ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Graphene Tunable Transparency to Tunneling Electrons: A Direct Tool To Measure the Local Coupling

View Author Information
Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
§ Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
Centro de Física de Materiales (CSIC-UPV-EHU) and Materials Physics Center (MPC), Manuel Lardizábal 5, E-20018 San Sebastián, Spain
II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany
# CIC nanoGUNE, 20018 Donostia-San Sebastian, Spain
Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
Donostia International Physics Center DIPC, E-20018 San Sebastián, Spain
Departamento de Física Aplicada I, Universidad del País Vasco, E-20018 San Sebastián, Spain
Cite this: ACS Nano 2016, 10, 5, 5131–5144
Publication Date (Web):April 25, 2016
https://doi.org/10.1021/acsnano.6b00322
Copyright © 2016 American Chemical Society

    Article Views

    1677

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    The local interaction between graphene and a host substrate strongly determines the actual properties of the graphene layer. Here we show that scanning tunneling microscopy (STM) can selectively help to visualize either the graphene layer or the substrate underneath, or even both at the same time, providing a comprehensive picture of this coupling with atomic precision and high energy resolution. We demonstrate this for graphene on Cu(111). Our spectroscopic data show that, in the vicinity of the Fermi level, graphene π bands are well preserved presenting a small n-doping induced by Cu(111) surface state electrons. Such results are corroborated by Angle-Resolved Photoemission Spectra (ARPES) and Density Functional Theory with van der Waals (DFT + vdW) calculations. Graphene tunable transparency also allows the investigation of the interaction between the substrate and foreign species (such as atomic H or C vacancies) on the graphene layer. Our calculations explain graphene tunable transparency in terms of the rather different decay lengths of the graphene Dirac π states and the metal surface state, suggesting that it should apply to a good number of graphene/substrate systems.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.6b00322.

    • STM characterization of the general morphology of the graphene/Cu(111) samples, STM characterization of 2D electronic states, large view of STM/STS data, STM/STS measurements of the graphene electron doping, theoretical description of the dispersive (van der Waals) interactions, charge transfer and level alignment, simulation results of the √57 × √57 moiré pattern, further details of the explanation of graphene tunable transparency, Figures S1–S12 (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 23 publications.

