Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Lithium Self-Discharge and Its Prevention: Direct Visualization through In Situ Electrochemical Scanning Transmission Electron Microscopy
My Activity
    Article

    Lithium Self-Discharge and Its Prevention: Direct Visualization through In Situ Electrochemical Scanning Transmission Electron Microscopy
    Click to copy article linkArticle link copied!

    View Author Information
    † § Joint Center for Energy Storage Research, Nanoscale Sciences, MESA Fabrication Operations, and §Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
    Argonne National Laboratory, Lemont, Illinois 60439, United States
    # Energy & Environmental Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
    Other Access OptionsSupporting Information (1)

    ACS Nano

    Cite this: ACS Nano 2017, 11, 11, 11194–11205
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.7b05513
    Published November 7, 2017
    Copyright © 2017 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    To understand the mechanism that controls low-aspect-ratio lithium deposition morphologies for Li-metal anodes in batteries, we conducted direct visualization of Li-metal deposition and stripping behavior through nanoscale in situ electrochemical scanning transmission electron microscopy (EC-STEM) and macroscale-cell electrochemistry experiments in a recently developed and promising solvate electrolyte, 4 M lithium bis(fluorosulfonyl)imide in 1,2-dimethoxyethane. In contrast to published coin cell studies in the same electrolyte, our experiments revealed low Coulombic efficiencies and inhomogeneous Li morphology during in situ observation. We conclude that this discrepancy in Coulombic efficiency and morphology of the Li deposits was dependent on the presence of a compressed lithium separator interface, as we have confirmed through macroscale (not in the transmission electron microscope) electrochemical experiments. Our data suggests that cell compression changed how the solid-electrolyte interphase formed, which is likely responsible for improved morphology and Coulombic efficiency with compression. Furthermore, during the in situ EC-STEM experiments, we observed direct evidence of nanoscale self-discharge in the solvate electrolyte (in the state of electrical isolation). This self-discharge was duplicated in the macroscale, but it was less severe with electrode compression, likely due to a more passivating and corrosion-resistant solid-electrolyte interphase formed in the presence of compression. By combining the solvate electrolyte with a protective LiAl0.3S coating, we show that the Li nucleation density increased during deposition, leading to improved morphological uniformity. Furthermore, self-discharge was suppressed during rest periods in the cycling profile with coatings present, as evidenced through EC-STEM and confirmed with coin cell data.

    Copyright © 2017 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.7b05513.

    • Additional figures and discussion regarding the setup and electrochemistry related to Figures 2 and 4 are provided; additional details on image dose calculations, as well as scanning electron microscopy images and electrochemistry comparing Li deposition onto current collectors with and without LiAl0.3S films (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 59 publications.

