Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Switching the Magnetic Vortex Core in a Single Nanoparticle
My Activity
    Article

    Switching the Magnetic Vortex Core in a Single Nanoparticle
    Click to copy article linkArticle link copied!

    View Author Information
    Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, E46980 Paterna, Spain
    Other Access OptionsSupporting Information (5)

    ACS Nano

    Cite this: ACS Nano 2016, 10, 2, 1764–1770
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.5b06776
    Published January 8, 2016
    Copyright © 2016 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Imaging and manipulating the spin structure of nano- and mesoscale magnetic systems is a challenging topic in magnetism, yielding a wide range of spin phenomena such as skyrmions, hedgehog-like spin structures, or vortices. A key example has been provided by the vortex spin texture, which can be addressed in four independent states of magnetization, enabling the development of multibit magnetic storage media. Most of the works devoted to the study of the magnetization reversal mechanisms of the magnetic vortices have been focused on micrometer-size magnetic platelets. Here we report the experimental observation of the vortex state formation and annihilation in individual 25 nm molecular-based magnetic nanoparticles measured by low-temperature variable-field magnetic force microscopy. Interestingly, in these nanoparticles the switching of the vortex core can be induced with very small values of the applied static magnetic field.

    Copyright © 2016 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.5b06776.

    • More detailed explanation of the methods and MFM images of other examples of magnetic vortices in MNPs (PDF)

    • Videos of the magnetization switching of the MNPs AVI)

    • (AVI)

    • (AVI)

    • (AVI)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 32 publications.

    1. Shuntaro Nagashima, Yuji Yahagi, Masamichi Nishino, Takehiro Yamaoka, Kosuke Nakagawa, Junhao Wang, Shin-ichi Ohkoshi, Hiroko Tokoro. Direct Observation of Magnetic Domain and Magnetization Reversal on Prussian Blue-Based Magnetic Films. Journal of the American Chemical Society 2023, 145 (42) , 22934-22944. https://doi.org/10.1021/jacs.3c04369
    2. Guohua Bai, Jiaying Jin, Chen Wu, Mi Yan. Ultrafine FeCo Nanoparticles Isolated by Ultrathin Dielectric Shells for Microwave Application. ACS Applied Nano Materials 2019, 2 (6) , 3570-3576. https://doi.org/10.1021/acsanm.9b00537
    3. Michele Serri, Matteo Mannini, Lorenzo Poggini, Emilio Vélez-Fort, Brunetto Cortigiani, Philippe Sainctavit, Donella Rovai, Andrea Caneschi, and Roberta Sessoli . Low-Temperature Magnetic Force Microscopy on Single Molecule Magnet-Based Microarrays. Nano Letters 2017, 17 (3) , 1899-1905. https://doi.org/10.1021/acs.nanolett.6b05208
    4. Carlos Moya, Mariona Escoda-Torroella, Javier Rodríguez-Álvarez, Adriana I. Figueroa, Íker García, Inés Batalla Ferrer-Vidal, A. Gallo-Cordova, M. Puerto Morales, Lucía Aballe, Arantxa Fraile Rodríguez, Amílcar Labarta, Xavier Batlle. Unveiling the crystal and magnetic texture of iron oxide nanoflowers. Nanoscale 2024, 16 (4) , 1942-1951. https://doi.org/10.1039/D3NR04608G
    5. Prince Kumar, B.B. Nayak, Rajesh Kumar Roul, S. Narayana Jammalamadaka. Temperature evolution of pseudo magnetic properties and vortex state in Fe71Ga29 thin films. Journal of Magnetism and Magnetic Materials 2023, 585 , 171155. https://doi.org/10.1016/j.jmmm.2023.171155
    6. Ahsan Ullah, Balamurugan Balasubramanian, Bibek Tiwari, Bharat Giri, David J. Sellmyer, Ralph Skomski, Xiaoshan Xu. Topological spin textures and topological Hall effect in centrosymmetric magnetic nanoparticles. Physical Review B 2023, 108 (18) https://doi.org/10.1103/PhysRevB.108.184432
    7. Gopal Niraula, Denilson Toneto, Gerardo F. Goya, Giorgio Zoppellaro, Jose A. H. Coaquira, Diego Muraca, Juliano C. Denardin, Trevor P. Almeida, Marcelo Knobel, Ahmad I. Ayesh, Surender K. Sharma. Observation of magnetic vortex configuration in non-stoichiometric Fe 3 O 4 nanospheres. Nanoscale Advances 2023, 5 (18) , 5015-5028. https://doi.org/10.1039/D3NA00433C
    8. M. Xu, S. L. Bud'ko, R. Prozorov, P. C. Canfield. Unusual coercivity and zero-field stabilization of fully saturated magnetization in single crystals of LaCrGe 3 . Physical Review B 2023, 107 (13) https://doi.org/10.1103/PhysRevB.107.134437
    9. Rajesh Kumar Roul, Apu Kumar Jana, M. Manivel Raja, J. Arout Chelvane, S. Narayana Jammalamadaka. Evidence for vortex state in Fe2CoGe thin films using FORC and magnetic imaging. Journal of Magnetism and Magnetic Materials 2023, 566 , 170318. https://doi.org/10.1016/j.jmmm.2022.170318
    10. Eider Berganza, Jose Angel Fernandez-Roldan, Miriam Jaafar, Agustina Asenjo, Konstantin Guslienko, Oksana Chubykalo-Fesenko. 3D quasi-skyrmions in thick cylindrical and dome-shape soft nanodots. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-07407-w
    11. Kevin J. Walsh, Owen Shiflett, Stavan Shah, Theodore Renner, Nicholas Soulas, Douglas Scharre, Dana McTigue, Gunjan Agarwal. Artifacts in magnetic force microscopy of histological sections. Journal of Magnetism and Magnetic Materials 2022, 564 , 170116. https://doi.org/10.1016/j.jmmm.2022.170116
    12. Xiqi Wu, Wenhao Zhang, Wenting Wang, Yuhang Chen. Accurate determination of MFM tip’s magnetic parameters on nanoparticles by decoupling the influence of electrostatic force. Nanotechnology 2022, 33 (47) , 475703. https://doi.org/10.1088/1361-6528/ac8998
    13. David Vokoun, Sneha Samal, Ivo Stachiv. Magnetic Force Microscopy in Physics and Biomedical Applications. Magnetochemistry 2022, 8 (4) , 42. https://doi.org/10.3390/magnetochemistry8040042
    14. W. A. S. Aldulaimi, C. Akaoglu, K. Sendur, M. B. Okatan, I. B. Misirlioglu. Chirality Switching in Ferromagnetic Nanostructures Via Nanosecond Electric Pulses. Annalen der Physik 2021, 533 (10) https://doi.org/10.1002/andp.202100167
    15. Philipp Bender, Jonathan Leliaert, Mathias Bersweiler, Dirk Honecker, Andreas Michels. Unraveling Nanostructured Spin Textures in Bulk Magnets. Small Science 2021, 1 (1) https://doi.org/10.1002/smsc.202000003
    16. Momoko Chiba, Satoru Kobayashi, Kazuki Noguchi, Takeshi Murakami, Jerzy A. Szpunar, Jayappa Manjanna. Magnetic vortex formation in hollow Fe3O4 submicron particles studied using first-order reversal curves. Journal of Magnetism and Magnetic Materials 2020, 512 , 167012. https://doi.org/10.1016/j.jmmm.2020.167012