    1. Noah B. Schorr, Michael J. Counihan, Rohit Bhargava, Joaquín Rodríguez-López. Impact of Plasmonic Photothermal Effects on the Reactivity of Au Nanoparticle Modified Graphene Electrodes Visualized Using Scanning Electrochemical Microscopy. Analytical Chemistry 2020, 92 (5) , 3666-3673. https://doi.org/10.1021/acs.analchem.9b04754
    2. Youngsin Park, Yooseok Kim, Chang Woo Myung, Robert Anthony Taylor, Christopher C. S. Chan, Benjamin P. L. Reid, Tim J. Puchtler, Robin J. Nicholas, Laishram Tomba Singh, Geunsik Lee, Chan-Cuk Hwang, Chong-Yun Park, and Kwang S. Kim . Two-Dimensional Excitonic Photoluminescence in Graphene on a Cu Surface. ACS Nano 2017, 11 (3) , 3207-3212. https://doi.org/10.1021/acsnano.7b00245
    3. Antonio J. Martínez-Galera, Haojie Guo, Mariano D. Jiménez-Sánchez, Enrique G. Michel, José M. Gómez-Rodríguez. Dirac cones in graphene grown on a half-filled 4d-band transition metal. Carbon 2023, 205 , 294-301. https://doi.org/10.1016/j.carbon.2023.01.004
    4. T Daugalas, V Bukauskas, A Lukša, V Nargelienė, A Šetkus. Intentionally created localized bridges for electron transport through graphene monolayer between two metals. Nanotechnology 2022, 33 (37) , 375402. https://doi.org/10.1088/1361-6528/ac7578
    5. Antonio Javier Martínez-Galera, Haojie Guo, Mariano D. Jiménez-Sánchez, Enrique G. Michel, José M. Gómez-Rodríguez. Dirac Cones in Graphene Grown on a Half-Filled 4d-Band Transition Metal. SSRN Electronic Journal 2022, https://doi.org/10.2139/ssrn.4146280
    6. Antonio Javier Martínez-Galera, Haojie Guo, Mariano D. Jiménez-Sánchez, Enrique G. Michel, José M. Gómez-Rodríguez. Dirac Cones in Graphene Grown on a Half-Filled 4d-Band Transition Metal. SSRN Electronic Journal 2022, https://doi.org/10.2139/ssrn.4146274
    7. Zhizhan Qiu, Matthew Holwill, Thomas Olsen, Pin Lyu, Jing Li, Hanyan Fang, Huimin Yang, Mikhail Kashchenko, Kostya S. Novoselov, Jiong Lu. Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-020-20376-w
    8. Prashant P. Shinde, Piyush Tagade, Shashishekar P. Adiga, Aniruddha Konar, Shanthi Pandian, K. Subramanya Mayya, Hyeon-Jin Shin, Yeonchoo Cho, Seongjun Park. Electrical resistivity of atomically smooth single-crystal Cu films. Physical Review B 2020, 102 (16) https://doi.org/10.1103/PhysRevB.102.165102
    9. Prashant P. Shinde, Shashishekar P. Adiga, Shanthi Pandian, K. Subramanya Mayya, Hyeon-Jin Shin, Seongjun Park. Effect of encapsulation on electronic transport properties of nanoscale Cu(111) films. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-40193-6
    10. Ignacio Piquero-Zulaica, Zakaria M Abd El-Fattah, Olha Popova, Shigeki Kawai, Sylwia Nowakowska, Manfred Matena, Mihaela Enache, Meike Stöhr, Antonio Tejeda, Amina Taleb, Ernst Meyer, J Enrique Ortega, Lutz H Gade, Thomas A Jung, Jorge Lobo-Checa. Effective determination of surface potential landscapes from metal-organic nanoporous network overlayers. New Journal of Physics 2019, 21 (5) , 053004. https://doi.org/10.1088/1367-2630/ab150e
    11. H González-Herrero, E Cortés-del Río, P Mallet, J-Y Veuillen, J J Palacios, J M Gómez-Rodríguez, I Brihuega, F Ynduráin. Hydrogen physisorption channel on graphene: a highway for atomic H diffusion. 2D Materials 2019, 6 (2) , 021004. https://doi.org/10.1088/2053-1583/ab03a0
    12. Noah B. Schorr, Jingshu Hui, Joaquín Rodríguez-López. Electrocatalysis on ultra-thin 2D electrodes: New concepts and prospects for tailoring reactivity. Current Opinion in Electrochemistry 2019, 13 , 100-106. https://doi.org/10.1016/j.coelec.2018.11.003
    13. Antonio J. Martínez-Galera, José M. Gómez-Rodríguez. Pseudo-ordered distribution of Ir nanocrystals on h-BN. Nanoscale 2019, 11 (5) , 2317-2325. https://doi.org/10.1039/C8NR08928K
    14. Hao Wu, Pengju Ren, Peng Zhao, Zhongmiao Gong, Xiaodong Wen, Yi Cui, Qiang Fu, Xinhe Bao. Dynamic nanoscale imaging of enriched CO adlayer on Pt(111) confined under h-BN monolayer in ambient pressure atmospheres. Nano Research 2019, 12 (1) , 85-90. https://doi.org/10.1007/s12274-018-2184-8
    15. Fang Cheng, Xue-Jun Wu, Zhixin Hu, Xuefeng Lu, Zijing Ding, Yan Shao, Hai Xu, Wei Ji, Jishan Wu, Kian Ping Loh. Two-dimensional tessellation by molecular tiles constructed from halogen–halogen and halogen–metal networks. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-07323-6
    16. A. Sabitova, R. Temirov, F. S. Tautz. Lateral scattering potential of the PTCDA/Ag(111) interface state. Physical Review B 2018, 98 (20) https://doi.org/10.1103/PhysRevB.98.205429
    17. Antonio J. Martínez-Galera, José M. Gómez-Rodríguez. Influence of metal support in-plane symmetry on the corrugation of hexagonal boron nitride and graphene monolayers. Nano Research 2018, 11 (9) , 4643-4653. https://doi.org/10.1007/s12274-018-2045-5
    18. Niccolò Paolo Pampaloni, Martin Lottner, Michele Giugliano, Alessia Matruglio, Francesco D’Amico, Maurizio Prato, Josè Antonio Garrido, Laura Ballerini, Denis Scaini. Single-layer graphene modulates neuronal communication and augments membrane ion currents. Nature Nanotechnology 2018, 13 (8) , 755-764. https://doi.org/10.1038/s41565-018-0163-6
    19. Yang Li, Anh T. Ngo, Andrew DiLullo, Kyaw Zin Latt, Heath Kersell, Brandon Fisher, Peter Zapol, Sergio E. Ulloa, Saw-Wai Hla. Anomalous Kondo resonance mediated by semiconducting graphene nanoribbons in a molecular heterostructure. Nature Communications 2017, 8 (1) https://doi.org/10.1038/s41467-017-00881-1
    20. J. Azpeitia, G. Otero-Irurueta, I. Palacio, J.I. Martinez, N. Ruiz del Árbol, G. Santoro, A. Gutiérrez, L. Aballe, M. Foerster, M. Kalbac, V. Vales, F.J. Mompeán, M. García-Hernández, J.A. Martín-Gago, C. Munuera, M.F. López. High-quality PVD graphene growth by fullerene decomposition on Cu foils. Carbon 2017, 119 , 535-543. https://doi.org/10.1016/j.carbon.2017.04.067
    21. Julia Tesch, Elena Voloshina, Milan Jubitz, Yuriy Dedkov, Mikhail Fonin. Local electronic properties of the graphene-protected giant Rashba-split BiAg 2 surface. Physical Review B 2017, 95 (15) https://doi.org/10.1103/PhysRevB.95.155428
    22. Jens Brede, Jagoda Sławińska, Mikel Abadia, Celia Rogero, J Enrique Ortega, Ignacio Piquero-Zulaica, Jorge Lobo-Checa, Andres Arnau, Jorge Iribas Cerdá. Tuning the Graphene on Ir(111) adsorption regime by Fe/Ir surface-alloying. 2D Materials 2017, 4 (1) , 015016. https://doi.org/10.1088/2053-1583/4/1/015016
    23. N Nicoara, J Méndez, J M Gómez-Rodríguez. Visualizing the interface state of PTCDA on Au(111) by scanning tunneling microscopy. Nanotechnology 2016, 27 (47) , 475707. https://doi.org/10.1088/0957-4484/27/47/475707

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect