ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

A Commercial Conducting Polymer as Both Binder and Conductive Additive for Silicon Nanoparticle-Based Lithium-Ion Battery Negative Electrodes

View Author Information
Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials Bio-Engineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, Ireland
School of Physics, Trinity College Dublin, Dublin 2, Ireland
§ School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
Efficient Energy Transfer Deptmartment, Bell Labs Research, Nokia, Blanchardstown Business & Technology Park, Snugborough Road, Dublin 15, Ireland
Cite this: ACS Nano 2016, 10, 3, 3702–3713
Publication Date (Web):March 3, 2016
https://doi.org/10.1021/acsnano.6b00218
Copyright © 2016 American Chemical Society

    Article Views

    14554

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (7 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    This work describes silicon nanoparticle-based lithium-ion battery negative electrodes where multiple nonactive electrode additives (usually carbon black and an inert polymer binder) are replaced with a single conductive binder, in this case, the conducting polymer PEDOT:PSS. While enabling the production of well-mixed slurry-cast electrodes with high silicon content (up to 95 wt %), this combination eliminates the well-known occurrence of capacity losses due to physical separation of the silicon and traditional inorganic conductive additives during repeated lithiation/delithiation processes. Using an in situ secondary doping treatment of the PEDOT:PSS with small quantities of formic acid, electrodes containing 80 wt % SiNPs can be prepared with electrical conductivity as high as 4.2 S/cm. Even at the relatively high areal loading of 1 mg/cm2, this system demonstrated a first cycle lithiation capacity of 3685 mA·h/g (based on the SiNP mass) and a first cycle efficiency of ∼78%. After 100 repeated cycles at 1 A/g this electrode was still able to store an impressive 1950 mA·h/g normalized to Si mass (∼75% capacity retention), corresponding to 1542 mA·h/g when the capacity is normalized by the total electrode mass. At the maximum electrode thickness studied (∼1.5 mg/cm2), a high areal capacity of 3 mA·h/cm2 was achieved. Importantly, these electrodes are based on commercially available components and are produced by the standard slurry coating methods required for large-scale electrode production. Hence, the results presented here are highly relevant for the realization of commercial LiB negative electrodes that surpass the performance of current graphite-based negative electrode systems.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.6b00218.

    • Detailed methods, materials characterization and literature review (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 377 publications.

    1. Jiang Tian Liu, Eloi Grignon, Alicia M. Battaglia, Muhammad Imran, Christopher Copeman, Harrison A. Mills, Ashlee J. Howarth, Edward H. Sargent, Dwight S. Seferos. An Investigation of Conjugated Sulfonamide Materials as Binders for Organic Lithium-Ion Batteries. Chemistry of Materials 2023, 35 (22) , 9692-9701. https://doi.org/10.1021/acs.chemmater.3c02105
    2. Zixuan Li, Zhangyi Xiong, Heli Pan, Ningzhao Shang, Yongjun Gao. Graphene Oxide-Based Aluminum Complex Ion Supercapacitor. ACS Applied Energy Materials 2023, 6 (20) , 10554-10563. https://doi.org/10.1021/acsaem.3c01679
    3. Yilin Li, Sohee Park, Kasturi Sarang, Hao Mei, Chia-Ping Tseng, Zhiqi Hu, Dongyang Zhu, Xiaoyi Li, Jodie Lutkenhaus, Rafael Verduzco. Mixed Ionic–Electronic Conduction Increases the Rate Capability of Polynaphthalenediimide for Energy Storage. ACS Polymers Au 2023, 3 (3) , 267-275. https://doi.org/10.1021/acspolymersau.2c00066
    4. Lei Ma, Xiaomeng Fu, Fangfang Zhao, Liming Yu, Wenda Su, Liangming Wei, Gen Tang, Yue Wang, Fang Wu, Xiang Guo. Microsized Silicon/Carbon Composite Anodes through In Situ Polymerization of Phenolic Resin onto Silicon Microparticles for High-Performance Lithium-Ion Batteries. ACS Applied Energy Materials 2023, 6 (9) , 4989-4999. https://doi.org/10.1021/acsaem.3c00534
