ACS Publications. Most Trusted. Most Cited. Most Read
Mechanisms of Nanoglass Ultrastability
My Activity
    Article

    Mechanisms of Nanoglass Ultrastability
    Click to copy article linkArticle link copied!

    View Author Information
    Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
    KIT-TUD Joint Research Laboratory Nanomaterials, TU Darmstadt, 64287 Darmstadt, Germany
    § Institute of Nanoscience, Nanjing University of Science and Technology, 210094 Nanjing, China
    Other Access OptionsSupporting Information (2)

    ACS Nano

    Cite this: ACS Nano 2016, 10, 3, 3241–3247
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.5b05897
    Published February 10, 2016
    Copyright © 2016 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The origin of the astonishing properties of recently discovered ultrastable nanoglasses is presently not well understood. Nanoglasses appear to exhibit density variations not common in bulk glasses and differ significantly in thermal, magnetic, biocompatible, and mechanic properties from the bulk materials of the same composition. Here, we investigate a generic model system that permits modeling of both the physical vapor deposition process (PVD) of the nanoparticles and their consolidation into a nanoglass. We performed molecular dynamics simulations to investigate the PVD process generating nanometer-sized noncrystalline clusters and the formation of the PVD-nanoglass when these nanoclusters are consolidated. In agreement with the experiments, we find that the resulting PVD-nanoglass consists of two structural components: noncrystalline nanometer-sized cores and interfacial regions that are formed during the consolidation process. The interfacial regions were found to have an atomic structure and an internal energy that differ from the structure and internal energy of the corresponding melt-quenched glass. The resulting material represents a noncrystalline state that differs from a bulk glass with the same chemical composition and a glass obtained from nanoparticles derived from the bulk glass.

    Copyright © 2016 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.5b05897.

    • Additional simulation data (PDF)

    • Movie (AVI)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 50 publications.