    1. Daniel Martín-Yerga, Xiangdong Xu, Dimitrios Valavanis, Geoff West, Marc Walker, Patrick R. Unwin. High-Throughput Combinatorial Analysis of the Spatiotemporal Dynamics of Nanoscale Lithium Metal Plating. ACS Nano 2024, 18 (34) , 23032-23046. https://doi.org/10.1021/acsnano.4c05001
    2. Laura C. Merrill, Daniel M. Long, Kathryn A. Small, Katherine L. Jungjohann, Kevin Leung, Kimberly L. Bassett, Katharine L. Harrison. Role of Coatings as Artificial Solid Electrolyte Interphases on Lithium Metal Self-Discharge. The Journal of Physical Chemistry C 2022, 126 (41) , 17490-17501. https://doi.org/10.1021/acs.jpcc.2c05385
    3. Syed Jazib Abbas Zaidi, Muhammad Abdul Basit, Tae Joo Park. Advances in Atomic Layer Deposition of Metal Sulfides: From a Precursors Perspective. Chemistry of Materials 2022, 34 (16) , 7106-7138. https://doi.org/10.1021/acs.chemmater.2c00954
    4. Mengyuan Zhou, Chen Feng, Ruoyu Xiong, Longhui Li, Tianlun Huang, Maoyuan Li, Yun Zhang, Huamin Zhou. Molecular Insights into the Structure and Property Variation of the Pressure-Induced Solid Electrolyte Interphase on a Lithium Metal Anode. ACS Applied Materials & Interfaces 2022, 14 (21) , 24875-24885. https://doi.org/10.1021/acsami.2c02584
    5. Laura C. Merrill, Samantha G. Rosenberg, Katherine L. Jungjohann, Katharine L. Harrison. Uncovering the Relationship between Aging and Cycling on Lithium Metal Battery Self-Discharge. ACS Applied Energy Materials 2021, 4 (8) , 7589-7598. https://doi.org/10.1021/acsaem.1c00874
    6. Katharine L. Harrison, Subrahmanyam Goriparti, Laura C. Merrill, Daniel Martin Long, Benjamin Warren, Scott A. Roberts, Brian R. Perdue, Zachary Casias, Paul Cuillier, Brad L. Boyce, Katherine L. Jungjohann. Effects of Applied Interfacial Pressure on Li-Metal Cycling Performance and Morphology in 4 M LiFSI in DME. ACS Applied Materials & Interfaces 2021, 13 (27) , 31668-31679. https://doi.org/10.1021/acsami.1c06488
    7. Fu Sun, Dong Zhou, Xin He, Markus Osenberg, Kang Dong, Libao Chen, Shilin Mei, André Hilger, Henning Markötter, Yan Lu, Shanmu Dong, Shashidhara Marathe, Christoph Rau, Xu Hou, Jie Li, Marian Cristian Stan, Martin Winter, Robert Dominko, Ingo Manke. Morphological Reversibility of Modified Li-Based Anodes for Next-Generation Batteries. ACS Energy Letters 2020, 5 (1) , 152-161. https://doi.org/10.1021/acsenergylett.9b02424
    8. Jingshu Hui, Zachary T. Gossage, Dipobrato Sarbapalli, Kenneth Hernández-Burgos, Joaquín Rodríguez-López. Advanced Electrochemical Analysis for Energy Storage Interfaces. Analytical Chemistry 2019, 91 (1) , 60-83. https://doi.org/10.1021/acs.analchem.8b05115
    9. Rodrigo Rodriguez, Kathryn E. Loeffler, Ruth A. Edison, Ryan M. Stephens, Andrei Dolocan, Adam Heller, C. Buddie Mullins. Effect of the Electrolyte on the Cycling Efficiency of Lithium-Limited Cells and their Morphology Studied Through in Situ Optical Imaging. ACS Applied Energy Materials 2018, 1 (11) , 5830-5835. https://doi.org/10.1021/acsaem.8b01194
    10. Yonghe Li, Hui Xu, Qiaoru Ning, Shiting Li, Jing Wang, Jiexin Wang, Zhongting Hu, Jinshu Tian, Xiaonian Li, Yu Han, Yihan Zhu. Visualizing Structure, Growth, and Dynamics of Li Dendrite in Batteries: From Atomic to Device Scales. Advanced Functional Materials 2024, 34 (36) https://doi.org/10.1002/adfm.202401361