    5. Zhaomei Sun, Jiadeng Zhu, Chen Yang, Qibao Xie, Yan Jiang, Kaixiang Wang, Mengjin Jiang. N-Type Polyoxadiazole Conductive Polymer Binders Derived High-Performance Silicon Anodes Enabled by Crosslinking Metal Cations. ACS Applied Materials & Interfaces 2023, 15 (10) , 12946-12956. https://doi.org/10.1021/acsami.2c19587
    6. Adel A. K. Aljarid, Kevin L. Doty, Cencen Wei, Jonathan P. Salvage, Conor S. Boland. Food-Inspired, High-Sensitivity Piezoresistive Graphene Hydrogels. ACS Sustainable Chemistry & Engineering 2023, 11 (5) , 1820-1827. https://doi.org/10.1021/acssuschemeng.2c06101
    7. Shiming Chen, Zhibo Song, Lu Wang, Hao Chen, Shanqing Zhang, Feng Pan, Luyi Yang. Establishing a Resilient Conductive Binding Network for Si-Based Anodes via Molecular Engineering. Accounts of Chemical Research 2022, 55 (15) , 2088-2102. https://doi.org/10.1021/acs.accounts.2c00259
    8. Junho Kim, You Kyung Park, Hansu Kim, In Hwan Jung. Ambidextrous Polymeric Binder for Silicon Anodes in Lithium-Ion Batteries. Chemistry of Materials 2022, 34 (13) , 5791-5798. https://doi.org/10.1021/acs.chemmater.2c00220
    9. Jaewon Kim, Min-Seob Kim, Youngseok Lee, Shin-Yeong Kim, Yung-Eun Sung, Seung Hwan Ko. Hierarchically Structured Conductive Polymer Binders with Silver Nanowires for High-Performance Silicon Anodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2022, 14 (15) , 17340-17347. https://doi.org/10.1021/acsami.2c00844
    10. Rajeev K. K., Wonseok Jang, Sangwook Kim, Tae-Hyun Kim. Chitosan-grafted-Gallic Acid as a Nature-Inspired Multifunctional Binder for High-Performance Silicon Anodes in Lithium-Ion Batteries. ACS Applied Energy Materials 2022, 5 (3) , 3166-3178. https://doi.org/10.1021/acsaem.1c03791
    11. Pratyusha Das, Rodrigo Elizalde-Segovia, Billal Zayat, Charlene Z. Salamat, Gordon Pace, Kuan Zhai, Rebecca C. Vincent, Bruce S. Dunn, Rachel A. Segalman, Sarah H. Tolbert, Sri R. Narayan, Barry C. Thompson. Enhancing the Ionic Conductivity of Poly(3,4-propylenedioxythiophenes) with Oligoether Side Chains for Use as Conductive Cathode Binders in Lithium-Ion Batteries. Chemistry of Materials 2022, 34 (6) , 2672-2686. https://doi.org/10.1021/acs.chemmater.1c03971
    12. Wendong Liu, Zhihui Lei, Rui Yang, Wenkui Xing, Peng Tao, Wen Shang, Benwei Fu, Chengyi Song, Tao Deng. Facile Approach to Enhance Electrical and Thermal Performance of Conducting Polymer PEDOT:PSS Films via Hot Pressing. ACS Applied Materials & Interfaces 2022, 14 (8) , 10605-10615. https://doi.org/10.1021/acsami.1c19397
    13. Swamickan Sathya, N. Angulakshmi, Jou-Hyeon Ahn, M. Kathiresan, A. Manuel Stephan. Influence of Additives on the Electrochemical and Interfacial Properties of SiOx-Based Anode Materials for Lithium–Sulfur Batteries. Langmuir 2022, 38 (8) , 2423-2434. https://doi.org/10.1021/acs.langmuir.1c02342
    14. Hongbin Liu, Yun Chen, Yue Zhao, Kaiyuan Liu, Xiaolin Guo, Xianhe Meng, Tingli Ma. Two-Dimensional Cu2MoS4-Loaded Silicon Nanospheres as an Anode for High-Performance Lithium-Ion Batteries. ACS Applied Energy Materials 2021, 4 (11) , 13061-13069. https://doi.org/10.1021/acsaem.1c02697
    15. Yanan Zhang, Chengyu Zhu, Youwen Ye, Fei Cheng. Laponite-Assisted Graphite Anode with a 3D Conductive and Interlinked Structure for Lithium-Ion Batteries. Energy & Fuels 2021, 35 (22) , 18798-18804. https://doi.org/10.1021/acs.energyfuels.1c02834
    16. Lingyin Meng, Anthony P. F. Turner, Wing Cheung Mak. Conducting Polymer-Reinforced Laser-Irradiated Graphene as a Heterostructured 3D Transducer for Flexible Skin Patch Biosensors. ACS Applied Materials & Interfaces 2021, 13 (45) , 54456-54465. https://doi.org/10.1021/acsami.1c13164
    17. Yongxiang Su, Xin Feng, Ruibing Zheng, Yingying Lv, Zhuyi Wang, Yin Zhao, Liyi Shi, Shuai Yuan. Binary Network of Conductive Elastic Polymer Constraining Nanosilicon for a High-Performance Lithium-Ion Battery. ACS Nano 2021, 15 (9) , 14570-14579. https://doi.org/10.1021/acsnano.1c04240
    18. Ruowei Yi, Yayun Mao, Yanbin Shen, Liwei Chen. Self-Assembled Monolayers for Batteries. Journal of the American Chemical Society 2021, 143 (33) , 12897-12912. https://doi.org/10.1021/jacs.1c04416
    19. Jasper C. Woodard, W. Peter Kalisvaart, Sayed Youssef Sayed, Brian C. Olsen, Jillian M. Buriak. Beyond Thin Films: Clarifying the Impact of c-Li15Si4 Formation in Thin Film, Nanoparticle, and Porous Si Electrodes. ACS Applied Materials & Interfaces 2021, 13 (32) , 38147-38160. https://doi.org/10.1021/acsami.1c04293
    20. Qiang Zhang, Fengying Zhang, Meng Zhang, Yuxiu Yu, Shuxia Yuan, Yaodong Liu. A Highly Efficient Silicone-Modified Polyamide Acid Binder for Silicon-Based Anode in Lithium-Ion Batteries. ACS Applied Energy Materials 2021, 4 (7) , 7209-7218. https://doi.org/10.1021/acsaem.1c01294
    21. Billal Zayat, Pratyusha Das, Barry C. Thompson, Sri R. Narayan. In Situ Measurement of Ionic and Electronic Conductivities of Conductive Polymers as a Function of Electrochemical Doping in Battery Electrolytes. The Journal of Physical Chemistry C 2021, 125 (14) , 7533-7541. https://doi.org/10.1021/acs.jpcc.0c08934
    22. Ioan-Bogdan Magdău, Thomas F. Miller, III. Machine Learning Solvation Environments in Conductive Polymers: Application to ProDOT-2Hex with Solvent Swelling. Macromolecules 2021, 54 (7) , 3377-3387. https://doi.org/10.1021/acs.macromol.0c02132
    23. Shelton Farai Kuchena, Ying Wang. Superior Polyaniline Cathode Material with Enhanced Capacity for Ammonium Ion Storage. ACS Applied Energy Materials 2020, 3 (12) , 11690-11698. https://doi.org/10.1021/acsaem.0c01791
    24. Pratyusha Das, Billal Zayat, Qiulong Wei, Charlene Z. Salamat, Ioan-Bogdan Magdău, Rodrigo Elizalde-Segovia, Dakota Rawlings, Dongwook Lee, Gordon Pace, Ahamed Irshad, Liwei Ye, Alexander Schmitt, Rachel A. Segalman, Thomas F. Miller, III, Sarah H. Tolbert, Bruce S. Dunn, Sri R. Narayan, Barry C. Thompson. Dihexyl-Substituted Poly(3,4-Propylenedioxythiophene) as a Dual Ionic and Electronic Conductive Cathode Binder for Lithium-Ion Batteries. Chemistry of Materials 2020, 32 (21) , 9176-9189. https://doi.org/10.1021/acs.chemmater.0c02601
    25. Xuejiao Liu, Asma Iqbal, Nazakat Ali, Rongrong Qi, Xuefeng Qian. Ion-Cross-Linking-Promoted High-Performance Si/PEDOT:PSS Electrodes: The Importance of Cations’ Ionic Potential and Softness Parameters. ACS Applied Materials & Interfaces 2020, 12 (17) , 19431-19438. https://doi.org/10.1021/acsami.0c00755
    26. Yiyang Pan, Sirui Ge, Zahid Rashid, Shilun Gao, Andrew Erwin, Vladimir Tsukruk, Konstantinos D. Vogiatzis, Alexei P. Sokolov, Huabin Yang, Peng-Fei Cao. Adhesive Polymers as Efficient Binders for High-Capacity Silicon Electrodes. ACS Applied Energy Materials 2020, 3 (4) , 3387-3396. https://doi.org/10.1021/acsaem.9b02420
    27. Xiaoying He, Rui Han, Pinxian Jiang, Yungui Chen, Wei Liu. Molecularly Engineered Conductive Polymer Binder Enables Stable Lithium Storage of Si. Industrial & Engineering Chemistry Research 2020, 59 (7) , 2680-2688. https://doi.org/10.1021/acs.iecr.9b05838
    28. David J. Goldfeld, Eric S. Silver, Madalyn R. Radlauer, Marc A. Hillmyer. Synthesis and Self-Assembly of Block Polyelectrolyte Membranes through a Mild, 2-in-1 Postpolymerization Treatment. ACS Applied Polymer Materials 2020, 2 (2) , 817-825. https://doi.org/10.1021/acsapm.9b01100
    29. Kuo-Lung Wang, Kuan-Ting Chen, Yuan-Hsing Yi, Yi-Hao Hung, Hsing-Yu Tuan, Masaki Horie. High-Performance Lithium Ion Batteries Combining Submicron Silicon and Thiophene–Terephthalic Acid-Conjugated Polymer Binders. ACS Sustainable Chemistry & Engineering 2020, 8 (2) , 1043-1049. https://doi.org/10.1021/acssuschemeng.9b05800
    30. Chul-Ho Jung, Kyeong-Ho Kim, Seong-Hyeon Hong. Stable Silicon Anode for Lithium-Ion Batteries through Covalent Bond Formation with a Binder via Esterification. ACS Applied Materials & Interfaces 2019, 11 (30) , 26753-26763. https://doi.org/10.1021/acsami.9b03866
    31. You Kyeong Jeong, Jang Wook Choi. Mussel-Inspired Self-Healing Metallopolymers for Silicon Nanoparticle Anodes. ACS Nano 2019, 13 (7) , 8364-8373. https://doi.org/10.1021/acsnano.9b03837
    32. Peng-Fei Cao, Guang Yang, Bingrui Li, Yiman Zhang, Sheng Zhao, Shuo Zhang, Andrew Erwin, Zhengcheng Zhang, Alexei P. Sokolov, Jagjit Nanda, Tomonori Saito. Rational Design of a Multifunctional Binder for High-Capacity Silicon-Based Anodes. ACS Energy Letters 2019, 4 (5) , 1171-1180. https://doi.org/10.1021/acsenergylett.9b00815
    33. Jaclyn E. Kellon, Samantha L. Young, James E. Hutchison. Engineering the Nanoparticle–Electrode Interface. Chemistry of Materials 2019, 31 (8) , 2685-2701. https://doi.org/10.1021/acs.chemmater.8b04977
    34. Dipankar Barpuzary, Kyoungwook Kim, Moon Jeong Park. Two-Dimensional Growth of Large-Area Conjugated Polymers on Ice Surfaces: High Conductivity and Photoelectrochemical Applications. ACS Nano 2019, 13 (4) , 3953-3963. https://doi.org/10.1021/acsnano.8b07294
    35. Shaowei Qi, Xinghao Zhang, Wei Lv, Yunbo Zhang, Debin Kong, Zhijia Huang, Quan-Hong Yang. Electrode Design from “Internal” to “External” for High Stability Silicon Anodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2019, 11 (15) , 14142-14149. https://doi.org/10.1021/acsami.9b02206
    36. Kangning Zhao, Congli Sun, Yanhao Yu, Yifan Dong, Chenyu Zhang, Chongmin Wang, Paul M. Voyles, Liqiang Mai, Xudong Wang. Surface Gradient Ti-Doped MnO2 Nanowires for High-Rate and Long-Life Lithium Battery. ACS Applied Materials & Interfaces 2018, 10 (51) , 44376-44384. https://doi.org/10.1021/acsami.8b13376
    37. Sisi Jiang, Bin Hu, Ritu Sahore, Linghong Zhang, Haihua Liu, Lu Zhang, Wenquan Lu, Bin Zhao, Zhengcheng Zhang. Surface-Functionalized Silicon Nanoparticles as Anode Material for Lithium-Ion Battery. ACS Applied Materials & Interfaces 2018, 10 (51) , 44924-44931. https://doi.org/10.1021/acsami.8b17729
    38. Priya Moni, Jonathan Lau, Alan C. Mohr, Terri C. Lin, Sarah H. Tolbert, Bruce Dunn, Karen K. Gleason. Growth Temperature and Electrochemical Performance in Vapor-Deposited Poly(3,4-ethylenedioxythiophene) Thin Films for High-Rate Electrochemical Energy Storage. ACS Applied Energy Materials 2018, 1 (12) , 7093-7105. https://doi.org/10.1021/acsaem.8b01529
    39. Donghyuk Kim, Minkyu Park, Sang-Min Kim, Hyung Cheoul Shim, Seungmin Hyun, Seung Min Han. Conversion Reaction of Nanoporous ZnO for Stable Electrochemical Cycling of Binderless Si Microparticle Composite Anode. ACS Nano 2018, 12 (11) , 10903-10913. https://doi.org/10.1021/acsnano.8b03951
    40. Amruth Bhargav, Michaela Elaine Bell, Yi Cui, Yongzhu Fu. Polyphenylene Tetrasulfide as an Inherently Flexible Cathode Material for Rechargeable Lithium Batteries. ACS Applied Energy Materials 2018, 1 (11) , 5859-5864. https://doi.org/10.1021/acsaem.8b01350
    41. Pui-Kit Lee, Tian Tan, Shuo Wang, Wenpei Kang, Chun-Sing Lee, Denis Y. W. Yu. Robust Micron-Sized Silicon Secondary Particles Anchored by Polyimide as High-Capacity, High-Stability Li-Ion Battery Anode. ACS Applied Materials & Interfaces 2018, 10 (40) , 34132-34139. https://doi.org/10.1021/acsami.8b09566
    42. Hao Chen, Min Ling, Luke Hencz, Han Yeu Ling, Gaoran Li, Zhan Lin, Gao Liu, Shanqing Zhang. Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices. Chemical Reviews 2018, 118 (18) , 8936-8982. https://doi.org/10.1021/acs.chemrev.8b00241
    43. Yan Zhao, Luyi Yang, Yunxing Zuo, Zhibo Song, Fang Liu, Ke Li, Feng Pan. Conductive Binder for Si Anode with Boosted Charge Transfer Capability via n-Type Doping. ACS Applied Materials & Interfaces 2018, 10 (33) , 27795-27800. https://doi.org/10.1021/acsami.8b08843
    44. Chenfei Shen, Xin Fang, Mingyuan Ge, Anyi Zhang, Yihang Liu, Yuqiang Ma, Matthew Mecklenburg, Xiao Nie, Chongwu Zhou. Hierarchical Carbon-Coated Ball-Milled Silicon: Synthesis and Applications in Free-Standing Electrodes and High-Voltage Full Lithium-Ion Batteries. ACS Nano 2018, 12 (6) , 6280-6291. https://doi.org/10.1021/acsnano.8b03312
