ACS Publications. Most Trusted. Most Cited. Most Read
My Activity

Imaging Bacterial Interspecies Chemical Interactions by Surface-Enhanced Raman Scattering

View Author Information
Departamento de Química Física and Biomedical Research Center (CINBIO), Universidade de Vigo, 36310 Vigo, Spain
Bionanoplasmonics Laboratory, CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
§ Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
*E-mail: (G. Bodelón): [email protected]
*E-mail: (L. M. Liz-Marzán): [email protected]
Cite this: ACS Nano 2017, 11, 5, 4631–4640
Publication Date (Web):May 1, 2017
Copyright © 2017 American Chemical Society

    Article Views





    Other access options
    Supporting Info (1)»


    Abstract Image

    Microbes produce bioactive chemical compounds to influence the physiology and growth of their neighbors, and our understanding of their biological activities may be enhanced by our ability to visualize such molecules in vivo. We demonstrate here the application of surface-enhanced Raman scattering spectroscopy for simultaneous detection of quorum-sensing-regulated pyocyanin and violacein, produced respectively by Pseudomonas aeruginosa and Chromobacterium violaceum bacterial colonies, grown as a coculture on agar-based plasmonic substrates. Our plasmonic approach allowed us to visualize the expression and spatial distribution of the microbial metabolites in the coculture taking place as a result of interspecies chemical interactions. By combining surface-enhanced Raman scattering spectroscopy with analysis of gene expression we provide insight into the chemical interplay occurring between the interacting bacterial species. This highly sensitive, cost-effective, and easy to implement approach allows spatiotemporal imaging of cellular metabolites in live microbial colonies grown on agar with no need for sample preparation, thereby providing a powerful tool for the analysis of microbial chemotypes.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.


    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.7b00258.

    • Characterization of the plasmonic substrates; theoretical study of violacein; SERS/SERRS detection of microbial metabolites, bacterial culture on Au@agar, and qPCR procedure (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system:

    Cited By

    This article is cited by 62 publications.

