuo Xu, Chuncheng Gong, Jeffrey C. Grossman, and Jamie H. Warner . Atomic Structure and Dynamics of Defects in 2D MoS2 Bilayers. ACS Omega 2017, 2 (7) , 3315-3324. https://doi.org/10.1021/acsomega.7b00734
    21. Eric Singh, Ki Seok Kim, Geun Young Yeom, and Hari Singh Nalwa . Atomically Thin-Layered Molybdenum Disulfide (MoS2) for Bulk-Heterojunction Solar Cells. ACS Applied Materials & Interfaces 2017, 9 (4) , 3223-3245. https://doi.org/10.1021/acsami.6b13582
    22. Kangwon Kim, Jae-Ung Lee, Dahyun Nam, and Hyeonsik Cheong . Davydov Splitting and Excitonic Resonance Effects in Raman Spectra of Few-Layer MoSe2. ACS Nano 2016, 10 (8) , 8113-8120. https://doi.org/10.1021/acsnano.6b04471
    23. Michał Piskorski, Iaroslav Lutsyk, Wojciech Ryś, Maxime Le Ster, Zuzanna Ogorzałek-Sory, Johannes Binder, Klaudia Toczek, Aleksandra Nadolska, Rafał Dunal, Przemysław Przybysz, Maciej Rogala, Paweł Dąbrowski, Wojciech Pacuski, Janusz Sadowski, Marta Gryglas-Borysiewicz, Andrzej Wysmołek, Paweł J. Kowalczyk, Witold Kozłowski, Paweł Krukowski. The integration of Raman spectrometer with glove box for high-purity investigation in an inert gas condition. Measurement 2025, 251 , 117190. https://doi.org/10.1016/j.measurement.2025.117190
    24. Rui Su, Xiaojing Zhu, Ligui Li, Zhengya Dong. Research progress of MoS2-based electrode materials in electrocatalytic hydrogen evolution: from synthesis, characterization to electrocatalytic performance optimization strategy. International Journal of Hydrogen Energy 2025, 137 , 26-72. https://doi.org/10.1016/j.ijhydene.2025.04.390
    25. U. K. Goutam, Jagannath, Jyoti Prakash, S. Khan, Pabitra Sahu, D. Bhattacharyya, L. M. Pant. MoS2 films from few layers to monolayer: Scalable synthesis and their band alignments with Al2O3 interfaces. Journal of Applied Physics 2025, 137 (14) https://doi.org/10.1063/5.0258302
    26. Cheng Ding, Hui Luo, Jiahao Yang, Baobao Sun, Wenan Deng, Chuan Li, Feng Du, Shufeng Li. Oil-soluble N-doped MoS2 as a catalyst for slurry-phase hydrotreating of waste oil. Renewable Energy 2025, 243 , 122503. https://doi.org/10.1016/j.renene.2025.122503
    27. Yang‐Biao Xue, Hai‐Tao Jiang, Peng Luo, Hai‐Juan Liu, Yu‐Hang Yang, Qian‐Kun Xue, Bin Wu, Guo‐Liang Zhang, Mi Zheng, Min Zheng, Zuo‐Shan Wang, Ming‐Peng Zhuo. Wearable Solar Ionic Thermoelectric Detectors for Human Motion Monitoring and Language Recognition Conversion. Advanced Functional Materials 2025, 479 https://doi.org/10.1002/adfm.202422592
    28. M. A. Jalil, Kamrul Hassan, Anh Tuan Trong Tran, Tran Thanh Tung, Manas Ranjan Panda, Sally El Meragawi, Tetsuya Kida, Mainak Majumder, Dusan Losic. Harnessing mixed-phase MoS 2 for efficient room-temperature ammonia sensing. Nanoscale 2025, 17 (6) , 3341-3352. https://doi.org/10.1039/D4NR03037K
    29. Le Ngoc Long, Tran Thi Ngoc Bich. Hydrothermal-based controllable synthesis and structural-optical characterization of 2D-MoS2/graphene nanocomposites for optoelectronic applications. Optical Materials 2024, 156 , 115968. https://doi.org/10.1016/j.optmat.2024.115968
    30. Tae Soo Kim, Gichang Noh, Seongdae Kwon, Ji Yoon Kim, Krishna P. Dhakal, Saeyoung Oh, Hyun‐Jun Chai, Eunpyo Park, In Soo Kim, Eunji Lee, Youngbum Kim, Jaehyun Lee, Min‐kyung Jo, Minsoo Kang, Cheolmin Park, Jeongho Kim, Jeongwon Park, Suhyun Kim, Mingyu Kim, Yuseok Kim, Sung‐Yool Choi, Seungwoo Song, Hu Young Jeong, Jeongyong Kim, Joon Young Kwak, Kibum Kang. Diffusion Control on the Van der Waals Surface of Monolayers for Uniform Bi‐Layer MoS 2 Growth. Advanced Functional Materials 2024, 34 (23) https://doi.org/10.1002/adfm.202312365
    31. Melanie Guillen‐Soler, Natalia V. Vassilyeva, Eugenia Pilar Quirós‐Díez, Jose M. Vila‐Fungueiriño, Alicia Forment‐Aliaga, Maria del Carmen Gimenez‐Lopez. A Hierarchical Polyoxometalate/Pd/Mos 2 Hybrid: Developing an Efficient Novel Bifunctional Catalyst for Water Splitting. Advanced Sustainable Systems 2024, 8 (5) https://doi.org/10.1002/adsu.202300607
    32. Yoon Seong Heo, Tae Wan Kim, Wooseok Lee, Jungseok Choi, Soyeon Park, Dong‐Il Yeom, Jae‐Ung Lee. Mesoscopic Stacking Reconfigurations in Stacked van der Waals Film. Small 2024, 20 (21) https://doi.org/10.1002/smll.202306296
    33. Kendrich O’Donaghue Hatfield, Nathan Brown, Enkeleda Dervishi, Bradley Carpenter, Jordyn N. Janusz, Daniel E. Hooks. Correlation of Fabrication Methods and Enhanced Wear Performance in Nanoporous Anodic Aluminum Oxide with Incorporated Molybdenum Disulfide (MoS2) Nanomaterials. Nanomaterials 2024, 14 (5) , 451. https://doi.org/10.3390/nano14050451
    34. Chengjie Pei, Jindong Zhang, Hai Li. Probing Polymorphic Stacking Domains in Mechanically Exfoliated Two-Dimensional Nanosheets Using Atomic Force Microscopy and Ultralow-Frequency Raman Spectroscopy. Nanomaterials 2024, 14 (4) , 339. https://doi.org/10.3390/nano14040339
    35. Aditya Deshpande, Koki Hojo, Koichi Tanaka, Pedro Arias, Hicham Zaid, Michael Liao, Mark Goorsky, Suneel Kodambaka. Need for complementary techniques for reliable characterization of MoS2-like layers. Journal of Vacuum Science & Technology A 2023, 41 (4) https://doi.org/10.1116/6.0002701
    36. Le Ngoc Long, Nguyen Thanh Quang, Truong Tung Khuong, Pham Trung Kien, Nguyen Hoc Thang, Tran Van Khai. Controllable synthesis by hydrothermal method and optical properties of 2D MoS2/rGO nanocomposites. Journal of Sol-Gel Science and Technology 2023, 106 (3) , 699-714. https://doi.org/10.1007/s10971-023-06072-3
    37. M. Jahangirzadeh Varjovi, Soheil Ershadrad, Biplab Sanyal. Structural, vibrational, elastic, electronic, and piezoelectric properties of binary γ − Ge X and ternary γ − Ge 2 X X ′ monolayers ( X , X ′ = S , Se, and Te). Physical Review B 2023, 107 (19) https://doi.org/10.1103/PhysRevB.107.195421
    38. Hang Zhang, Xuejian Xiao, Hualan Xu, Lei Wang, Yuan Li, Chuying Ouyang, Shengliang Zhong. Two-dimensional metal-phase layered molybdenum disulfide for electrocatalytic hydrogen evolution reaction. Nanoscale 2023, 15 (9) , 4429-4437. https://doi.org/10.1039/D2NR06184H
    39. Hang Zhang, Hualan Xu, Lei Wang, Chuying Ouyang, Haiwei Liang, Shengliang Zhong. A Metal–Organic Frameworks Derived 1T‐MoS 2 with Expanded Layer Spacing for Enhanced Electrocatalytic Hydrogen Evolution. Small 2023, 19 (4) https://doi.org/10.1002/smll.202205736
    40. Pallavi Aggarwal, Aditya Singh, Sahin Sorifi, Madan Sharma, Rajendra Singh. Characterization of 2D transition metal dichalcogenides. 2023, 97-139. https://doi.org/10.1016/B978-0-12-821505-0.00006-X
    41. Tingting Ren, Jun Han, Ye Miao, Najun Li, Dongyun Chen, Qingfeng Xu, Hua Li, Jianmei Lu. Titanium carbide MXene with out-of-plane electromechanical response as substrate of molybdenum disulfide for enhanced piezocatalysis. Journal of Alloys and Compounds 2022, 925 , 166638. https://doi.org/10.1016/j.jallcom.2022.166638
    42. Yiping Yang, Hongping He, Haiyang Xian, Jiaxin Xi, Xiao Wu, Aiqing Chen, Jianxi Zhu, Huifang Xu. Periodic and non-periodic stacking in molybdenite (MoS2) revealed by STEM. American Mineralogist 2022, 107 (6) , 997-1006. https://doi.org/10.2138/am-2022-8019
    43. N. Kumaresan, P. Karuppasamy, Muthu Senthil Pandian, P. Ramasamy. Formation of face-contact interaction in 2D/2D/2D heterostructure ternary nanocomposites of g-C3N4/MoS2/GO for effective photocatalytic activity against the organic pollutants under the visible light irradiation. Journal of Materials Science: Materials in Electronics 2022, 33 (15) , 11970-11988. https://doi.org/10.1007/s10854-022-08159-z
    44. Dan-Dong Wang, Xin-Gao Gong, Ji-Hui Yang. Semiconductor-to-metal transition from monolayer to bilayer blue phosphorous induced by extremely strong interlayer coupling: a first-principles study. Nanoscale 2022, 14 (11) , 4082-4088. https://doi.org/10.1039/D1NR08387B
    45. Astrid Weston. Introduction to 2-Dimensional Materials and Moiré Superlattices. 2022, 5-28. https://doi.org/10.1007/978-3-031-12093-0_2
    46. Jan Luxa, Lucie Spejchalová, Ivo Jakubec, Zdeněk Sofer. MoS 2 stacking matters: 3R polytype significantly outperforms 2H MoS 2 for the hydrogen evolution reaction. Nanoscale 2021, 13 (46) , 19391-19398. https://doi.org/10.1039/D1NR03284D
    47. Tingting Ren, Wenrou Tian, Qian Shen, Zhenting Yuan, Dongyun Chen, Najun Li, Jianmei Lu. Enhanced piezocatalysis of polymorphic few-layered MoS2 nanosheets by phase engineering. Nano Energy 2021, 90 , 106527. https://doi.org/10.1016/j.nanoen.2021.106527
    48. M. Grzeszczyk, J. Szpakowski, A. O. Slobodeniuk, T. Kazimierczuk, M. Bhatnagar, T. Taniguchi, K. Watanabe, P. Kossacki, M. Potemski, A. Babiński, M. R. Molas. The optical response of artificially twisted MoS$$_2$$ bilayers. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-95700-5
    49. Huan Lu, Hanyue Cui, Dingding Duan, Li Li, Yaping Ding. A novel molecularly imprinted electrochemical sensor based on a nitrogen-doped graphene oxide quantum dot and molybdenum carbide nanocomposite for indometacin determination. The Analyst 2021, 146 (23) , 7178-7186. https://doi.org/10.1039/D1AN01665B
    50. Muhammad Hilmi Johari, Mohamad Shukri Sirat, Mohd Ambri Mohamed, Abdul Rahman Mohmad. Inhomogenous Deposition of Vertical MoS 2 Grown by Chemical Vapor Deposition. 2021, 24-26. https://doi.org/10.1109/RSM52397.2021.9511569
    51. Manish K. Niranjan. Significance of Coulomb interaction in interlayer coupling, polarized Raman intensities, and infrared activities in the layered van der Waals semiconductor GaSe. Physical Review B 2021, 103 (19) https://doi.org/10.1103/PhysRevB.103.195437
    52. Hyeong‐U. Kim, Mansu Kim, Hyunho Seok, Kyu‐Young Park, Ji‐Yun Moon, Jonghwan Park, Byeong‐Seon An, Hee Joon Jung, Vinayak P. Dravid, Dongmok Whang, Jae‐Hyun Lee, Taesung Kim. Realization of Wafer‐Scale 1T‐MoS 2 Film for Efficient Hydrogen Evolution Reaction. ChemSusChem 2021, 14 (5) , 1344-1350. https://doi.org/10.1002/cssc.202002578
    53. Sabrya E. van Heijst, Masaki Mukai, Eiji Okunishi, Hiroki Hashiguchi, Laurien I. Roest, Louis Maduro, Juan Rojo, Sonia Conesa‐Boj. Illuminating the Electronic Properties of WS 2 Polytypism with Electron Microscopy. Annalen der Physik 2021, 533 (3) https://doi.org/10.1002/andp.202000499
    54. Laurien I. Roest, Sabrya E. van Heijst, Louis Maduro, Juan Rojo, Sonia Conesa-Boj. Charting the low-loss region in electron energy loss spectroscopy with machine learning. Ultramicroscopy 2021, 222 , 113202. https://doi.org/10.1016/j.ultramic.2021.113202
    55. Abimannan Sethurajaperumal, Vanmathi Ravichandran, Arghya Banerjee, Anagha Manohar, Eswaraiah Varrla. Two-dimensional layered nanosheets. 2021, 465-497. https://doi.org/10.1016/B978-0-12-822352-9.00022-5
    56. Rhea Thankam Sam, Takayuki Umakoshi, Prabhat Verma. Probing stacking configurations in a few layered MoS2 by low frequency Raman spectroscopy. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-78238-w
    57. Bruno R Carvalho, Marcos A Pimenta. Resonance Raman spectroscopy in semiconducting transition-metal dichalcogenides: basic properties and perspectives. 2D Materials 2020, 7 (4) , 042001. https://doi.org/10.1088/2053-1583/ab98ef
    58. Jungcheol Kim, Jae-Ung Lee, Hyeonsik Cheong. Polarized Raman spectroscopy for studying two-dimensional materials. Journal of Physics: Condensed Matter 2020, 32 (34) , 343001. https://doi.org/10.1088/1361-648X/ab8848
    59. Mansour Mahmoudpour, Mohammadali Torbati, Mir-Michael Mousavi, Miguel de la Guardia, Jafar Ezzati Nazhad Dolatabadi. Nanomaterial-based molecularly imprinted polymers for pesticides detection: Recent trends and future prospects. TrAC Trends in Analytical Chemistry 2020, 129 , 115943. https://doi.org/10.1016/j.trac.2020.115943
    60. Achintya Bera, Anjali Singh, Y. A. Sorb, Ramesh Naidu Jenjeti, D. V. S. Muthu, S. Sampath, Chandrabhas Narayana, U. V. Waghmare, A. K. Sood. Chemical ordering and pressure-induced isostructural and electronic transitions in MoSSe crystal. Physical Review B 2020, 102 (1) https://doi.org/10.1103/PhysRevB.102.014103
    61. Rhea Thankam Sam, Takayuki Umakoshi, Prabhat Verma. Defect-related anomalous low-frequency Raman scattering in a few-layered MoS 2. Applied Physics Express 2020, 13 (7) , 072003. https://doi.org/10.35848/1882-0786/ab9a91
    62. Si Zhou, Jun Chen, Jamie H. Warner. In situ atomic level studies of thermally controlled interlayer stacking shifts in 2D transition metal dichalcogenide bilayers. Journal of Materials Research 2020, 35 (11) , 1407-1416. https://doi.org/10.1557/jmr.2019.399
    63. Yongjian Zhou, Nikhilesh Maity, Amritesh Rai, Rinkle Juneja, Xianghai Meng, Anupam Roy, Yanyao Zhang, Xiaochuan Xu, Jung‐Fu Lin, Sanjay K. Banerjee, Abhishek K. Singh, Yaguo Wang. Stacking‐Order‐Driven Optical Properties and Carrier Dynamics in ReS 2. Advanced Materials 2020, 32 (22) https://doi.org/10.1002/adma.201908311
    64. Soo Yeon Lim, Jae-Ung Lee, Jung Hwa Kim, Liangbo Liang, Xiangru Kong, Thi Thanh Huong Nguyen, Zonghoon Lee, Sunglae Cho, Hyeonsik Cheong. Polytypism in few-layer gallium selenide. Nanoscale 2020, 12 (15) , 8563-8573. https://doi.org/10.1039/D0NR00165A
    65. Junying Huang, Mengting Chen, Xiaowen Zhang, Weipeng Liu, Yingju Liu. P-doped 3D graphene network supporting uniformly vertical MoS2 nanosheets for enhanced hydrogen evolution reaction. International Journal of Hydrogen Energy 2020, 45 (7) , 4043-4053. https://doi.org/10.1016/j.ijhydene.2019.12.014
    66. Micaela A. Macchione, Rubén Mendoza-Cruz, Lourdes Bazán-Diaz, J. Jesús Velázquez-Salazar, Ulises Santiago, María Josefina Arellano-Jiménez, J. Francisco Perez, Miguel José-Yacamán, J. Enrique Samaniego-Benitez. Electron microscopy study of the carbon-induced 2H–3R–1T phase transition of MoS 2. New Journal of Chemistry 2020, 44 (4) , 1190-1193. https://doi.org/10.1039/C9NJ03850G
    67. Nicola Bannister, Jonathan Skelton, Gabriele Kociok-Köhn, Tim Batten, Enrico Da Como, Simon Crampin. Lattice vibrations of γ - and β -coronene from Raman microscopy and theory. Physical Review Materials 2019, 3 (12) https://doi.org/10.1103/PhysRevMaterials.3.125601
    68. Kangwon Kim, Jae-Ung Lee, Hyeonsik Cheong. Raman spectroscopy of two-dimensional magnetic van der Waals materials. Nanotechnology 2019, 30 (45) , 452001. https://doi.org/10.1088/1361-6528/ab37a4
    69. Shuxiao Feng, Yangguang Li, Ruyue Zhang, Yingchun Li. A novel electrochemical sensor based on molecularly imprinted polymer modified hollow N, S-Mo2C/C spheres for highly sensitive and selective carbendazim determination. Biosensors and Bioelectronics 2019, 142 , 111491. https://doi.org/10.1016/j.bios.2019.111491
    70. Gyeong Hee Ryu, Jun Chen, Yi Wen, Si Zhou, Ren-Jie Chang, Jamie H. Warner. Atomic structural catalogue of defects and vertical stacking in 2H/3R mixed polytype multilayer WS 2 pyramids. Nanoscale 2019, 11 (22) , 10859-10871. https://doi.org/10.1039/C9NR01783F
    71. Tatiana V. Shubina, Maja Remškar, Valery Yu. Davydov, Kirill G. Belyaev, Alexey A. Toropov, Bernard Gil. Excitonic Emission in van der Waals Nanotubes of Transition Metal Dichalcogenides. Annalen der Physik 2019, 531 (6) https://doi.org/10.1002/andp.201800415
    72. Richa Singh, Shweta Tripathi. Structural and optical properties of few-layer MoS2 thin films grown on various substrates using RF sputtering process. Journal of Materials Science: Materials in Electronics 2019, 30 (8) , 7665-7680. https://doi.org/10.1007/s10854-019-01082-w
    73. Jeremiah van Baren, Gaihua Ye, Jia-An Yan, Zhipeng Ye, Pouyan Rezaie, Peng Yu, Zheng Liu, Rui He, Chun Hung Lui. Stacking-dependent interlayer phonons in 3R and 2H MoS 2. 2D Materials 2019, 6 (2) , 025022. https://doi.org/10.1088/2053-1583/ab0196
    74. Miao-Ling Lin, Ping-Heng Tan. Ultralow-Frequency Raman Spectroscopy of Two-dimensional Materials. 2019, 203-230. https://doi.org/10.1007/978-981-13-1828-3_10
    75. Xin Lu, Qing-Hai Tan, Qihua Xiong, Jun Zhang. Raman Spectroscopy of Isotropic Two-Dimensional Materials Beyond Graphene. 2019, 29-52. https://doi.org/10.1007/978-981-13-1828-3_2
    76. Hyeonsik Cheong, Jae-Ung Lee. Resonant Raman Spectroscopy of Two Dimensional Materials Beyond Graphene. 2019, 185-202. https://doi.org/10.1007/978-981-13-1828-3_9
    77. Woongki Na, Kangwon Kim, Jae-Ung Lee, Hyeonsik Cheong. Davydov splitting and polytypism in few-layer MoS 2. 2D Materials 2019, 6 (1) , 015004. https://doi.org/10.1088/2053-1583/aae61c
    78. Chithra H. Sharma, Ananthu P. Surendran, Abin Varghese, Madhu Thalakulam. Stable and scalable 1T MoS2 with low temperature-coefficient of resistance. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-30867-y
    79. Florence P. Novais Antunes, Viviane S. Vaiss, Sérgio R. Tavares, Rodrigo B. Capaz, Alexandre A. Leitão. Van der Waals interactions and the properties of graphite and 2H-, 3R- and 1T-MoS2: A comparative study. Computational Materials Science 2018, 152 , 146-150. https://doi.org/10.1016/j.commatsci.2018.05.045
    80. Sachin M Shinde, Krishna P Dhakal, Xiang Chen, Won Seok Yun, JaeDong Lee, Hyunmin Kim, Jong-Hyun Ahn. Stacking-controllable interlayer coupling and symmetric configuration of multilayered MoS2. NPG Asia Materials 2018, 10 (2) , e468-e468. https://doi.org/10.1038/am.2017.226
    81. Jae‐Ung Lee, Hyeonsik Cheong. Resonance Raman effects in transition metal dichalcogenides. Journal of Raman Spectroscopy 2018, 49 (1) , 66-75. https://doi.org/10.1002/jrs.5200
    82. Guillaume Froehlicher, Etienne Lorchat, Olivia Zill, Michelangelo Romeo, Stéphane Berciaud. Rigid‐layer Raman‐active modes in N ‐layer transition metal dichalcogenides: interlayer force constants and hyperspectral Raman imaging. Journal of Raman Spectroscopy 2018, 49 (1) , 91-99. https://doi.org/10.1002/jrs.5236
    83. Shishu Zhang, Na Zhang, Yan Zhao, Ting Cheng, Xiaobo Li, Rui Feng, Hua Xu, Zhirong Liu, Jin Zhang, Lianming Tong. Spotting the differences in two-dimensional materials – the Raman scattering perspective. Chemical Society Reviews 2018, 47 (9) , 3217-3240. https://doi.org/10.1039/C7CS00874K
    84. Mohamed R. Saber, Gomaa Khabiri, Ahmed A. Maarouf, Mathias Ulbricht, Ahmed S. G. Khalil. A comparative study on the photocatalytic degradation of organic dyes using hybridized 1T/2H, 1T/3R and 2H MoS 2 nano-sheets. RSC Advances 2018, 8 (46) , 26364-26370. https://doi.org/10.1039/C8RA05387A
    85. Majharul Haque Khan, Hua Kun Liu, Xudong Sun, Yusuke Yamauchi, Yoshio Bando, Dmitri Golberg, Zhenguo Huang. Few-atomic-layered hexagonal boron nitride: CVD growth, characterization, and applications. Materials Today 2017, 20 (10) , 611-628. https://doi.org/10.1016/j.mattod.2017.04.027
    86. Jae-Ung Lee, Sungjong Woo, Jaesung Park, Hee Chul Park, Young-Woo Son, Hyeonsik Cheong. Strain-shear coupling in bilayer MoS2. Nature Communications 2017, 8 (1) https://doi.org/10.1038/s41467-017-01487-3
    87. Danielle M Hamann, Erik C Hadland, David C Johnson. Heterostructures containing dichalcogenides-new materials with predictable nanoarchitectures and novel emergent properties. Semiconductor Science and Technology 2017, 32 (9) , 093004. https://doi.org/10.1088/1361-6641/aa7785
    88. Dajin Chen, Song Lu, Huanhuan Li, Can Li, Lei Li, Yinyan Gong, Lengyuan Niu, Xinjuan Liu, Tao Wang. The effects of local bond relaxations on the electronic and photocatalysis performances of nonmetal doped 3R–MoS 2 based photocatalyst: density functional theory. Materials Research Express 2017, 4 (3) , 035908. https://doi.org/10.1088/2053-1591/aa646a
    89. Revannath Dnyandeo Nikam, Poonam Ashok Sonawane, Raman Sankar, Yit-Tsong Chen. Epitaxial growth of vertically stacked p-MoS2/n-MoS2 heterostructures by chemical vapor deposition for light emitting devices. Nano Energy 2017, 32 , 454-462. https://doi.org/10.1016/j.nanoen.2017.01.006
    90. Ivan Verzhbitskiy, Goki Eda. Chalcogenide Nanosheets: Optical Signatures of Many-Body Effects and Electronic Band Structure. 2017, 133-162. https://doi.org/10.1007/978-4-431-56496-6_5
    91. Liangbo Liang, Alexander A. Puretzky, Bobby G. Sumpter, Vincent Meunier. Interlayer bond polarizability model for stacking-dependent low-frequency Raman scattering in layered materials. Nanoscale 2017, 9 (40) , 15340-15355. https://doi.org/10.1039/C7NR05839J
    92. Eric Singh, Ki Seok Kim, Geun Young Yeom, Hari Singh Nalwa. Two-dimensional transition metal dichalcogenide-based counter electrodes for dye-sensitized solar cells. RSC Advances 2017, 7 (45) , 28234-28290. https://doi.org/10.1039/C7RA03599C
    93. Xin Lu, Xin Luo, Jun Zhang, Su Ying Quek, Qihua Xiong. Lattice vibrations and Raman scattering in two-dimensional layered materials beyond graphene. Nano Research 2016, 9 (12) , 3559-3597. https://doi.org/10.1007/s12274-016-1224-5
    94. Seki Park, Hyun Kim, Min Su Kim, Gang Hee Han, Jeongyong Kim. Dependence of Raman and absorption spectra of stacked bilayer MoS_2 on the stacking orientation. Optics Express 2016, 24 (19) , 21551. https://doi.org/10.1364/OE.24.021551
    95. Minjung Kim, Songhee Han, Jung Hwa Kim, Jae-Ung Lee, Zonghoon Lee, Hyeonsik Cheong. Determination of the thickness and orientation of few-layer tungsten ditelluride using polarized Raman spectroscopy. 2D Materials 2016, 3 (3) , 034004. https://doi.org/10.1088/2053-1583/3/3/034004
    96. Samuel Mañas-Valero, Víctor García-López, Andrés Cantarero, Marta Galbiati. Raman Spectra of ZrS2 and ZrSe2 from Bulk to Atomically Thin Layers. Applied Sciences 2016, 6 (9) , 264. https://doi.org/10.3390/app6090264
    97. Malleswararao Tangi, Pawan Mishra, Tien Khee Ng, Mohamed Nejib Hedhili, Bilal Janjua, Mohd Sharizal Alias, Dalaver H. Anjum, Chien-Chih Tseng, Yumeng Shi, Hannah J. Joyce, Lain-Jong Li, Boon S. Ooi. Determination of band offsets at GaN/single-layer MoS2 heterojunction. Applied Physics Letters 2016, 109 (3) https://doi.org/10.1063/1.4959254
    98. M.-L. Lin, F.-R. Ran, X.-F. Qiao, J.-B. Wu, W. Shi, Z.-H. Zhang, X.-Z. Xu, K.-H. Liu, H. Li, P.-H. Tan. Ultralow-frequency Raman system down to 10 cm−1 with longpass edge filters and its application to the interface coupling in t(2+2)LGs. Review of Scientific Instruments 2016, 87 (5) https://doi.org/10.1063/1.4952384
    99. Xin Zhang, Qing-Hai Tan, Jiang-Bin Wu, Wei Shi, Ping-Heng Tan. Review on the Raman spectroscopy of different types of layered materials. Nanoscale 2016, 8 (12) , 6435-6450. https://doi.org/10.1039/C5NR07205K

    ACS Nano

    Cite this: ACS Nano 2016, 10, 2, 1948–1953
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.5b05831
    Published January 12, 2016
    Copyright © 2016 American Chemical Society

    Article Views

    5395

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.