    45. Changsheng Shan, Kaifeng Wu, Hung-Ju Yen, Claudia Narvaez Villarrubia, Tom Nakotte, Xiangjie Bo, Ming Zhou, Gang Wu, Hsing-Lin Wang. Graphene Oxides Used as a New “Dual Role” Binder for Stabilizing Silicon Nanoparticles in Lithium-Ion Battery. ACS Applied Materials & Interfaces 2018, 10 (18) , 15665-15672. https://doi.org/10.1021/acsami.8b00649
    46. Michael B. McDonald, Paula T. Hammond. Efficient Transport Networks in a Dual Electron/Lithium-Conducting Polymeric Composite for Electrochemical Applications. ACS Applied Materials & Interfaces 2018, 10 (18) , 15681-15690. https://doi.org/10.1021/acsami.8b01519
    47. Zhanyu Li, Bangbang Niu, Jian Liu, Jianling Li, Feiyu Kang. Rechargeable Aluminum-Ion Battery Based on MoS2 Microsphere Cathode. ACS Applied Materials & Interfaces 2018, 10 (11) , 9451-9459. https://doi.org/10.1021/acsami.8b00100
    48. Peng-Fei Cao, Michael Naguib, Zhijia Du, Eric Stacy, Bingrui Li, Tao Hong, Kunyue Xing, Dmitry N. Voylov, Jianlin Li, David L. Wood, III, Alexei P. Sokolov, Jagjit Nanda, and Tomonori Saito . Effect of Binder Architecture on the Performance of Silicon/Graphite Composite Anodes for Lithium Ion Batteries. ACS Applied Materials & Interfaces 2018, 10 (4) , 3470-3478. https://doi.org/10.1021/acsami.7b13205
    49. Meng Li and Hyung Gyu Park . Pseudocapacitive Coating for Effective Capacitive Deionization. ACS Applied Materials & Interfaces 2018, 10 (3) , 2442-2450. https://doi.org/10.1021/acsami.7b14643
    50. Alba Franco Gonzalez, Nai-Hsuan Yang, and Ru-Shi Liu . Silicon Anode Design for Lithium-Ion Batteries: Progress and Perspectives. The Journal of Physical Chemistry C 2017, 121 (50) , 27775-27787. https://doi.org/10.1021/acs.jpcc.7b07793
    51. Chih-Yao Chen, Amane Sawamura, Tetsuya Tsuda, Satoshi Uchida, Masashi Ishikawa, and Susumu Kuwabata . Visualization of Si Anode Reactions in Coin-Type Cells via Operando Scanning Electron Microscopy. ACS Applied Materials & Interfaces 2017, 9 (41) , 35511-35515. https://doi.org/10.1021/acsami.7b12340
    52. Georgiana Sandu, Bruno Ernould, Julien Rolland, Nathalie Cheminet, Jérémy Brassinne, Pratik R. Das, Yaroslav Filinchuk, Luhua Cheng, Lidiya Komsiyska, Philippe Dubois, Sorin Melinte, Jean-François Gohy, Roberto Lazzaroni, and Alexandru Vlad . Mechanochemical Synthesis of PEDOT:PSS Hydrogels for Aqueous Formulation of Li-Ion Battery Electrodes. ACS Applied Materials & Interfaces 2017, 9 (40) , 34865-34874. https://doi.org/10.1021/acsami.7b08937
    53. Liang Lin, Yating Ma, Qingshui Xie, Laisen Wang, Qinfu Zhang, and Dong-Liang Peng . Copper-Nanoparticle-Induced Porous Si/Cu Composite Films as an Anode for Lithium Ion Batteries. ACS Nano 2017, 11 (7) , 6893-6903. https://doi.org/10.1021/acsnano.7b02030
    54. Fucong Lyu, Zhifang Sun, Bo Nan, Sicen Yu, Lujie Cao, Mingyang Yang, Minchan Li, Wenxi Wang, Shaofei Wu, Shanshan Zeng, Hongtao Liu, and Zhouguang Lu . Low-Cost and Novel Si-Based Gel for Li-Ion Batteries. ACS Applied Materials & Interfaces 2017, 9 (12) , 10699-10707. https://doi.org/10.1021/acsami.7b00460
    55. Jiagang Xu, Long Zhang, Yikai Wang, Tao Chen, Mohanad Al-Shroofy, and Yang-Tse Cheng . Unveiling the Critical Role of Polymeric Binders for Silicon Negative Electrodes in Lithium-Ion Full Cells. ACS Applied Materials & Interfaces 2017, 9 (4) , 3562-3569. https://doi.org/10.1021/acsami.6b11121
    56. Shuai Wang, Shuqiang Jiao, Junxiang Wang, Hao-Sen Chen, Donghua Tian, Haiping Lei, and Dai-Ning Fang . High-Performance Aluminum-Ion Battery with CuS@C Microsphere Composite Cathode. ACS Nano 2017, 11 (1) , 469-477. https://doi.org/10.1021/acsnano.6b06446
    57. Xiaotang Lu, Yang He, Scott X. Mao, Chong-min Wang, and Brian A. Korgel . Size Dependent Pore Formation in Germanium Nanowires Undergoing Reversible Delithiation Observed by In Situ TEM. The Journal of Physical Chemistry C 2016, 120 (50) , 28825-28831. https://doi.org/10.1021/acs.jpcc.6b10174
    58. Tao Chen, Qinglin Zhang, Jie Pan, Jiagang Xu, Yiyang Liu, Mohanad Al-Shroofy, and Yang-Tse Cheng . Low-Temperature Treated Lignin as Both Binder and Conductive Additive for Silicon Nanoparticle Composite Electrodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2016, 8 (47) , 32341-32348. https://doi.org/10.1021/acsami.6b11500
    59. Yuping Liu, Xiaoyun He, Damien Hanlon, Andrew Harvey, Jonathan N. Coleman, and Yanguang Li . Liquid Phase Exfoliated MoS2 Nanosheets Percolated with Carbon Nanotubes for High Volumetric/Areal Capacity Sodium-Ion Batteries. ACS Nano 2016, 10 (9) , 8821-8828. https://doi.org/10.1021/acsnano.6b04577
    60. Feng Wu, Jianrui Liu, Li Li, Xiaoxiao Zhang, Rui Luo, Yusheng Ye, and Renjie Chen . Surface Modification of Li-Rich Cathode Materials for Lithium-Ion Batteries with a PEDOT:PSS Conducting Polymer. ACS Applied Materials & Interfaces 2016, 8 (35) , 23095-23104. https://doi.org/10.1021/acsami.6b07431
    61. Tian Qin, Haoyi Yang, Quan Li, Xiqian Yu, Hong Li. Design of functional binders for high-specific-energy lithium-ion batteries: from molecular structure to electrode properties. Industrial Chemistry & Materials 2024, 4 https://doi.org/10.1039/D3IM00089C
    62. Nyung Joo Kong, Myeong Seon Kim, Jae Hyun Park, Jongbok Kim, Jungho Jin, Hyun-Wook Lee, Seok Ju Kang. Promoting homogeneous lithiation of silicon anodes via the application of bifunctional PEDOT:PSS/PEG composite binders. Energy Storage Materials 2024, 64 , 103074. https://doi.org/10.1016/j.ensm.2023.103074
    63. Mengyun Zhang, Li Wang, Hong Xu, Youzhi Song, Xiangming He. Polyimides as Promising Materials for Lithium-Ion Batteries: A Review. Nano-Micro Letters 2023, 15 (1) https://doi.org/10.1007/s40820-023-01104-7
    64. Baohui Chen, Bernhard Rieger. Silicon nanoparticles functionalized with 1-dodecene/alkyne-terminated conjugated groups and its properties. Results in Materials 2023, 20 , 100476. https://doi.org/10.1016/j.rinma.2023.100476
    65. Yuanyuan Yu, Jiadeng Zhu, Yu Li, Qibin Xu, Yan Jiang, Chen Yang, Leyuan Shi, Lianhui Chen, Pengqing Liu, Junhua Zhang, Mengjin Jiang. Mixed ion-electron conductive binders coupling superior stiffness and toughness establish dual crosslinking stable silicon anodes. Chemical Engineering Journal 2023, 11 , 147807. https://doi.org/10.1016/j.cej.2023.147807
    66. Qian Zhang, Jianhua Zhu, Yanyan Nie, Shiquan Li, Dandan Wang, Yongxiang Han, Haolin Wang, Yapeng Tian, Yanli Han, Xinwei Cui, Qun Xu. Hierarchical carbon nanofibers-based ternary conductive network built for improving electrochemical performance of SiO @C anodes. Materials Chemistry and Physics 2023, 309 , 128431. https://doi.org/10.1016/j.matchemphys.2023.128431
    67. Thomas Schmaltz, Felix Hartmann, Tim Wicke, Lukas Weymann, Christoph Neef, Jürgen Janek. A Roadmap for Solid‐State Batteries. Advanced Energy Materials 2023, 13 (43) https://doi.org/10.1002/aenm.202301886
    68. Yuanyuan Yu, Chen Yang, Yan Jiang, Jiadeng Zhu, Yingying Zhao, Shuheng Liang, Kaixiang Wang, Yulin Zhou, Yuying Liu, Junhua Zhang, Mengjin Jiang. Sponge‐Like Porous‐Conductive Polymer Coating for Ultrastable Silicon Anodes in Lithium‐Ion Batteries. Small 2023, 19 (47) https://doi.org/10.1002/smll.202303779
    69. Yi-Xiu Chen, Yin-Wei Cheng, Jun-Han Huang, Chuan-Pu Liu. Waterbed inspired stress relaxation strategies of patterned silicon anodes for fast-charging and longevity of lithium microbatteries. Journal of Materials Chemistry A 2023, 11 (39) , 21211-21221. https://doi.org/10.1039/D3TA03968D
    70. Deepa Elizabeth Mathew, R. Baby Dhanalakshmi, S. Sathya, M. Kathiresan, Sabu Thomas, Mohamed H. Alkordi, A. Manuel Stephan. Comparative study of different lithium salts as electrolyte additives of Li/SiOx–Si–C half-cells for lithium sulfur batteries. SN Applied Sciences 2023, 5 (8) https://doi.org/10.1007/s42452-023-05410-y
    71. Xiao Zhan, Miao Li, Sha Li, Xikun Pang, Fangqin Mao, Huiqun Wang, Zhefei Sun, Xiang Han, Bing Jiang, Yan-Bing He, Meicheng Li, Qiaobao Zhang, Li Zhang. Challenges and opportunities towards silicon-based all-solid-state batteries. Energy Storage Materials 2023, 61 , 102875. https://doi.org/10.1016/j.ensm.2023.102875
    72. Linfeng Chen, Jun Wang, Lihong Liang. Size dependent thermal cracking of silicon anodes. Engineering Fracture Mechanics 2023, 288 , 109378. https://doi.org/10.1016/j.engfracmech.2023.109378
    73. Huilin Shen, Qilin Wang, Zheng Chen, Changru Rong, Danming Chao. Application and Development of Silicon Anode Binders for Lithium-Ion Batteries. Materials 2023, 16 (12) , 4266. https://doi.org/10.3390/ma16124266
    74. Y. Tzeng, C.-Y. Jhan, K.-M. Chiu, Y.-C. Wu, G.-Y. Chen, P.-S. Wang. Si–Ni-alloy-assisted very high-areal-capacity silicon-based anode on Ni foam for lithium ion battery. Materials Today Chemistry 2023, 30 , 101570. https://doi.org/10.1016/j.mtchem.2023.101570
    75. Masytha Nuzula Ramdhiny, Ju‐Won Jeon. Design of multifunctional polymeric binders in silicon anodes for lithium‐ion batteries. Carbon Energy 2023, https://doi.org/10.1002/cey2.356
    76. Hao Chen, Shanqing Zhang, Gao Liu, Cheng Yan. Polymeric Binders in Modern Metal‐ion Batteries. 2023, 61-117. https://doi.org/10.1002/9783527838615.ch2
    77. Megha Goyal, Satya Narayan Agarwal, Kulwant Singh, Nitu Bhatnagar. Synthesis and characterization of poly [(3,4‐ethylenedioxy) thiophene]:polystyrene sulfonate ( PEDOT : PSS ) for energy storage device application. Journal of Applied Polymer Science 2023, 140 (19) https://doi.org/10.1002/app.53830
    78. Yanxiu Liu, Rong Shao, Ruiyu Jiang, Xinyu Song, Zhong Jin, Lin Sun. A review of existing and emerging binders for silicon anodic Li-ion batteries. Nano Research 2023, 16 (5) , 6736-6752. https://doi.org/10.1007/s12274-022-5281-7
    79. Anukriti Pokhriyal, Rosa M. González-Gil, Leandro N. Bengoa, Pedro Gómez-Romero. Nanostructured Thick Electrode Strategies toward Enhanced Electrode–Electrolyte Interfaces. Materials 2023, 16 (9) , 3439. https://doi.org/10.3390/ma16093439
    80. Chuanfang (John) Zhang, Wengao Zhao, Sang‐Hoon Park, Tiezhu Guo, Shungui Deng, Andrés Seral‐Ascaso, Mayan Si, Rabeb Grissa, Sebastian Barwich, Valeria Nicolosi. Interconnected Metallic Membrane Enabled by MXene Inks Toward High‐Rate Anode and High‐Voltage Cathode for Li‐Ion Batteries. Advanced Functional Materials 2023, 33 (14) https://doi.org/10.1002/adfm.202213860
    81. Trevor R. Martin, Leah Rynearson, Mackenzie Kuller, Joseph Quinn, Chongmin Wang, Brett Lucht, Nathan R. Neale. Conjugated Imine Polymer Synthesized via Step‐Growth Metathesis for Highly Stable Silicon Nanoparticle Anodes in Lithium‐Ion Batteries. Advanced Energy Materials 2023, 13 (13) https://doi.org/10.1002/aenm.202203921
    82. R. Maji, M.A. Salvador, A. Ruini, R. Magri, E. Degoli. A first-principles study of self-healing binders for next-generation Si-based lithium-ion batteries. Materials Today Chemistry 2023, 29 , 101474. https://doi.org/10.1016/j.mtchem.2023.101474
    83. Jaegeon Ryu, Soojin Park, Dongki Hong, Sunghee Shin. Intertwining porous silicon with conducting polymer for high-efficiency stable Li-ion battery anodes. Korean Journal of Chemical Engineering 2023, 40 (3) , 497-503. https://doi.org/10.1007/s11814-022-1227-8
    84. Zhong Xu, Xiang Chu, Keli Wang, Haitao Zhang, Zhongqian He, Yanting Xie, Weiqing Yang. Stress-dissipated conductive polymer binders for high-stability silicon anode in lithium-ion batteries. Journal of Materiomics 2023, 9 (2) , 378-386. https://doi.org/10.1016/j.jmat.2022.09.013
    85. Dmitrii Yu. Semerukhin, Aleksei V. Kubarkov, Evgeny V. Antipov, Vladimir G. Sergeyev. Carbon nanotubes and carbon-coated current collector significantly improve the performance of lithium-ion battery with PEDOT:PSS binder. Mendeleev Communications 2023, 33 (2) , 206-208. https://doi.org/10.1016/j.mencom.2023.02.018
    86. Anja Marinow, Zviadi Katcharava, Wolfgang H. Binder. Self-Healing Polymer Electrolytes for Next-Generation Lithium Batteries. Polymers 2023, 15 (5) , 1145. https://doi.org/10.3390/polym15051145
    87. Wenlei Wang, Yu Wang, Lixuan Yuan, Chaolin You, Junwei Wu, Lili Liu, Jilei Ye, Yunling Wu, Lijun Fu. Recent advances in modification strategies of silicon-based lithium-ion batteries. Nano Research 2023, 16 (3) , 3781-3803. https://doi.org/10.1007/s12274-022-5147-z
    88. Yifeng Cai, Caixia Liu, Zhiao Yu, Wencan Ma, Qi Jin, Ruichun Du, Bingyun Qian, Xinxin Jin, Haomin Wu, Qiuhong Zhang, Xudong Jia. Slidable and Highly Ionic Conductive Polymer Binder for High‐Performance Si Anodes in Lithium‐Ion Batteries. Advanced Science 2023, 10 (6) https://doi.org/10.1002/advs.202205590
    89. Weihua Wang, Juan Ding, Zhenjie Liu, Yanbin Wei, Wenhua Cheng, Qingcui Liu, Weilu Zhang, XingChao Wang, Wenjun Zhang, Bao Wang, Jiulin Wang, Yudai Huang. Novel-designed cobweb-like binder by “four-in-one” strategy for high performance SiO anode. Chemical Engineering Journal 2023, 458 , 141387. https://doi.org/10.1016/j.cej.2023.141387
    90. C. Yang, K. S. Ravi Chandran. A critical review of silicon nanowire electrodes and their energy storage capacities in Li-ion cells. RSC Advances 2023, 13 (6) , 3947-3957. https://doi.org/10.1039/D2RA07326A
    91. Jieun Kang, Dong‐Yeob Han, Sungho Kim, Jaegeon Ryu, Soojin Park. Multiscale Polymeric Materials for Advanced Lithium Battery Applications. Advanced Materials 2023, 35 (4) https://doi.org/10.1002/adma.202203194
    92. Qitao Shi, Yuanhao Cheng, Jiaqi Wang, Junhua Zhou, Huy Quang Ta, Xueyu Lian, Klaudia Kurtyka, Barbara Trzebicka, Thomas Gemming, Mark H. Rümmeli. Strain Regulating and Kinetics Accelerating of Micro‐Sized Silicon Anodes via Dual‐Size Hollow Graphitic Carbons Conductive Additives. Small 2023, 19 (4) https://doi.org/10.1002/smll.202205284
    93. Ana López-Cudero, Nuria García, Víctor Gregorio, Francisco J. González, Aránzazu Martínez-Gómez, Pilar Tiemblo. The Role of Polymer-Based Materials in Sustainable, Safe, and Efficient Metal Batteries. 2023, 415-441. https://doi.org/10.1007/978-3-031-18428-4_20
    94. Fozia Maqsood, Faisal Jamil, Umar Sohail Shoukat, Muhammad Adnan Iqbal. Recent Advancements in MXene-Based Lithium-Ion Batteries. 2023, 97-125. https://doi.org/10.1007/978-981-99-2038-9_7
    95. Hongbin Liu, Qing Sun, Hongqiang Zhang, Jun Cheng, Yuanyuan Li, Zhen Zeng, Shuai Zhang, Xiao Xu, Fengjun Ji, Deping Li, Jingyu Lu, Lijie Ci. The application road of silicon-based anode in lithium-ion batteries: From liquid electrolyte to solid-state electrolyte. Energy Storage Materials 2023, 55 , 244-263. https://doi.org/10.1016/j.ensm.2022.11.054
    96. Daniel A. Gribble, Evan McCulfor, Zheng Li, Mihit Parekh, Vilas G. Pol. Enhanced capacity and thermal safety of lithium-ion battery graphite anodes with conductive binder. Journal of Power Sources 2023, 553 , 232204. https://doi.org/10.1016/j.jpowsour.2022.232204
    97. Anita Li, Jacob L. Hempel, Michael P. Balogh, Yang-Tse Cheng, Alan I. Taub. Effect of Binder Content on Silicon Microparticle Anodes for Lithium-Ion Batteries. Journal of The Electrochemical Society 2023, 170 (1) , 010533. https://doi.org/10.1149/1945-7111/acb388
    98. Md. Wali Ullah, Naoki Haraguchi, Md. Azgar Ali, Md. Rabiul Alam, Samiul Islam Chowdhury. Synthesis of homo- and copolymer containing sulfonic acid via atom transfer radical polymerization. Designed Monomers and Polymers 2022, 25 (1) , 261-270. https://doi.org/10.1080/15685551.2022.2126092
    99. Heather Au, Maria Crespo‐Ribadeneyra. Polymers in Sodium‐Ion Batteries. 2022, 429-499. https://doi.org/10.1002/9783527825769.ch14
    100. Kunxiang Yu, Junhao Liu, Xuzhong Gong, Xianren Zhang, Zhi Wang. Rationally designed high‐conductivity Hydrangea macrophylla ‐like Si@NiO@Ni/C composites as a high‐performance anode material for lithium‐ion batteries. Electrochemical Science Advances 2022, 2 (6) https://doi.org/10.1002/elsa.202100169
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect