ACS Publications. Most Trusted. Most Cited. Most Read
Complex Magnetic Exchange Coupling between Co Nanostructures and Ni(111) across Epitaxial Graphene
My Activity
    Article

    Complex Magnetic Exchange Coupling between Co Nanostructures and Ni(111) across Epitaxial Graphene
    Click to copy article linkArticle link copied!

    View Author Information
    Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), I-34149 Trieste, Italy
    S3-Istituto di Nanoscienze-CNR, Via Campi 213/A, I-41125 Modena, Italy
    Institute of Condensed Matter Physics (ICMP), Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
    § Institute of Theoretical Physics and Astrophysics, University of Kiel, D-24098 Kiel, Germany
    Department of Materials, ETH Zurich, CH-8093 Zurich, Switzerland
    # Dipartimento di Fisica, Università della Calabria, I-87036 Arcavacata di Rende (Cs), Italy
    Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
    *(A.B.) E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    ACS Nano

    Cite this: ACS Nano 2016, 10, 1, 1101–1107
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.5b06410
    Published November 20, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We report on the magnetic coupling between isolated Co atoms as well as small Co islands and Ni(111) mediated by an epitaxial graphene layer. X-ray magnetic circular dichroism and scanning tunneling microscopy combined with density functional theory calculations reveal that Co atoms occupy two distinct adsorption sites, with different magnetic coupling to the underlying Ni(111) surface. We further report a transition from an antiferromagnetic to a ferromagnetic coupling with increasing Co cluster size. Our results highlight the extreme sensitivity of the exchange interaction mediated by graphene to the adsorption site and to the in-plane coordination of the magnetic atoms.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.5b06410.

    • Complete coverage dependence of the Co XMCD, XAS and XMCD measurements on Co/Ni(111), and calculated exchange coupling for the bridge-top stacking of graphene on the Ni(111) surface (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 27 publications.

    1. Zongnan Zhang, Weiqing Tang, Jiajun Chen, Yuxiang Zhang, Chenhao Zhang, Mingming Fu, Feihong Huang, Xu Li, Chunmiao Zhang, Zhiming Wu, Yaping Wu, Junyong Kang. Manipulations of Electronic and Spin States in Co-Quantum Dot/WS2 Heterostructure on a Metal-Dielectric Composite Substrate by Controlling Interfacial Carriers. Nano Letters 2024, 24 (4) , 1415-1422. https://doi.org/10.1021/acs.nanolett.3c04831
    2. Valerio Bellini, Stefano Rusponi, Jindřich Kolorenč, Sanjoy K. Mahatha, Miguel Angel Valbuena, Luca Persichetti, Marina Pivetta, Boris V. Sorokin, Darius Merk, Sébastien Reynaud, Dante Sblendorio, Sebastian Stepanow, Corneliu Nistor, Pierluigi Gargiani, Davide Betto, Aitor Mugarza, Pietro Gambardella, Harald Brune, Carlo Carbone, Alessandro Barla. Slow Magnetic Relaxation of Dy Adatoms with In-Plane Magnetic Anisotropy on a Two-Dimensional Electron Gas. ACS Nano 2022, 16 (7) , 11182-11193. https://doi.org/10.1021/acsnano.2c04048
    3. Simone Marocchi, Andrea Candini, David Klar, Willem Van den Heuvel, Haibei Huang, Filippo Troiani, Valdis Corradini, Roberto Biagi, Valentina De Renzi, Svetlana Klyatskaya, Kurt Kummer, Nicholas B. Brookes, Mario Ruben, Heiko Wende, Umberto del Pennino, Alessandro Soncini, Marco Affronte, and Valerio Bellini . Relay-Like Exchange Mechanism through a Spin Radical between TbPc2 Molecules and Graphene/Ni(111) Substrates. ACS Nano 2016, 10 (10) , 9353-9360. https://doi.org/10.1021/acsnano.6b04107
    4. Yu Wang, Zheng Wang, Xiaoguang Li. Graphene-modulated interfacial exchange coupling across organic molecular/ferromagnet spin interfaces. Physical Review B 2024, 109 (1) https://doi.org/10.1103/PhysRevB.109.014428
    5. F. Donati, A. J. Heinrich. A perspective on surface-adsorbed single atom magnets as atomic-scale magnetic memory. Applied Physics Letters 2021, 119 (16) https://doi.org/10.1063/5.0070483
    6. Renu Singla, Sarvesh Kumar, Timothy A. Hackett, Ali H. Reshak, Manish K. Kashyap. Genesis of magnetism in graphene/MoS2 van der Waals heterostructures via interface engineering using Cr-adsorption. Journal of Alloys and Compounds 2021, 859 , 157776. https://doi.org/10.1016/j.jallcom.2020.157776
    7. Florian Ellinger, Cesare Franchini, Valerio Bellini. Magnetic 3 d adatoms on free-standing and Ni(111)-supported graphene. Physical Review Materials 2021, 5 (1) https://doi.org/10.1103/PhysRevMaterials.5.014406
    8. Ekaterina V. Sukhanova, Dmitry G. Kvashnin, Zakhar I. Popov. Induced spin polarization in graphene via interactions with halogen doped MoS 2 and MoSe 2 monolayers by DFT calculations. Nanoscale 2020, 12 (45) , 23248-23258. https://doi.org/10.1039/D0NR06287A
    9. Tianwei He, Chunmei Zhang, Geoffrey Will, Aijun Du. Cobalt porphyrin supported on graphene/Ni (111) surface: Enhanced oxygen evolution/reduction reaction and the role of electron coupling. Catalysis Today 2020, 351 , 113-118. https://doi.org/10.1016/j.cattod.2018.10.056
    10. Weiqing Tang, Mingming Fu, Jiajun Chen, Baofan Sun, Congming Ke, Yaping Wu, Xu Li, Chunmiao Zhang, Zhiming Wu, Junyong Kang. Identically Sized Co Quantum Dots on Monolayer WS 2 Featuring Ohmic Contact. Physical Review Applied 2020, 13 (2) https://doi.org/10.1103/PhysRevApplied.13.024003
    11. Ali Hallal. Graphene-based spinmechatronic valve. 2D Materials 2020, 7 (1) , 015005. https://doi.org/10.1088/2053-1583/ab48d2
    12. Iker Gallardo, Andres Arnau, Fernando Delgado, Romana Baltic, Aparajita Singha, Fabio Donati, Christian Wäckerlin, Jan Dreiser, Stefano Rusponi, Harald Brune. Large effect of metal substrate on magnetic anisotropy of Co on hexagonal boron nitride. New Journal of Physics 2019, 21 (7) , 073053. https://doi.org/10.1088/1367-2630/ab3077
    13. V. Corradini, A. Candini, D. Klar, R. Biagi, V. De Renzi, A. Lodi Rizzini, N. Cavani, U. del Pennino, H. Wende, E. Otero, M. Affronte. CoTPP molecules deposited on graphene/Ni (111): Quenching of the antiferromagnetic interaction induced by gold intercalation. Journal of Applied Physics 2019, 125 (14) https://doi.org/10.1063/1.5063562