    11. Jungyoon Lee, Jinuk Kim, Dong Gyu Lee, Donghyeok Son, Juhyun Lee, Saehun Kim, Seungjun Han, Nam-Soon Choi, Tae Kyung Lee, Jinwoo Lee. Constructing stable solid electrolyte interphases to enhance the calendar life of anode-free lithium metal batteries. Chemical Engineering Journal 2024, 12 , 156296. https://doi.org/10.1016/j.cej.2024.156296
    12. Minkwan Kim, Jiwoo An, Seung-Jae Shin, Insu Hwang, Jimin Lee, Youngbin Park, Jinyoung Kim, Eunseok Park, Jisub Kim, Gyuleen Park, Sujin Kim, Ali Coskun, Jang Wook Choi. Anti-corrosive electrolyte design for extending the calendar life of lithium metal batteries. Energy & Environmental Science 2024, 17 (16) , 6079-6090. https://doi.org/10.1039/D4EE01436G
    13. Xiangtao Bai, Qian Huang, Liuzhen Wang, Rong Yang, Zilong Su, Tao Jiang. Cryo−electron microscopy, powerful assistant for advancing battery. Journal of Alloys and Compounds 2024, 30 , 175913. https://doi.org/10.1016/j.jallcom.2024.175913
    14. Yexin Fan, Huiyi Chen, Chengjuan Yang, Zhen Yang, Shu Li, Zongwei Xu, Bingyu Li, Ziyang Chen, Zihan Shang, Shuxian Zheng, Qiang Li. Investigating the pressure-induced evolution of solid electrolyte interphase on Li metal anodes: A ReaxFF molecular dynamics study. Journal of Energy Storage 2024, 91 , 111966. https://doi.org/10.1016/j.est.2024.111966
    15. Binson Babu. Self-discharge in rechargeable electrochemical energy storage devices. Energy Storage Materials 2024, 67 , 103261. https://doi.org/10.1016/j.ensm.2024.103261
    16. Deeksha Nimmakayala, Shaswat Srivastava, Sanjeev Kumar. Self‐discharge in supercapacitors. Part I: Conway's diagnostics. WIREs Energy and Environment 2024, 13 (2) https://doi.org/10.1002/wene.515
    17. Pengxiang Ji, Xincheng Lei, Dong Su. In Situ Transmission Electron Microscopy Methods for Lithium‐Ion Batteries. Small Methods 2024, 1 https://doi.org/10.1002/smtd.202301539
    18. Laura C. Merrill. Resting restores performance of discharged lithium-metal batteries. Nature 2024, 626 (7998) , 266-267. https://doi.org/10.1038/d41586-024-00229-y
    19. Bingxin Zhou, Ivan Stoševski, Arman Bonakdarpour, David P. Wilkinson. Suppressing Chemical and Galvanic Corrosion in Anode‐Free Lithium Metal Batteries Through Electrolyte Design. Advanced Functional Materials 2024, 34 (7) https://doi.org/10.1002/adfm.202311212
    20. Josefine D. McBrayer, Katharine L. Harrison, Eric Allcorn, Shelley D. Minteer. Chemical contributions to silicon anode calendar aging are dominant over mechanical contributions. Frontiers in Batteries and Electrochemistry 2023, 2 https://doi.org/10.3389/fbael.2023.1308127
    21. Kimberly L. Bassett, Kathryn A. Small, Daniel M. Long, Laura C. Merrill, Benjamin Warren, Katharine L. Harrison. Interfacial pressure improves calendar aging of lithium metal anodes. Frontiers in Batteries and Electrochemistry 2023, 2 https://doi.org/10.3389/fbael.2023.1292639
    22. Oh B. Chae, Brett L. Lucht. Interfacial Issues and Modification of Solid Electrolyte Interphase for Li Metal Anode in Liquid and Solid Electrolytes. Advanced Energy Materials 2023, 13 (14) https://doi.org/10.1002/aenm.202203791
    23. Xiangbo Meng, Zonghai Chen. Constituting robust interfaces for better lithium-ion batteries and beyond using atomic and molecular layer deposition. 2023, 649-663. https://doi.org/10.1016/B978-0-12-822425-0.00093-2
    24. Hongmei Liang, Li Wang, Li Sheng, Hong Xu, Youzhi Song, Xiangming He. Focus on the Electroplating Chemistry of Li Ions in Nonaqueous Liquid Electrolytes: Toward Stable Lithium Metal Batteries. Electrochemical Energy Reviews 2022, 5 (S2) https://doi.org/10.1007/s41918-022-00158-2
    25. Ruihe Li, Wei Li, Avtar Singh, Dongsheng Ren, Zhichao Hou, Minggao Ouyang. Effect of external pressure and internal stress on battery performance and lifespan. Energy Storage Materials 2022, 52 , 395-429. https://doi.org/10.1016/j.ensm.2022.07.034
    26. Shujie Yang, Xin Min, Hui Fan, Jun Xiao, Yangai Liu, Ruiyu Mi, Xiaowen Wu, Zhaohui Huang, Kai Xi, Minghao Fang. In situ characterization of lithium-metal anodes. Journal of Materials Chemistry A 2022, 10 (35) , 17917-17947. https://doi.org/10.1039/D2TA04309B
    27. Oh B. Chae, Munaiah Yeddala, Brett L. Lucht. Modification of solid electrolyte interphase on deposited lithium metal by large separation between the electrodes in ether-based electrolytes. Journal of Solid State Electrochemistry 2022, 26 (9) , 2005-2011. https://doi.org/10.1007/s10008-022-05189-9
    28. Katherine Jungjohann, Laura Merrill, Renae Gannon, Daniel Long, Steven Randolph, Katharine Harrison. Relevance of In-Situ Electrochemical STEM Observations to Li-Metal Batteries for Evaluating Performance. Microscopy and Microanalysis 2022, 28 (S1) , 826-827. https://doi.org/10.1017/S1431927622003701
    29. Xin Wang, Hua Zhou, Zonghai Chen, Xiangbo Meng. Synchrotron-based X-ray diffraction and absorption spectroscopy studies on layered LiNixMnyCozO2 cathode materials: A review. Energy Storage Materials 2022, 49 , 181-208. https://doi.org/10.1016/j.ensm.2022.04.012
    30. Oh B. Chae, Jongjung Kim, Brett L. Lucht. Modification of lithium electrodeposition behavior by variation of electrode distance. Journal of Power Sources 2022, 532 , 231338. https://doi.org/10.1016/j.jpowsour.2022.231338
    31. Shiwei Tao, Ming Li, Miaoqiang Lyu, Lingbing Ran, Roger Wepf, Ian Gentle, Ruth Knibbe. In Operando Closed-cell Transmission Electron Microscopy for Rechargeable Battery Characterization: Scientific Breakthroughs and Practical Limitations. Nano Energy 2022, 96 , 107083. https://doi.org/10.1016/j.nanoen.2022.107083
    32. Brett L. Lucht, Oh B. Chae, Jongjung Kim. Modification of Lithium Electrodeposition Behavior by Variation of Electrode Distance. SSRN Electronic Journal 2022, 7 https://doi.org/10.2139/ssrn.4021812
    33. Jake A. Klorman, Qing Guo, Kah Chun Lau. First-Principles Study of Amorphous Al2O3 ALD Coating in Li-S Battery Electrode Design. Energies 2022, 15 (1) , 390. https://doi.org/10.3390/en15010390
    34. Abhiroop Mishra, Zachary T. Gossage, Dipobrato Sarbapalli, Yuanya Zhao, Joaquín Rodríguez‐López. Methods and Instrumentation in Energy Storage. 2021, 1-47. https://doi.org/10.1002/9783527610426.bard030111
    35. Josefine D McBrayer, Christopher A Apblett, Katharine L Harrison, Kyle R Fenton, Shelley D Minteer. Mechanical studies of the solid electrolyte interphase on anodes in lithium and lithium ion batteries. Nanotechnology 2021, 32 (50) , 502005. https://doi.org/10.1088/1361-6528/ac17fe
    36. Katharine L. Harrison, Laura C. Merrill, Daniel Martin Long, Steven J. Randolph, Subrahmanyam Goriparti, Joseph Christian, Benjamin Warren, Scott A. Roberts, Stephen J. Harris, Daniel L. Perry, Katherine L. Jungjohann. Cryogenic electron microscopy reveals that applied pressure promotes short circuits in Li batteries. iScience 2021, 24 (12) , 103394. https://doi.org/10.1016/j.isci.2021.103394
    37. Subrahmanyam Goriparti, Katharine L. Harrison, Katherine L. Jungjohann. Degradation-resistant TiO2@Sn anodes for high-capacity lithium-ion batteries. Journal of Materials Science 2021, 56 (30) , 17156-17166. https://doi.org/10.1007/s10853-021-06265-7
    38. Daniel Long, Scott McClary, Paul Kotula, Kevin Zavadil, Katherine Jungjohann. Characterizing Multivalent Metal Anodes with Cryogenic Electron Microscopy. Microscopy and Microanalysis 2021, 27 (S1) , 1926-1928. https://doi.org/10.1017/S1431927621007005
    39. Yanqiang Cao, Xiangbo Meng, Aidong Li. Atomic Layer Deposition of High‐Capacity Anodes for Next‐Generation Lithium‐Ion Batteries and Beyond. ENERGY & ENVIRONMENTAL MATERIALS 2021, 4 (3) , 363-391. https://doi.org/10.1002/eem2.12132
    40. Muhammad Yousaf, Ufra Naseer, Yiju Li, Zeeshan Ali, Nasir Mahmood, Lei Wang, Peng Gao, Shaojun Guo. A mechanistic study of electrode materials for rechargeable batteries beyond lithium ions by in situ transmission electron microscopy. Energy & Environmental Science 2021, 14 (5) , 2670-2707. https://doi.org/10.1039/D0EE03295F
    41. Jiang Cui, Hongkui Zheng, Kai He. In Situ TEM Study on Conversion‐Type Electrodes for Rechargeable Ion Batteries. Advanced Materials 2021, 33 (6) https://doi.org/10.1002/adma.202000699
    42. Xiangbo Meng. Atomic and molecular layer deposition in pursuing better batteries. Journal of Materials Research 2021, 36 (1) , 2-25. https://doi.org/10.1557/s43578-020-00054-9
    43. Katharine Harrison, Laura C Merrill, Daniel Long, Steven Randolph, Subrahmanyam Goriparti, Joseph Christian, Benjamin Warren, Scott A. Roberts, Stephen J. Harris, Katherine Jungjohann. Cryogenic Electron Microscopy Reveals that Applied Pressure Promotes Short Circuits in Li Batteries. SSRN Electronic Journal 2021, 162 https://doi.org/10.2139/ssrn.3910130
    44. Xiangbo Meng. Atomic layer deposition of solid-state electrolytes for next-generation lithium-ion batteries and beyond: Opportunities and challenges. Energy Storage Materials 2020, 30 , 296-328. https://doi.org/10.1016/j.ensm.2020.05.001
    45. Raymond R. Unocic, Katherine L. Jungjohann, B. Layla Mehdi, Nigel D. Browning, Chongmin Wang. In situ electrochemical scanning/transmission electron microscopy of electrode–electrolyte interfaces. MRS Bulletin 2020, 45 (9) , 738-745. https://doi.org/10.1557/mrs.2020.226
    46. Mark A. Rodriguez, Katharine L. Harrison, Subrahmanyam Goriparti, James J. M. Griego, Brad L. Boyce, Brian R. Perdue. Use of a Be-dome holder for texture and strain characterization of Li metal thin films via sin 2 ( ψ ) methodology. Powder Diffraction 2020, 35 (2) , 89-97. https://doi.org/10.1017/S0885715620000305
    47. Jingxu Zheng, Mun Sek Kim, Zhengyuan Tu, Snehashis Choudhury, Tian Tang, Lynden A. Archer. Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries. Chemical Society Reviews 2020, 49 (9) , 2701-2750. https://doi.org/10.1039/C9CS00883G
    48. Chao Zhang, Konstantin L. Firestein, Joseph F. S. Fernando, Dumindu Siriwardena, Joel E. von Treifeldt, Dmitri Golberg. Recent Progress of In Situ Transmission Electron Microscopy for Energy Materials. Advanced Materials 2020, 32 (18) https://doi.org/10.1002/adma.201904094
    49. Michael J. Zachman, Niels de Jonge, Robert Fischer, Katherine L. Jungjohann, Daniel E. Perea. Cryogenic specimens for nanoscale characterization of solid–liquid interfaces. MRS Bulletin 2019, 44 (12) , 949-955. https://doi.org/10.1557/mrs.2019.289
    50. Yang He, Xiaodi Ren, Yaobin Xu, Mark H. Engelhard, Xiaolin Li, Jie Xiao, Jun Liu, Ji-Guang Zhang, Wu Xu, Chongmin Wang. Origin of lithium whisker formation and growth under stress. Nature Nanotechnology 2019, 14 (11) , 1042-1047. https://doi.org/10.1038/s41565-019-0558-z
    51. Zachary D. Hood, Miaofang Chi. Mechanistic understanding and strategies to design interfaces of solid electrolytes: insights gained from transmission electron microscopy. Journal of Materials Science 2019, 54 (15) , 10571-10594. https://doi.org/10.1007/s10853-019-03633-2
    52. Katherine Jungjohann, Katharine Harrison, Subrahmanyam Goriparti, Paul Cullier, Robert Fischer, Brad Boyce, Zachary Casias, Nathan Hahn, Brian Perdue, Kevin Zavadil. SEM, TEM, and Cryo-EM of Electrodeposited Li, Mg, and Ca Metal Electrodes. Microscopy and Microanalysis 2019, 25 (S2) , 2040-2041. https://doi.org/10.1017/S1431927619010936
    53. Xiaodi Ren, Lianfeng Zou, Xia Cao, Mark H. Engelhard, Wen Liu, Sarah D. Burton, Hongkyung Lee, Chaojiang Niu, Bethany E. Matthews, Zihua Zhu, Chongmin Wang, Bruce W. Arey, Jie Xiao, Jun Liu, Ji-Guang Zhang, Wu Xu. Enabling High-Voltage Lithium-Metal Batteries under Practical Conditions. Joule 2019, 3 (7) , 1662-1676. https://doi.org/10.1016/j.joule.2019.05.006
    54. Chunlian Wang, Yongchao Yu, Jiajia Niu, Yaxuan Liu, Denzel Bridges, Xianqiang Liu, Joshi Pooran, Yuefei Zhang, Anming Hu. Recent Progress of Metal–Air Batteries—A Mini Review. Applied Sciences 2019, 9 (14) , 2787. https://doi.org/10.3390/app9142787
    55. Yunsong Li, Yue Qi. Energy landscape of the charge transfer reaction at the complex Li/SEI/electrolyte interface. Energy & Environmental Science 2019, 12 (4) , 1286-1295. https://doi.org/10.1039/C8EE03586E
    56. Dingchang Lin, Yayuan Liu, Yanbin Li, Yuzhang Li, Allen Pei, Jin Xie, William Huang, Yi Cui. Fast galvanic lithium corrosion involving a Kirkendall-type mechanism. Nature Chemistry 2019, 11 (4) , 382-389. https://doi.org/10.1038/s41557-018-0203-8
    57. Xin Zhang, Q. Jane Wang, Katharine L. Harrison, Katherine Jungjohann, Brad L. Boyce, Scott A. Roberts, Peter M. Attia, Stephen J. Harris. Rethinking How External Pressure Can Suppress Dendrites in Lithium Metal Batteries. Journal of The Electrochemical Society 2019, 166 (15) , A3639-A3652. https://doi.org/10.1149/2.0701914jes
    58. Qian Sun, Kah Chun Lau, Dongsheng Geng, Xiangbo Meng. Atomic and Molecular Layer Deposition for Superior Lithium‐Sulfur Batteries: Strategies, Performance, and Mechanisms. Batteries & Supercaps 2018, 1 (2) , 41-68. https://doi.org/10.1002/batt.201800024
    59. Katherine Jungjohann, Katharine Harrison, Subrahmanyam Goriparti, William Mook, Andrew Leenheer, Kevin Zavadil. In-Situ S/TEM of Li-Ion Batteries: Lithium Metal and Sn Anode Interfacial Processes. Microscopy and Microanalysis 2018, 24 (S1) , 1484-1485. https://doi.org/10.1017/S1431927618007900

    ACS Nano

    Cite this: ACS Nano 2017, 11, 11, 11194–11205
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.7b05513
    Published November 7, 2017
    Copyright © 2017 American Chemical Society

    Article Views

    2908

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.