Graphene Tunable Transparency to Tunneling Electrons: A Direct Tool To Measure the Local Coupling
- Héctor González-Herrero
- ,
- Pablo Pou
- ,
- Jorge Lobo-Checa
- ,
- Delia Fernández-Torre
- ,
- Fabian Craes
- ,
- Antonio J. Martínez-Galera
- ,
- Miguel M. Ugeda
- ,
- Martina Corso
- ,
- J. Enrique Ortega
- ,
- José M. Gómez-Rodríguez
- ,
- Rubén Pérez
- , and
- Iván Brihuega
Abstract

The local interaction between graphene and a host substrate strongly determines the actual properties of the graphene layer. Here we show that scanning tunneling microscopy (STM) can selectively help to visualize either the graphene layer or the substrate underneath, or even both at the same time, providing a comprehensive picture of this coupling with atomic precision and high energy resolution. We demonstrate this for graphene on Cu(111). Our spectroscopic data show that, in the vicinity of the Fermi level, graphene π bands are well preserved presenting a small n-doping induced by Cu(111) surface state electrons. Such results are corroborated by Angle-Resolved Photoemission Spectra (ARPES) and Density Functional Theory with van der Waals (DFT + vdW) calculations. Graphene tunable transparency also allows the investigation of the interaction between the substrate and foreign species (such as atomic H or C vacancies) on the graphene layer. Our calculations explain graphene tunable transparency in terms of the rather different decay lengths of the graphene Dirac π states and the metal surface state, suggesting that it should apply to a good number of graphene/substrate systems.
Cited By
This article is cited by 23 publications.
- Noah B. Schorr, Michael J. Counihan, Rohit Bhargava, Joaquín Rodríguez-López. Impact of Plasmonic Photothermal Effects on the Reactivity of Au Nanoparticle Modified Graphene Electrodes Visualized Using Scanning Electrochemical Microscopy. Analytical Chemistry 2020, 92 (5) , 3666-3673. https://doi.org/10.1021/acs.analchem.9b04754
- Youngsin Park, Yooseok Kim, Chang Woo Myung, Robert Anthony Taylor, Christopher C. S. Chan, Benjamin P. L. Reid, Tim J. Puchtler, Robin J. Nicholas, Laishram Tomba Singh, Geunsik Lee, Chan-Cuk Hwang, Chong-Yun Park, and Kwang S. Kim . Two-Dimensional Excitonic Photoluminescence in Graphene on a Cu Surface. ACS Nano 2017, 11 (3) , 3207-3212. https://doi.org/10.1021/acsnano.7b00245
- Antonio J. Martínez-Galera, Haojie Guo, Mariano D. Jiménez-Sánchez, Enrique G. Michel, José M. Gómez-Rodríguez. Dirac cones in graphene grown on a half-filled 4d-band transition metal. Carbon 2023, 205 , 294-301. https://doi.org/10.1016/j.carbon.2023.01.004
- T Daugalas, V Bukauskas, A Lukša, V Nargelienė, A Šetkus. Intentionally created localized bridges for electron transport through graphene monolayer between two metals. Nanotechnology 2022, 33 (37) , 375402. https://doi.org/10.1088/1361-6528/ac7578
- Antonio Javier Martínez-Galera, Haojie Guo, Mariano D. Jiménez-Sánchez, Enrique G. Michel, José M. Gómez-Rodríguez. Dirac Cones in Graphene Grown on a Half-Filled 4d-Band Transition Metal. SSRN Electronic Journal 2022, https://doi.org/10.2139/ssrn.4146280
- Antonio Javier Martínez-Galera, Haojie Guo, Mariano D. Jiménez-Sánchez, Enrique G. Michel, José M. Gómez-Rodríguez. Dirac Cones in Graphene Grown on a Half-Filled 4d-Band Transition Metal. SSRN Electronic Journal 2022, https://doi.org/10.2139/ssrn.4146274
- Zhizhan Qiu, Matthew Holwill, Thomas Olsen, Pin Lyu, Jing Li, Hanyan Fang, Huimin Yang, Mikhail Kashchenko, Kostya S. Novoselov, Jiong Lu. Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-020-20376-w
- Prashant P. Shinde, Piyush Tagade, Shashishekar P. Adiga, Aniruddha Konar, Shanthi Pandian, K. Subramanya Mayya, Hyeon-Jin Shin, Yeonchoo Cho, Seongjun Park. Electrical resistivity of atomically smooth single-crystal Cu films. Physical Review B 2020, 102 (16) https://doi.org/10.1103/PhysRevB.102.165102
- Prashant P. Shinde, Shashishekar P. Adiga, Shanthi Pandian, K. Subramanya Mayya, Hyeon-Jin Shin, Seongjun Park. Effect of encapsulation on electronic transport properties of nanoscale Cu(111) films. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-40193-6