    1. Mónica Gaspar Simões, Katrin Unger, Caterina Czibula, Anna Maria Coclite, Robert Schennach, Ulrich Hirn. Functionalizing Surfaces by Physical Vapor Deposition To Measure the Degree of Nanoscale Contact Using FRET. ACS Applied Nano Materials 2024, 7 (13) , 15693-15701. https://doi.org/10.1021/acsanm.4c01809
    2. Jialun Gu, Fenghui Duan, Sida Liu, Wenhao Cha, Jian Lu. Phase Engineering of Nanostructural Metallic Materials: Classification, Structures, and Applications. Chemical Reviews 2024, 124 (3) , 1247-1287. https://doi.org/10.1021/acs.chemrev.3c00514
    3. Ananya Baksi, Sree Harsha Nandam, Di Wang, Robert Kruk, Mohammed Reda Chellali, Julia Ivanisenko, Isabella Gallino, Horst Hahn, Soumabha Bag. Ni60Nb40 Nanoglass for Tunable Magnetism and Methanol Oxidation. ACS Applied Nano Materials 2020, 3 (7) , 7252-7259. https://doi.org/10.1021/acsanm.0c01584
    4. Shiv Prakash Singh, Ralf Witte, Oliver Clemens, Abhishek Sarkar, Leonardo Velasco, Robert Kruk, Horst Hahn. Magnetic Tb75Fe25 Nanoglass for Cryogenic Permanent Magnet Undulator. ACS Applied Nano Materials 2020, 3 (7) , 7281-7290. https://doi.org/10.1021/acsanm.0c01674
    5. Soumabha Bag, Ananya Baksi, Sree Harsha Nandam, Di Wang, Xinglong Ye, Jyotirmoy Ghosh, Thalappil Pradeep, Horst Hahn. Nonenzymatic Glucose Sensing Using Ni60Nb40 Nanoglass. ACS Nano 2020, 14 (5) , 5543-5552. https://doi.org/10.1021/acsnano.9b09778
    6. Yanming Zhang, Liping Huang, Yunfeng Shi. Silica Glass Toughened by Consolidation of Glassy Nanoparticles. Nano Letters 2019, 19 (8) , 5222-5228. https://doi.org/10.1021/acs.nanolett.9b01634
    7. Xuan Li, Lei Zuo, Xin Zhang, Tao Zhang. Atomic Structure and Magnetic Properties of the Fe78B13Si9 Amorphous Alloy Surface. The Journal of Physical Chemistry C 2018, 122 (50) , 28613-28618. https://doi.org/10.1021/acs.jpcc.8b06516
    8. Anshuman Mishra, Marisa A. Frechero, Arnaud Caron, Pravin Kumar Singh, Ashutosh Tiwari. Recent progress and future directions in nanoglass materials: A deep insight into synthesis, characterization, and application. Nanotechnology and Precision Engineering 2025, 8 (1) https://doi.org/10.1063/10.0028755
    9. Prashil S. Joshi, Xuezhen Ren, Paulo S. Branicio. Tailoring Cu-Zr gradient nanoglass structures: Influence of nanoparticle size and cooling rates on glass-glass interfaces. Intermetallics 2025, 178 , 108633. https://doi.org/10.1016/j.intermet.2024.108633
    10. Tian Li, Nana Li, Shengming Zhang, Guangping Zheng. Mechanical property dependence on compositional heterogeneity in Co-P metallic nanoglasses. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-58247-9
    11. Jianglin Wang, Shuhuai Wang, Yongkang Yang, Shuai Wang, Jie Li, Ziqi Jia, Binghui Ge, Xinghua Su, Anran Guo, Jiachen Liu, Shuxin Niu, Xiqing Xu. Nanostructured amorphous Al2O3-ZrO2 (La2O3) ceramics with plastic deformation via interface inducing hierarchical shear bands. International Journal of Plasticity 2024, 181 , 104103. https://doi.org/10.1016/j.ijplas.2024.104103
    12. A. Borroto, S. Bruyère, S. Migot, C. de Melo, D. Horwat, J.F. Pierson. Nanostructured Zr-Cu metallic glass thin films with tailored electrical and optical properties. Journal of Alloys and Compounds 2023, 967 , 171681. https://doi.org/10.1016/j.jallcom.2023.171681
    13. M. Gounzari, A. Kotri, Y. Belkassmi, L. Elmaimouni. Atomistic insights into the effect of cooling rates on mechanical properties of glassy graphene. Solid State Communications 2023, 366-367 , 115157. https://doi.org/10.1016/j.ssc.2023.115157
    14. Shu Fu, Sinan Liu, Jiacheng Ge, Junjie Wang, Huiqiang Ying, Shangshu Wu, Mengyang Yan, Li Zhu, Yubin Ke, Junhua Luan, Yang Ren, Xiaobing Zuo, Zhenduo Wu, Zhen Peng, Chain-Tsuan Liu, Xun-Li Wang, Tao Feng, Si Lan. In situ study on medium-range order evolution during the polyamorphous phase transition in a Pd-Ni-P nanostructured glass. Journal of Materials Science & Technology 2022, 125 , 145-156. https://doi.org/10.1016/j.jmst.2022.01.038
    15. X.X. Li, J.G. Wang, H.B. Ke, C. Yang, W.H. Wang. Extreme rejuvenation and superior stability in a metallic glass. Materials Today Physics 2022, 27 , 100782. https://doi.org/10.1016/j.mtphys.2022.100782
    16. Li Jiang, Zhitong Bai, Max Powers, Yue Fan, Wei Zhang, Easo P. George, Amit Misra. Deformation mechanisms in crystalline-amorphous high-entropy composite multilayers. Materials Science and Engineering: A 2022, 848 , 143144. https://doi.org/10.1016/j.msea.2022.143144
    17. Shiv Prakash Singh, Mahmoud Ebrahimi, Shokouh Attarilar, Liqiang Wang, Qudong Wang, Faramarz Djavanroodi. Assessment of Severe Plastic Deformation Processes in Bulk and Nanostructured Metallic Glass. Frontiers in Materials 2022, 9 https://doi.org/10.3389/fmats.2022.837359
    18. Zhibin Wang, Qiufan Cheng, Xin Li, Zhiquan Li, Shuhan Meng. Research of an optical device based on an anisotropic epsilon-near-zero metamaterial. Optical and Quantum Electronics 2022, 54 (2) https://doi.org/10.1007/s11082-021-03426-5
    19. Tian Li, Ke Ma, Guangping Zheng. The effects of glass–glass interfaces on thermodynamic and mechanical properties of Co–Fe–P metallic nano-glasses. Journal of Materials Research 2021, 36 (24) , 4951-4962. https://doi.org/10.1557/s43578-021-00429-6
    20. Xuan Li, Lei Zuo, Tao Zhang. Effect of annealing on crystallization behavior in Cu15Zr85 amorphous film. Journal of Alloys and Compounds 2021, 883 , 160913. https://doi.org/10.1016/j.jallcom.2021.160913
    21. Tian Li, Ying Shen, Guangping Zheng. Characterization on the glass forming ability of metallic nano-glasses by the dynamic scaling for mechanical loss in supercooled liquid state. Scripta Materialia 2021, 203 , 114109. https://doi.org/10.1016/j.scriptamat.2021.114109
    22. John H Perepezko, Meng Gao, Jun-Qiang Wang. Nanoglass and Nanocrystallization Reactions in Metallic Glasses. Frontiers in Materials 2021, 8 https://doi.org/10.3389/fmats.2021.663862
    23. Kaiyao Wu, Fei Chu, Yuying Meng, Kaveh Edalati, Qingsheng Gao, Wei Li, Huai-Jun Lin. Cathodic corrosion activated Fe-based nanoglass as a highly active and stable oxygen evolution catalyst for water splitting. Journal of Materials Chemistry A 2021, 9 (20) , 12152-12160. https://doi.org/10.1039/D1TA00769F
    24. Qijing Sun, David M. Miskovic, Michael Ferry. Film thickness effect on formation of ultrastable metallic glasses. Materials Today Physics 2021, 18 , 100370. https://doi.org/10.1016/j.mtphys.2021.100370
    25. Tianyu Wang, Minhyuk Park, Quanfeng He, Zhaoyi Ding, Qing Yu, Yong Yang. Low-Cost Scalable Production of Freestanding Two-Dimensional Metallic Nanosheets by Polymer Surface Buckling Enabled Exfoliation. Cell Reports Physical Science 2020, 1 (11) , 100235. https://doi.org/10.1016/j.xcrp.2020.100235
    26. Gazi Mahmud, Hao Zhang, Jack F. Douglas. Localization model description of the interfacial dynamics of crystalline Cu and Cu64Zr36 metallic glass films. The Journal of Chemical Physics 2020, 153 (12) https://doi.org/10.1063/5.0022937
    27. W.Y. Chen, H.W. Chen, W.P. Li, J.C. Huang, H.S. Yu, J.G. Duh, S. Lan, T. Feng. Compositionally modulated microstructure in nano-layered Ni-P metallic glass composite coating prepared by electrodeposition. Surface and Coatings Technology 2020, 389 , 125636. https://doi.org/10.1016/j.surfcoat.2020.125636
    28. Shiv Prakash Singh, Mohammed Reda Chellali, Leonardo Velasco, Yulia Ivanisenko, Evgeniy Boltynjuk, Herbert Gleiter, Horst Hahn. Deformation-induced atomic rearrangements and crystallization in the shear bands of a Tb75Fe25 nanoglass. Journal of Alloys and Compounds 2020, 821 , 153486. https://doi.org/10.1016/j.jallcom.2019.153486
    29. Bin Zhang, Yuping Duan, Xuan Yang, Guojia Ma, Tongmin Wang, Xinglong Dong, yuansong Zeng. Tuning magnetic properties based on FeCoNiSi0.4Al0.4 with dual-phase nano-crystal and nano-amorphous microstructure. Intermetallics 2020, 117 , 106678. https://doi.org/10.1016/j.intermet.2019.106678
    30. C. R. Cao, K. Q. Huang, J. A. Shi, D. N. Zheng, W. H. Wang, L. Gu, H. Y. Bai. Liquid-like behaviours of metallic glassy nanoparticles at room temperature. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-09895-3
    31. Soumabha Bag, Ananya Baksi, Di Wang, Robert Kruk, Cahit Benel, Mohammed Reda Chellali, Horst Hahn. Combination of pulsed laser ablation and inert gas condensation for the synthesis of nanostructured nanocrystalline, amorphous and composite materials. Nanoscale Advances 2019, 1 (11) , 4513-4521. https://doi.org/10.1039/C9NA00533A
    32. Gongji Yang, Mingxu Wang, Lingti Kong, Jinfu Li. Correlations among atomic mobility, microstructure and local stress of shear bands and necking regions in notched Cu50Zr50 metallic glasses. Journal of Applied Physics 2019, 126 (9) https://doi.org/10.1063/1.5109954
    33. Bo Shi, Yuanli Xu, Peipeng Jin. A way by inhomogeneous plastic deformation of metallic glasses to synthesize metallic nanoglasses: A brief review. Materialia 2019, 7 , 100390. https://doi.org/10.1016/j.mtla.2019.100390
    34. Bin Zhang, Yuping Duan, Xin Wen, Guojia Ma, Tongmin Wang, Xinglong Dong, Haifeng Zhang, Nan Jia, Yuansong Zeng. FeCoNiSi Al0.4 high entropy alloy powders with dual-phase microstructure: Improving microwave absorbing properties via controlling phase transition. Journal of Alloys and Compounds 2019, 790 , 179-188. https://doi.org/10.1016/j.jallcom.2019.03.152
    35. Tommaso Marcato, Chih‐Jen Shih. Molecular Orientation Effects in Organic Light‐Emitting Diodes. Helvetica Chimica Acta 2019, 102 (5) https://doi.org/10.1002/hlca.201900048
    36. H.Y. Song, J.Y. Wang, M.R. An, M.X. Xiao, Y.L. Li. Effect of stacking fault and amorphous boundary on plastic deformation mechanism of dual-phase nanostructure Mg alloys. Computational Materials Science 2019, 162 , 199-205. https://doi.org/10.1016/j.commatsci.2019.03.007
    37. Bin Cheng, Jason R. Trelewicz. Controlling interface structure in nanoglasses produced through hydrostatic compression of amorphous nanoparticles. Physical Review Materials 2019, 3 (3) https://doi.org/10.1103/PhysRevMaterials.3.035602
    38. Na Chen, Di Wang, Peng Fei Guan, Hai Yang Bai, Wei Hua Wang, Zheng Jun Zhang, Horst Hahn, Herbert Gleiter. Direct observation of fast surface dynamics in sub-10-nm nanoglass particles. Applied Physics Letters 2019, 114 (4) https://doi.org/10.1063/1.5052016
    39. Yulia Ivanisenko, Christian Kübel, Sree Harsha Nandam, Chaomin Wang, Xiaoke Mu, Omar Adjaoud, Karsten Albe, Horst Hahn. Structure and Properties of Nanoglasses. Advanced Engineering Materials 2018, 20 (12) https://doi.org/10.1002/adem.201800404
    40. M.R. Chellali, S.H. Nandam, S. Li, M.H. Fawey, E. Moreno-Pineda, L. Velasco, T. Boll, L. Pastewka, R. Kruk, P. Gumbsch, H. Hahn. Amorphous nickel nanophases inducing ferromagnetism in equiatomic Ni Ti alloy. Acta Materialia 2018, 161 , 47-53. https://doi.org/10.1016/j.actamat.2018.09.019
    41. H.Y. Song, X.D. Zuo, P. Yin, M.R. An, Y.L. Li. Effect of amorphous phase on the plastic deformation mechanism of Mg: A molecular dynamics study. Journal of Non-Crystalline Solids 2018, 494 , 1-8. https://doi.org/10.1016/j.jnoncrysol.2018.04.062
    42. Joan Ràfols-Ribé, Paul-Anton Will, Christian Hänisch, Marta Gonzalez-Silveira, Simone Lenk, Javier Rodríguez-Viejo, Sebastian Reineke. High-performance organic light-emitting diodes comprising ultrastable glass layers. Science Advances 2018, 4 (5) https://doi.org/10.1126/sciadv.aar8332
    43. Chaomin Wang, Tao Feng, Di Wang, Xiaoke Mu, Mohammad Ghafari, Ralf Witte, Aaron Kobler, Christian Kübel, Yulia Ivanisenko, Herbert Gleiter, Horst Hahn. Low temperature structural stability of Fe 90 Sc 10 nanoglasses. Materials Research Letters 2018, 6 (3) , 178-183. https://doi.org/10.1080/21663831.2018.1430622
    44. Omar Adjaoud, Karsten Albe. Microstructure formation of metallic nanoglasses: Insights from molecular dynamics simulations. Acta Materialia 2018, 145 , 322-330. https://doi.org/10.1016/j.actamat.2017.12.014
    45. W. B. Zhang, J. Liu, S. H. Lu, H. Zhang, H. Wang, X. D. Wang, Q. P. Cao, D. X. Zhang, J. Z. Jiang. Size effect on atomic structure in low-dimensional Cu-Zr amorphous systems. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-07708-5
    46. Chaomin Wang, Xiaoai Guo, Yulia Ivanisenko, Sunkulp Goel, Hermann Nirschl, Herbert Gleiter, Horst Hahn. Atomic structure of Fe90Sc10 glassy nanoparticles and nanoglasses. Scripta Materialia 2017, 139 , 9-12. https://doi.org/10.1016/j.scriptamat.2017.06.007
    47. Sree Harsha Nandam, Yulia Ivanisenko, Ruth Schwaiger, Zbigniew Śniadecki, Xiaoke Mu, Di Wang, Reda Chellali, Torben Boll, Askar Kilmametov, Thomas Bergfeldt, Herbert Gleiter, Horst Hahn. Cu-Zr nanoglasses: Atomic structure, thermal stability and indentation properties. Acta Materialia 2017, 136 , 181-189. https://doi.org/10.1016/j.actamat.2017.07.001
    48. Qingzhuo Hu, Jili Wu, Bo Zhang. Synthesis and nanoindentation behaviors of binary CuTi nanoglass films. Physica B: Condensed Matter 2017, 521 , 28-31. https://doi.org/10.1016/j.physb.2017.06.053
    49. Na Chen, Dmitri V. Louzguine-Luzgin, Kefu Yao. A new class of non-crystalline materials: Nanogranular metallic glasses. Journal of Alloys and Compounds 2017, 707 , 371-378. https://doi.org/10.1016/j.jallcom.2016.11.304
    50. Chaomin Wang, Di Wang, Xiaoke Mu, Sunkulp Goel, Tao Feng, Yulia Ivanisenko, Horst Hahn, Herbert Gleiter. Surface segregation of primary glassy nanoparticles of Fe90Sc10 nanoglass. Materials Letters 2016, 181 , 248-252. https://doi.org/10.1016/j.matlet.2016.05.189

    ACS Nano

    Cite this: ACS Nano 2016, 10, 3, 3241–3247
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.5b05897
    Published February 10, 2016
    Copyright © 2016 American Chemical Society

    Article Views

    1844

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.