    1. Luis M. Liz-Marzán, (Executive Editor)Katherine A. Willets, (Associate Editor)Xiaodong Chen (Editor-in-Chief). Fifty Years of Surface-Enhanced Spectroscopy. ACS Nano 2024, 18 (8) , 5995-5997.
    2. Cheng Qu, Yuchuang Geng, Zhongxiang Ding, Yuzhu Li, Hao Jiang, Mengke Su, Honglin Liu. In Situ Spatiotemporal SERS Profiling of Bacterial Quorum Sensing by Hierarchical Hydrophobic Plasmonic Arrays in Agar Medium. Analytical Chemistry 2024, 96 (6) , 2396-2405.
    3. Wei Wang, Peter J. Vikesland. Metabolite-Mediated Bacterial Antibiotic Resistance Revealed by Surface-Enhanced Raman Spectroscopy. Environmental Science & Technology 2023, 57 (36) , 13375-13383.
    4. Cheng-Zhe Xie, Cheng-Han Li, You-Chia Chang, Yih-Fan Chen. Optofluidic Accumulation of Silica Beads on Gel-Based Three-Dimensional SERS Substrate To Enhance Sensitivity Using Multiple Photonic Nanojets. ACS Applied Materials & Interfaces 2023, 15 (26) , 31703-31710.
    5. Aditya Garg, Wonil Nam, Wei Wang, Peter Vikesland, Wei Zhou. In Situ Spatiotemporal SERS Measurements and Multivariate Analysis of Virally Infected Bacterial Biofilms Using Nanolaminated Plasmonic Crystals. ACS Sensors 2023, 8 (3) , 1132-1142.
    6. Rongchao Mei, Yunqing Wang, Shang Shi, Xizhen Zhao, Zhiyang Zhang, Xiaoyan Wang, Dazhong Shen, Qi Kang, Lingxin Chen. Highly Sensitive and Reliable Internal-Standard Surface-Enhanced Raman Scattering Microneedles for Determination of Bacterial Metabolites as Infection Biomarkers in Skin Interstitial Fluid. Analytical Chemistry 2022, 94 (46) , 16069-16078.
    7. Javier Plou, Pablo S. Valera, Isabel García, Carlos D. L. de Albuquerque, Arkaitz Carracedo, Luis M. Liz-Marzán. Prospects of Surface-Enhanced Raman Spectroscopy for Biomarker Monitoring toward Precision Medicine. ACS Photonics 2022, 9 (2) , 333-350.
    8. Shanshan Lin, Ziyi Cheng, Qifu Li, Rui Wang, Fabiao Yu. Toward Sensitive and Reliable Surface-Enhanced Raman Scattering Imaging: From Rational Design to Biomedical Applications. ACS Sensors 2021, 6 (11) , 3912-3932.
    9. Javier Plou, Beatriz Molina-Martínez, Clara García-Astrain, Judith Langer, Isabel García, Amaia Ercilla, Govindaraj Perumal, Arkaitz Carracedo, Luis M. Liz-Marzán. Nanocomposite Scaffolds for Monitoring of Drug Diffusion in Three-Dimensional Cell Environments by Surface-Enhanced Raman Spectroscopy. Nano Letters 2021, 21 (20) , 8785-8793.
    10. Wei Wang, Seju Kang, Peter J. Vikesland. Surface-Enhanced Raman Spectroscopy of Bacterial Metabolites for Bacterial Growth Monitoring and Diagnosis of Viral Infection. Environmental Science & Technology 2021, 55 (13) , 9119-9128.
    11. Wonil Nam, Xiang Ren, Inyoung Kim, Jeannine Strobl, Masoud Agah, Wei Zhou. Plasmonically Calibrated Label-Free Surface-Enhanced Raman Spectroscopy for Improved Multivariate Analysis of Living Cells in Cancer Subtyping and Drug Testing. Analytical Chemistry 2021, 93 (10) , 4601-4610.
    12. Xia Gao, Yanliang Yin, Haotian Wu, Zhe Hao, Jinjie Li, Shuo Wang, Yaqing Liu. Integrated SERS Platform for Reliable Detection and Photothermal Elimination of Bacteria in Whole Blood Samples. Analytical Chemistry 2021, 93 (3) , 1569-1577.
    13. Alexander Castro-Grijalba, Verónica Montes-García, María José Cordero-Ferradás, Eduardo Coronado, Jorge Pérez-Juste, Isabel Pastoriza-Santos. SERS-Based Molecularly Imprinted Plasmonic Sensor for Highly Sensitive PAH Detection. ACS Sensors 2020, 5 (3) , 693-702.