- Ignacio Piquero-Zulaica, Zakaria M Abd El-Fattah, Olha Popova, Shigeki Kawai, Sylwia Nowakowska, Manfred Matena, Mihaela Enache, Meike Stöhr, Antonio Tejeda, Amina Taleb, Ernst Meyer, J Enrique Ortega, Lutz H Gade, Thomas A Jung, Jorge Lobo-Checa. Effective determination of surface potential landscapes from metal-organic nanoporous network overlayers. New Journal of Physics 2019, 21 (5) , 053004. https://doi.org/10.1088/1367-2630/ab150e
- H González-Herrero, E Cortés-del Río, P Mallet, J-Y Veuillen, J J Palacios, J M Gómez-Rodríguez, I Brihuega, F Ynduráin. Hydrogen physisorption channel on graphene: a highway for atomic H diffusion. 2D Materials 2019, 6 (2) , 021004. https://doi.org/10.1088/2053-1583/ab03a0
- Noah B. Schorr, Jingshu Hui, Joaquín Rodríguez-López. Electrocatalysis on ultra-thin 2D electrodes: New concepts and prospects for tailoring reactivity. Current Opinion in Electrochemistry 2019, 13 , 100-106. https://doi.org/10.1016/j.coelec.2018.11.003
- Antonio J. Martínez-Galera, José M. Gómez-Rodríguez. Pseudo-ordered distribution of Ir nanocrystals on h-BN. Nanoscale 2019, 11 (5) , 2317-2325. https://doi.org/10.1039/C8NR08928K
- Hao Wu, Pengju Ren, Peng Zhao, Zhongmiao Gong, Xiaodong Wen, Yi Cui, Qiang Fu, Xinhe Bao. Dynamic nanoscale imaging of enriched CO adlayer on Pt(111) confined under h-BN monolayer in ambient pressure atmospheres. Nano Research 2019, 12 (1) , 85-90. https://doi.org/10.1007/s12274-018-2184-8
- Fang Cheng, Xue-Jun Wu, Zhixin Hu, Xuefeng Lu, Zijing Ding, Yan Shao, Hai Xu, Wei Ji, Jishan Wu, Kian Ping Loh. Two-dimensional tessellation by molecular tiles constructed from halogen–halogen and halogen–metal networks. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-07323-6
- A. Sabitova, R. Temirov, F. S. Tautz. Lateral scattering potential of the PTCDA/Ag(111) interface state. Physical Review B 2018, 98 (20) https://doi.org/10.1103/PhysRevB.98.205429
- Antonio J. Martínez-Galera, José M. Gómez-Rodríguez. Influence of metal support in-plane symmetry on the corrugation of hexagonal boron nitride and graphene monolayers. Nano Research 2018, 11 (9) , 4643-4653. https://doi.org/10.1007/s12274-018-2045-5
- Niccolò Paolo Pampaloni, Martin Lottner, Michele Giugliano, Alessia Matruglio, Francesco D’Amico, Maurizio Prato, Josè Antonio Garrido, Laura Ballerini, Denis Scaini. Single-layer graphene modulates neuronal communication and augments membrane ion currents. Nature Nanotechnology 2018, 13 (8) , 755-764. https://doi.org/10.1038/s41565-018-0163-6
- Yang Li, Anh T. Ngo, Andrew DiLullo, Kyaw Zin Latt, Heath Kersell, Brandon Fisher, Peter Zapol, Sergio E. Ulloa, Saw-Wai Hla. Anomalous Kondo resonance mediated by semiconducting graphene nanoribbons in a molecular heterostructure. Nature Communications 2017, 8 (1) https://doi.org/10.1038/s41467-017-00881-1
- J. Azpeitia, G. Otero-Irurueta, I. Palacio, J.I. Martinez, N. Ruiz del Árbol, G. Santoro, A. Gutiérrez, L. Aballe, M. Foerster, M. Kalbac, V. Vales, F.J. Mompeán, M. García-Hernández, J.A. Martín-Gago, C. Munuera, M.F. López. High-quality PVD graphene growth by fullerene decomposition on Cu foils. Carbon 2017, 119 , 535-543. https://doi.org/10.1016/j.carbon.2017.04.067
- Julia Tesch, Elena Voloshina, Milan Jubitz, Yuriy Dedkov, Mikhail Fonin. Local electronic properties of the graphene-protected giant Rashba-split BiAg 2 surface. Physical Review B 2017, 95 (15) https://doi.org/10.1103/PhysRevB.95.155428
- Jens Brede, Jagoda Sławińska, Mikel Abadia, Celia Rogero, J Enrique Ortega, Ignacio Piquero-Zulaica, Jorge Lobo-Checa, Andres Arnau, Jorge Iribas Cerdá. Tuning the Graphene on Ir(111) adsorption regime by Fe/Ir surface-alloying. 2D Materials 2017, 4 (1) , 015016. https://doi.org/10.1088/2053-1583/4/1/015016
- N Nicoara, J Méndez, J M Gómez-Rodríguez. Visualizing the interface state of PTCDA on Au(111) by scanning tunneling microscopy. Nanotechnology 2016, 27 (47) , 475707. https://doi.org/10.1088/0957-4484/27/47/475707