    17. Eider Berganza, Miriam Jaafar, Jose A. Fernandez-Roldan, Maite Goiriena-Goikoetxea, Javier Pablo-Navarro, Alfredo García-Arribas, Konstantin Guslienko, César Magén, José M. De Teresa, Oksana Chubykalo-Fesenko, Agustina Asenjo. Half-hedgehog spin textures in sub-100 nm soft magnetic nanodots. Nanoscale 2020, 12 (36) , 18646-18653. https://doi.org/10.1039/D0NR02173C
    18. Laura G. Vivas, Rocio Yanes, Dmitry Berkov, Sergey Erokhin, Mathias Bersweiler, Dirk Honecker, Philipp Bender, Andreas Michels. Toward Understanding Complex Spin Textures in Nanoparticles by Magnetic Neutron Scattering. Physical Review Letters 2020, 125 (11) https://doi.org/10.1103/PhysRevLett.125.117201
    19. Zhenghua Li, Bin Dong, Yangyang He, Xiang Li, Aiying Chen. Construction of 1D Vortex Chain Using a Chiral Nanostructure. Advanced Science 2020, 7 (16) , 2001040. https://doi.org/10.1002/advs.202001040
    20. Hongxu Gao, Tingbin Zhang, Yifan Zhang, Yimin Chen, Bo Liu, Jianpeng Wu, Xiaoli Liu, Yudong Li, Mingli Peng, Ying Zhang, Gang Xie, Fengqi Zhao, Hai Ming Fan. Ellipsoidal magnetite nanoparticles: a new member of the magnetic-vortex nanoparticles family for efficient magnetic hyperthermia. Journal of Materials Chemistry B 2020, 8 (3) , 515-522. https://doi.org/10.1039/C9TB00998A
    21. Zheng-Hua Li, Xiang Li, Wei Lu. Field-variable magnetic domain characterization of individual 10 nm Fe 3 O 4 nanoparticles*. Chinese Physics B 2019, 28 (7) , 077504. https://doi.org/10.1088/1674-1056/28/7/077504
    22. Joshua Sifford, Kevin J. Walsh, Sheng Tong, Gang Bao, Gunjan Agarwal. Indirect magnetic force microscopy. Nanoscale Advances 2019, 1 (6) , 2348-2355. https://doi.org/10.1039/C9NA00193J
    23. O. Kazakova, R. Puttock, C. Barton, H. Corte-León, M. Jaafar, V. Neu, A. Asenjo. Frontiers of magnetic force microscopy. Journal of Applied Physics 2019, 125 (6) https://doi.org/10.1063/1.5050712
    24. Ramón Cuadrado, László Oroszlány, László Szunyogh, Gino Hrkac, Roy W. Chantrell, Thomas A. Ostler. A multiscale model of the effect of Ir thickness on the static and dynamic properties of Fe/Ir/Fe films. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-21934-5
    25. Gengxin Wang, Weiming Guan, Bao Li, Lixin Wu. Cluster polyanions and surface-covered complexes: From synergistic self-assembly to bio-functionalization. Current Opinion in Colloid & Interface Science 2018, 35 , 91-103. https://doi.org/10.1016/j.cocis.2018.01.016
    26. Rui Wu, Shilei Ding, Youfang Lai, Guang Tian, Jinbo Yang. Enhancement of exchange bias in ferromagnetic/antiferromagnetic core-shell nanoparticles through ferromagnetic domain wall formation. Physical Review B 2018, 97 (2) https://doi.org/10.1103/PhysRevB.97.024428
    27. Markus Stiller, José Barzola-Quiquia, Pablo D Esquinazi, Soraya Sangiao, José M De Teresa, Jan Meijer, Bernd Abel. Functionalized Akiyama tips for magnetic force microscopy measurements. Measurement Science and Technology 2017, 28 (12) , 125401. https://doi.org/10.1088/1361-6501/aa925e
    28. Julia Körner, Christopher F. Reiche, Rasha Ghunaim, Robert Fuge, Silke Hampel, Bernd Büchner, Thomas Mühl. Magnetic properties of individual Co2FeGa Heusler nanoparticles studied at room temperature by a highly sensitive co-resonant cantilever sensor. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-08340-z
    29. Yuuki Kamei, Kenichi Wakayama, Yuki Makinose, Yasushi Endo, Nobuhiro Matsushita. Syntheses of iron oxide nanoplates by hydrothermal treatment of iron-oleate precursor and their magnetization reversal. Materials Science and Engineering: B 2017, 223 , 70-75. https://doi.org/10.1016/j.mseb.2017.06.005
    30. Laure Catala, Talal Mallah. Nanoparticles of Prussian blue analogs and related coordination polymers: From information storage to biomedical applications. Coordination Chemistry Reviews 2017, 346 , 32-61. https://doi.org/10.1016/j.ccr.2017.04.005
    31. Simin Zhang, Yanmei Zheng, Shengyan Yin, Jingzhi Sun, Bao Li, Lixin Wu. A Dendritic Supramolecular Complex as Uniform Hybrid Micelle with Dual Structure for Bimodal In Vivo Imaging. Chemistry – A European Journal 2017, 23 (12) , 2802-2810. https://doi.org/10.1002/chem.201604285
    32. Mihaela Osaci, Matteo Cacciola. Study about the nanoparticle agglomeration in a magnetic nanofluid by the Langevin dynamics simulation model using an effective Verlet-type algorithm. Microfluidics and Nanofluidics 2017, 21 (2) https://doi.org/10.1007/s10404-017-1856-0

    ACS Nano

    Cite this: ACS Nano 2016, 10, 2, 1764–1770
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.5b06776
    Published January 8, 2016
    Copyright © 2016 American Chemical Society

    Article Views

    1590

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.