    14. Willi Auwärter. Hexagonal boron nitride monolayers on metal supports: Versatile templates for atoms, molecules and nanostructures. Surface Science Reports 2019, 74 (1) , 1-95. https://doi.org/10.1016/j.surfrep.2018.10.001
    15. Giulia Avvisati, Pierluigi Gargiani, Pierluigi Mondelli, Francesco Presel, Luca Bignardi, Alessandro Baraldi, Maria Grazia Betti. Metal phthalocyanines interaction with Co mediated by a moiré graphene superlattice. The Journal of Chemical Physics 2019, 150 (5) https://doi.org/10.1063/1.5080533
    16. Junwei Tong, Yuxuan Feng, Fubo Tian, Lianqun Zhou, Gaowu Qin, Xianmin Zhang. Unusual interfacial magnetic interactions for τ-MnAl with Fe(Co) atomic layers. Physical Chemistry Chemical Physics 2019, 21 (5) , 2443-2452. https://doi.org/10.1039/C8CP06599C
    17. Madan S. Jagadeesh, Alberto Calloni, Gianlorenzo Bussetti, Lamberto Duò, Franco Ciccacci. Spin‐Resolved PES and IPES Investigation of the Graphene/Ni(111) Interface. physica status solidi (b) 2018, 255 (3) https://doi.org/10.1002/pssb.201700415
    18. V. Corradini, A. Candini, D. Klar, R. Biagi, V. De Renzi, A. Lodi Rizzini, N. Cavani, U. del Pennino, S. Klyatskaya, M. Ruben, E. Velez-Fort, K. Kummer, N. B. Brookes, P. Gargiani, H. Wende, M. Affronte. Probing magnetic coupling between LnPc 2 (Ln = Tb, Er) molecules and the graphene/Ni (111) substrate with and without Au-intercalation: role of the dipolar field. Nanoscale 2018, 10 (1) , 277-283. https://doi.org/10.1039/C7NR06610D
    19. P. Gargiani, R. Cuadrado, H. B. Vasili, M. Pruneda, M. Valvidares. Graphene-based synthetic antiferromagnets and ferrimagnets. Nature Communications 2017, 8 (1) https://doi.org/10.1038/s41467-017-00825-9
    20. P. Ferriani, S. Heinze, V. Bellini. Designing a molecular magnetic button based on 4d and 5d transition-metal phthalocyanines. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-03920-5
    21. K. K. Kadyrzhanov, A. L. Kozlovskiy, E. Yu. Kanyukov, A. A. Mashentseva, M. V. Zdorovets, E. E. Shumskaya. Variation of polymer-template pore geometry as a means of controlling the magnetic properties of metallic nanostructures. Petroleum Chemistry 2017, 57 (9) , 790-795. https://doi.org/10.1134/S0965544117090055
    22. Minglei Sun, Qingqiang Ren, Yiming Zhao, Jyh-Pin Chou, Jin Yu, Wencheng Tang. Electronic and magnetic properties of 4d series transition metal substituted graphene: A first-principles study. Carbon 2017, 120 , 265-273. https://doi.org/10.1016/j.carbon.2017.04.060
    23. Rémi Pétuya, Andrés Arnau. Magnetic coupling between 3d transition metal adatoms on graphene supported by metallic substrates. Carbon 2017, 116 , 599-605. https://doi.org/10.1016/j.carbon.2017.02.027
    24. B. S. Yang, J. Zhang, L. N. Jiang, W. Z. Chen, P. Tang, X.-G. Zhang, Y. Yan, X. F. Han. Strain induced enhancement of perpendicular magnetic anisotropy in Co/graphene and Co/BN heterostructures. Physical Review B 2017, 95 (17) https://doi.org/10.1103/PhysRevB.95.174424
    25. I. Grimaldi, M. Papagno, L. Ferrari, P.M. Sheverdyaeva, S.K. Mahatha, D. Pacilé, C. Carbone. Magnetic decoupling of ferromagnetic metals through a graphene spacer. Journal of Magnetism and Magnetic Materials 2017, 426 , 440-443. https://doi.org/10.1016/j.jmmm.2016.11.100
    26. Jens Brede, Jagoda Sławińska, Mikel Abadia, Celia Rogero, J Enrique Ortega, Ignacio Piquero-Zulaica, Jorge Lobo-Checa, Andres Arnau, Jorge Iribas Cerdá. Tuning the Graphene on Ir(111) adsorption regime by Fe/Ir surface-alloying. 2D Materials 2017, 4 (1) , 015016. https://doi.org/10.1088/2053-1583/4/1/015016
    27. Felix Huttmann, David Klar, Nicolae Atodiresei, Carolin Schmitz-Antoniak, Alevtina Smekhova, Antonio J. Martínez-Galera, Vasile Caciuc, Gustav Bihlmayer, Stefan Blügel, Thomas Michely, Heiko Wende. Magnetism in a graphene- 4 f − 3 d hybrid system. Physical Review B 2017, 95 (7) https://doi.org/10.1103/PhysRevB.95.075427

    ACS Nano

    Cite this: ACS Nano 2016, 10, 1, 1101–1107
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.5b06410
    Published November 20, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    1487

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.