    14. Judith Langer, Dorleta Jimenez de Aberasturi, Javier Aizpurua, Ramon A. Alvarez-Puebla, Baptiste Auguié, Jeremy J. Baumberg, Guillermo C. Bazan, Steven E. J. Bell, Anja Boisen, Alexandre G. Brolo, Jaebum Choo, Dana Cialla-May, Volker Deckert, Laura Fabris, Karen Faulds, F. Javier García de Abajo, Royston Goodacre, Duncan Graham, Amanda J. Haes, Christy L. Haynes, Christian Huck, Tamitake Itoh, Mikael Käll, Janina Kneipp, Nicholas A. Kotov, Hua Kuang, Eric C. Le Ru, Hiang Kwee Lee, Jian-Feng Li, Xing Yi Ling, Stefan A. Maier, Thomas Mayerhöfer, Martin Moskovits, Kei Murakoshi, Jwa-Min Nam, Shuming Nie, Yukihiro Ozaki, Isabel Pastoriza-Santos, Jorge Perez-Juste, Juergen Popp, Annemarie Pucci, Stephanie Reich, Bin Ren, George C. Schatz, Timur Shegai, Sebastian Schlücker, Li-Lin Tay, K. George Thomas, Zhong-Qun Tian, Richard P. Van Duyne, Tuan Vo-Dinh, Yue Wang, Katherine A. Willets, Chuanlai Xu, Hongxing Xu, Yikai Xu, Yuko S. Yamamoto, Bing Zhao, Luis M. Liz-Marzán. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14 (1) , 28-117.
    15. Li Cui, DanDan Zhang, Kai Yang, Xian Zhang, Yong-Guan Zhu. Perspective on Surface-Enhanced Raman Spectroscopic Investigation of Microbial World. Analytical Chemistry 2019, 91 (24) , 15345-15354.
    16. William John Thrift, Regina Ragan. Quantification of Analyte Concentration in the Single Molecule Regime Using Convolutional Neural Networks. Analytical Chemistry 2019, 91 (21) , 13337-13342.
    17. William John Thrift, Antony Cabuslay, Andrew Benjamin Laird, Saba Ranjbar, Allon I. Hochbaum, Regina Ragan. Surface-Enhanced Raman Scattering-Based Odor Compass: Locating Multiple Chemical Sources and Pathogens. ACS Sensors 2019, 4 (9) , 2311-2319.
    18. Kristen E. Watts, Thomas J. Blackburn, Jeanne E. Pemberton. Optical Spectroscopy of Surfaces, Interfaces, and Thin Films: A Status Report. Analytical Chemistry 2019, 91 (7) , 4235-4265.
    19. Yuanyuan Qiu, Yuqing Zhang, Mingwang Li, Gaoxian Chen, Chenchen Fan, Kai Cui, Jian-Bo Wan, Anpan Han, Jian Ye, Zeyu Xiao. Intraoperative Detection and Eradication of Residual Microtumors with Gap-Enhanced Raman Tags. ACS Nano 2018, 12 (8) , 7974-7985.
    20. M. Mercedes Zalduendo, Judith Langer, Juan J. Giner-Casares, Emilia B. Halac, Galo J. A. A. Soler-Illia, Luis M. Liz-Marzán, Paula C. Angelomé. Au Nanoparticles–Mesoporous TiO2 Thin Films Composites as SERS Sensors: A Systematic Performance Analysis. The Journal of Physical Chemistry C 2018, 122 (24) , 13095-13105.
    21. Juhui Ko, Sung-Gyu Park, Sangyeop Lee, Xiaokun Wang, Chaewon Mun, Sunho Kim, Dong-Ho Kim, and Jaebum Choo . Culture-Free Detection of Bacterial Pathogens on Plasmonic Nanopillar Arrays Using Rapid Raman Mapping. ACS Applied Materials & Interfaces 2018, 10 (8) , 6831-6840.
    22. Jia‐Wei Tang, Quan Yuan, Xin‐Ru Wen, Muhammad Usman, Alfred Chin Yen Tay, Liang Wang. Label‐free surface‐enhanced Raman spectroscopy coupled with machine learning algorithms in pathogenic microbial identification: Current trends, challenges, and perspectives. Interdisciplinary Medicine 2024, 8
    23. Shengkai Li, Zhiyang Li, Qing Hao, Shen Wang, Yanxia Yang, Jieqiong Xu, Zhiwei Yin, Liang Zhang, Zhuo Chen. Ultrastable graphene isolated AuAg nanoalloy for SERS biosensing and photothermal therapy of bacterial infection. Chinese Chemical Letters 2024, 35 (3) , 108636.
    24. Jianhong Cai, Yongjian Lin, Xiuwen Yu, Yingqi Yang, Yuqing Hu, Lele Gao, Haichuan Xiao, Jiarui Du, Haonan Wang, Xing Zhong, Pinghua Sun, Xujing Liang, Haibo Zhou, Huaihong Cai. Multifunctional AuAg-doping Prussian Blue-based MOF: Enhanced colorimetric catalytic activities and amplified SERS signals for bacteria discrimination and detection. Sensors and Actuators B: Chemical 2023, 394 , 134279.
    25. Muhammad Usman, Jia-Wei Tang, Fen Li, Jin-Xin Lai, Qing-Hua Liu, Wei Liu, Liang Wang. Recent advances in surface enhanced Raman spectroscopy for bacterial pathogen identifications. Journal of Advanced Research 2023, 51 , 91-107.
    26. Júlia Mingot, Nícolas Benejam, Gloria Víllora, Carlos Alemán, Elaine Armelin, Sonia Lanzalaco. Multimodal Biomedical Implant with Plasmonic and Simulated Body Temperature Responses. Macromolecular Bioscience 2023, 23 (7)
    27. Nicoleta Elena Dina, Muhammad Ali Tahir, Sadia Z. Bajwa, Imran Amin, Ventsislav K. Valev, Liwu Zhang. SERS-based antibiotic susceptibility testing: Towards point-of-care clinical diagnosis. Biosensors and Bioelectronics 2023, 219 , 114843.
    28. G. Ghiara, R. Spotorno, S. Delsante, F. Formicola, A. Franzetti, P. Cristiani. Opposite corrosion behaviour of aluminum bronze induced by Pseudomonas fluorescens and its metabolites. Corrosion Science 2022, 208 , 110656.
    29. Xueqin Huang, Zhubao Zhang, Lingzhi Chen, Yongjian Lin, Runmin Zeng, Jun Xu, Shanze Chen, Jianglin Zhang, Huaihong Cai, Haibo Zhou, Pinghua Sun. Multifunctional Au nano-bridged nanogap probes as ICP-MS/SERS dual-signal tags and signal amplifiers for bacteria discriminating, quantitative detecting and photothermal bactericidal activity. Biosensors and Bioelectronics 2022, 212 , 114414.
    30. Alexander D. Klementiev, Marvin Whiteley, . Development of a Versatile, Low-Cost Electrochemical System to Study Biofilm Redox Activity at the Micron Scale. Applied and Environmental Microbiology 2022, 88 (14)
    31. Dongyu Cui, Lingchao Kong, Yi Wang, Yuanqing Zhu, Chuanlun Zhang. In situ identification of environmental microorganisms with Raman spectroscopy. Environmental Science and Ecotechnology 2022, 11 , 100187.
    32. Wei Wang, Asifur Rahman, Qishen Huang, Peter J. Vikesland. Surface-enhanced Raman spectroscopy enabled evaluation of bacterial inactivation. Water Research 2022, 220 , 118668.
    33. Yingying Li, Yang Hu, Tao Chen, Yan Chen, Yi Li, Haibo Zhou, Danting Yang. Advanced detection and sensing strategies of Pseudomonas aeruginosa and quorum sensing biomarkers: A review. Talanta 2022, 240 , 123210.
    34. J. Nirgund, K.N. Purana, D. Selvakumar, N.S. Kumar, S. Sil. Nanobiosensors for detection of bacteria: an overview of fiber-optics and Raman spectroscopy based biosensors. 2022, 91-132.
    35. Xueqin Huang, Zhubao Zhang, Lingzhi Chen, Yongjian Lin, Runmin Zeng, Jun Xu, Shanze Chen, Jianglin Zhang, Huaihong Cai, Haibo Zhou, Pinghua Sun. Multifunctional AU Nano-Bridged Nanogap Probes as Icp-Ms/Sers Dual-Signal Tags and Signal Amplifiers for Bacteria Discriminating, Quantitative Detecting and Photothermal Bactericidal Activity. SSRN Electronic Journal 2022, 11
    36. Giorgia Ghiara, Roberto Spotorno, Simona Delsante, Francesca Formicola, Andrea Franzetti, Pierangela Cristiani. Opposite Corrosion Behaviour of Aluminum Bronze Induced by Pseudomonas Fluorescens and its Metabolites. SSRN Electronic Journal 2022,
    37. Giorgia Ghiara, Roberto Spotorno, Simona Delsante, Francesca Formicola, Andrea Franzetti, Pierangela Cristiani. Opposite Corrosion Behaviour of Aluminum Bronze Induced by Pseudomonas Fluorescens and its Metabolites. SSRN Electronic Journal 2022,
    38. Mathias Charconnet, Christian Kuttner, Javier Plou, Juan Luis García‐Pomar, Agustín Mihi, Luis M. Liz‐Marzán, Andreas Seifert. Mechanically Tunable Lattice‐Plasmon Resonances by Templated Self‐Assembled Superlattices for Multi‐Wavelength Surface‐Enhanced Raman Spectroscopy. Small Methods 2021, 5 (10)
    39. Waqas Ahmad, Jingjing Wang, Huanhuan Li, Tianhui Jiao, Quansheng Chen. Trends in the bacterial recognition patterns used in surface enhanced Raman spectroscopy. TrAC Trends in Analytical Chemistry 2021, 142 , 116310.
    40. Jackson K. B. Cahn, Jörn Piel. Opening up the Single‐Cell Toolbox for Microbial Natural Products Research. Angewandte Chemie International Edition 2021, 60 (34) , 18412-18428.
    41. Jackson K. B. Cahn, Jörn Piel. Anwendungen von Einzelzellmethoden in der mikrobiellen Naturstoffforschung. Angewandte Chemie 2021, 133 (34) , 18560-18577.
    42. Chandni Sharma, Ashish K. Shukla, Amitabha Acharya. Rational design of a FRET-based nanoprobe of gold-conjugated carbon dots for simultaneous monitoring and disruption of Pseudomonas aeruginosa biofilm through selective detection of virulence factor pyocyanin. Environmental Science: Nano 2021, 8 (6) , 1713-1728.
    43. Conrado Carrascosa, Dele Raheem, Fernando Ramos, Ariana Saraiva, António Raposo. Microbial Biofilms in the Food Industry—A Comprehensive Review. International Journal of Environmental Research and Public Health 2021, 18 (4) , 2014.
    44. Moupriya Nag, Dibyajit Lahiri, Ritwik Banerjee, Abarna Chatterjee, Anushka Ghosh, Prateek Banerjee, Rina Rani Ray. Analysing Microbial Biofilm Formation at a Molecular Level: Role of Fourier Transform Infrared and Raman Spectroscopy. 2021, 69-93.
    45. Xia Zhou, Ziwei Hu, Danting Yang, Shouxia Xie, Zhengjin Jiang, Reinhard Niessner, Christoph Haisch, Haibo Zhou, Pinghua Sun. Bacteria Detection: From Powerful SERS to Its Advanced Compatible Techniques. Advanced Science 2020, 7 (23)
    46. Carolina Chávez-Madero, María Díaz de León-Derby, Mohamadmahdi Samandari, Carlos Fernando Ceballos-González, Edna Johana Bolívar-Monsalve, Christian Mendoza-Buenrostro, Sunshine Holmberg, Norma Alicia Garza-Flores, Mohammad Ali Almajhadi, Ivonne González-Gamboa, Juan Felipe Yee-de León, Sergio O. Martínez-Chapa, Ciro A. Rodríguez, Hemantha Kumar Wickramasinghe, Marc Madou, David Dean, Ali Khademhosseini, Yu Shrike Zhang, Mario Moisés Alvarez, Grissel Trujillo-de Santiago. Using chaotic advection for facile high-throughput fabrication of ordered multilayer micro- and nanostructures: continuous chaotic printing. Biofabrication 2020, 12 (3) , 035023.
    47. Javier Plou, Isabel García, Mathias Charconnet, Ianire Astobiza, Clara García‐Astrain, Cristiano Matricardi, Agustín Mihi, Arkaitz Carracedo, Luis M. Liz‐Marzán. Multiplex SERS Detection of Metabolic Alterations in Tumor Extracellular Media. Advanced Functional Materials 2020, 30 (17)
    48. Di Wu, Yonghao Chen, Shuai Hou, Wenjun Fang, Hongwei Duan. Intracellular and Cellular Detection by SERS‐Active Plasmonic Nanostructures. ChemBioChem 2019, 20 (19) , 2432-2441.
    49. Sajanlal R. Panikkanvalappil, Chakravarthy Garlapati, Nasrin Hooshmand, Ritu Aneja, Mostafa A. El-Sayed. Monitoring the dynamics of hemeoxygenase-1 activation in head and neck cancer cells in real-time using plasmonically enhanced Raman spectroscopy. Chemical Science 2019, 10 (18) , 4876-4882.
    50. Palaniappan Sivasankar, Subramaniam Poongodi, Palaniappan Seedevi, Murugesan Sivakumar, Tamilselvi Murugan, Sivakumar Loganathan. Bioremediation of wastewater through a quorum sensing triggered MFC: A sustainable measure for waste to energy concept. Journal of Environmental Management 2019, 237 , 84-93.
    51. Sarah De Marchi, Gustavo Bodelón, Lorena Vázquez-Iglesias, Luis M. Liz-Marzán, Jorge Pérez-Juste, Isabel Pastoriza-Santos. Surface-enhanced Raman scattering (SERS) imaging of bioactive metabolites in mixed bacterial populations. Applied Materials Today 2019, 14 , 207-215.
    52. Peng Zhang, You-Peng Chen, Ju-Hui Qiu, You-Zhi Dai, Bo Feng. Imaging the Microprocesses in Biofilm Matrices. Trends in Biotechnology 2019, 37 (2) , 214-226.
    53. Smilja Todorovic. Raman Biospectroscopy and Imaging. 2019, 111-145.
    54. Ana Herrero-Langreo, Amalia G.M. Scannell, Aoife Gowen. Hyperspectral imaging for food-related microbiology applications. 2019, 493-522.
    55. Pablo G. Argudo, Rafael Contreras-Montoya, Luis Álvarez de Cienfuegos, Juan M. Cuerva, Manuel Cano, David Alba-Molina, María T. Martín-Romero, Luis Camacho, Juan J. Giner-Casares. Unravelling the 2D self-assembly of Fmoc-dipeptides at fluid interfaces. Soft Matter 2018, 14 (46) , 9343-9350.
    56. Verónica Montes‐García, Sergio Rodal‐Cedeira, María José Cordero‐Ferradás, Borja Gómez, Luis García‐Río, Isabel Pastoriza‐Santos, Jorge Pérez‐Juste. Pillar[5]arene‐stabilized Plasmonic Nanoparticles as Selective SERS Sensors. Israel Journal of Chemistry 2018, 58 (11) , 1251-1260.
    57. Isabel Pastoriza-Santos, Calum Kinnear, Jorge Pérez-Juste, Paul Mulvaney, Luis M. Liz-Marzán. Plasmonic polymer nanocomposites. Nature Reviews Materials 2018, 3 (10) , 375-391.
    58. Daniel D. Galvan, Qiuming Yu. Surface‐Enhanced Raman Scattering for Rapid Detection and Characterization of Antibiotic‐Resistant Bacteria. Advanced Healthcare Materials 2018, 7 (13)
    59. Gustavo Bodelón, Verónica Montes-García, Jorge Pérez-Juste, Isabel Pastoriza-Santos. Surface-Enhanced Raman Scattering Spectroscopy for Label-Free Analysis of P. aeruginosa Quorum Sensing. Frontiers in Cellular and Infection Microbiology 2018, 8
    60. Xiao-Shan Zheng, Izabella Jolan Jahn, Karina Weber, Dana Cialla-May, Jürgen Popp. Label-free SERS in biological and biomedical applications: Recent progress, current challenges and opportunities. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2018, 197 , 56-77.
    61. Kun Zhu, Zhen Hong, Shi-Zhao Kang, Lixia Qin, Guodong Li, Xiangqing Li. Assembly of potassium niobate nanosheets/silver oxide composite films with good SERS performance towards crystal violet detection. Journal of Physics and Chemistry of Solids 2018, 115 , 69-74.
    62. Jingxing Guo, Ying Liu, Yunlong Chen, Jianqi Li, Huangxian Ju. A multifunctional SERS sticky note for real-time quorum sensing tracing and inactivation of bacterial biofilms. Chemical Science 2018, 9 (27) , 5906-5911.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Your Mendeley pairing has expired. Please reconnect