ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Magnetic Particle Imaging for Real-Time Perfusion Imaging in Acute Stroke

View Author Information
Department of Neurology, Section for Biomedical Imaging, §Department for Neuroradiological Diagnosis and Intervention, and Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
Institute for Biomedical Imaging, Hamburg University of Technology, 21071 Hamburg, Germany
# Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
LodeSpin Laboratories LLC, Seattle, Washington 98103, United States
Materials Science and Engineering Department, University of Washington, Seattle, Washington 98195, United States
Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
Department of Neurology and Neurosurgery, University of Warmia and Mazury, Olsztyn, Poland
*E-mail: [email protected]. Phone: +49 40741018800.
Cite this: ACS Nano 2017, 11, 10, 10480–10488
Publication Date (Web):October 4, 2017
https://doi.org/10.1021/acsnano.7b05784
Copyright © 2017 American Chemical Society

    Article Views

    3045

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)
    Supporting Info (3)»

    Abstract

    Abstract Image

    The fast and accurate assessment of cerebral perfusion is fundamental for the diagnosis and successful treatment of stroke patients. Magnetic particle imaging (MPI) is a new radiation-free tomographic imaging method with a superior temporal resolution, compared to other conventional imaging methods. In addition, MPI scanners can be built as prehospital mobile devices, which require less complex infrastructure than computed tomography (CT) and magnetic resonance imaging (MRI). With these advantages, MPI could accelerate the stroke diagnosis and treatment, thereby improving outcomes. Our objective was to investigate the capabilities of MPI to detect perfusion deficits in a murine model of ischemic stroke. Cerebral ischemia was induced by inserting of a microfilament in the internal carotid artery in C57BL/6 mice, thereby blocking the blood flow into the medial cerebral artery. After the injection of a contrast agent (superparamagnetic iron oxide nanoparticles) specifically tailored for MPI, cerebral perfusion and vascular anatomy were assessed by the MPI scanner within seconds. To validate and compare our MPI data, we performed perfusion imaging with a small animal MRI scanner. MPI detected the perfusion deficits in the ischemic brain, which were comparable to those with MRI but in real-time. For the first time, we showed that MPI could be used as a diagnostic tool for relevant diseases in vivo, such as an ischemic stroke. Due to its shorter image acquisition times and increased temporal resolution compared to that of MRI or CT, we expect that MPI offers the potential to improve stroke imaging and treatment.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.7b05784.

    • Averaged concentration–time curves from all animals; calculation of the perfusion parameters with the software tool AnToNIa; schematic representation of the MCAO model; equations used for MPI image reconstruction and the calculation of the perfusion parameter maps (PDF)

    • Video V1: Real-time MPI of the cerebral perfusion in healthy mice, showing the tracer bolus through the murine brain with the full temporal resolution of 47 fps (MPG)

    • Video V2: Real-time MPI of the cerebral perfusion in acute stroke, showing the tracer bolus through the murine brain after induction of MCAO with the full temporal resolution of 47 fps (MPG)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 119 publications.

    1. Emily M. Greeson, Cody S. Madsen, Ashley V. Makela, Christopher H. Contag. Magnetothermal Control of Temperature-Sensitive Repressors in Superparamagnetic Iron Nanoparticle-Coated Bacillus subtilis. ACS Nano 2022, 16 (10) , 16699-16712. https://doi.org/10.1021/acsnano.2c06239
    2. Masayori Suwa, Akira Uotani, Yuki Tojo, Reisho Onodera, Satoshi Tsukahara. Orientational Dynamics of Magnetic Iron Oxide Nanoparticles in a Hydrogel: Observation by Magnetic Linear Dichroism under Oscillating Field. Langmuir 2022, 38 (31) , 9708-9719. https://doi.org/10.1021/acs.langmuir.2c01593
    3. Ashley V. Makela, Melissa A. Schott, Cody S. Madsen, Emily M. Greeson, Christopher H. Contag. Magnetic Particle Imaging of Magnetotactic Bacteria as Living Contrast Agents Is Improved by Altering Magnetosome Arrangement. Nano Letters 2022, 22 (12) , 4630-4639. https://doi.org/10.1021/acs.nanolett.1c05042
    4. Hossein Etemadi, Jenna K. Buchanan, Nadia G. Kandile, Paul G. Plieger. Iron Oxide Nanoparticles: Physicochemical Characteristics and Historical Developments to Commercialization for Potential Technological Applications. ACS Biomaterials Science & Engineering 2021, 7 (12) , 5432-5450. https://doi.org/10.1021/acsbiomaterials.1c00938
    5. Meng Zhang, Zijun Wang, Caixia Wang, Yuting Wu, Zhen Li, Zhihong Liu. Visualizing Oxidative Stress Level for Timely Assessment of Ischemic Stroke via a Ratiometric Near-Infrared-II Luminescent Nanoprobe. ACS Nano 2021, 15 (7) , 11940-11952. https://doi.org/10.1021/acsnano.1c03117
    6. Staffan Hildebrand, Norbert Löwa, Hendrik Paysen, Raluca M. Fratila, Laia Reverte-Salisa, Thithawat Trakoolwilaiwan, Zheming Niu, Georgios Kasparis, Stephanie Franziska Preuss, Olaf Kosch, Jesus M. de la Fuente, Nguyen Thi Kim Thanh, Frank Wiekhorst, Alexander Pfeifer. Quantification of Lipoprotein Uptake in Vivo Using Magnetic Particle Imaging and Spectroscopy. ACS Nano 2021, 15 (1) , 434-446. https://doi.org/10.1021/acsnano.0c03229
    7. Patryk Szwargulski, Maximilian Wilmes, Ehsan Javidi, Florian Thieben, Matthias Graeser, Martin Koch, Cordula Gruettner, Gerhard Adam, Christian Gerloff, Tim Magnus, Tobias Knopp, Peter Ludewig. Monitoring Intracranial Cerebral Hemorrhage Using Multicontrast Real-Time Magnetic Particle Imaging. ACS Nano 2020, 14 (10) , 13913-13923. https://doi.org/10.1021/acsnano.0c06326
    8. Xingjun Zhu, Jianfeng Li, Peng Peng, Niloufar Hosseini Nassab, Bryan Ronain Smith. Quantitative Drug Release Monitoring in Tumors of Living Subjects by Magnetic Particle Imaging Nanocomposite. Nano Letters 2019, 19 (10) , 6725-6733. https://doi.org/10.1021/acs.nanolett.9b01202
    9. Guosheng Song, Xianchuang Zheng, Youjuan Wang, Xin Xia, Steven Chu, Jianghong Rao. A Magneto-Optical Nanoplatform for Multimodality Imaging of Tumors in Mice. ACS Nano 2019, 13 (7) , 7750-7758. https://doi.org/10.1021/acsnano.9b01436
    10. Yang Du, Xiaoli Liu, Qian Liang, Xing-Jie Liang, Jie Tian. Optimization and Design of Magnetic Ferrite Nanoparticles with Uniform Tumor Distribution for Highly Sensitive MRI/MPI Performance and Improved Magnetic Hyperthermia Therapy. Nano Letters 2019, 19 (6) , 3618-3626. https://doi.org/10.1021/acs.nanolett.9b00630
    11. Zhi Wei Tay, Prashant Chandrasekharan, Andreina Chiu-Lam, Daniel W. Hensley, Rohan Dhavalikar, Xinyi Y. Zhou, Elaine Y. Yu, Patrick W. Goodwill, Bo Zheng, Carlos Rinaldi, Steven M. Conolly. Magnetic Particle Imaging-Guided Heating in Vivo Using Gradient Fields for Arbitrary Localization of Magnetic Hyperthermia Therapy. ACS Nano 2018, 12 (4) , 3699-3713. https://doi.org/10.1021/acsnano.8b00893
    12. Xulin Xie, Jiao Zhai, Xiaoyu Zhou, Zhengjun Guo, Pui‐Chi Lo, Guangyu Zhu, Kannie W. Y. Chan, Mengsu Yang. Magnetic Particle Imaging: From Tracer Design to Biomedical Applications in Vasculature Abnormality. Advanced Materials 2023, 31 https://doi.org/10.1002/adma.202306450
    13. Siao Lei, Jie He, Pengli Gao, Yueqi Wang, Hui Hui, Yu An, Jie Tian. Magnetic Particle Imaging-Guided Hyperthermia for Precise Treatment of Cancer: Review, Challenges, and Prospects. Molecular Imaging and Biology 2023, 834 https://doi.org/10.1007/s11307-023-01856-z
    14. Andreas Wolf, Andreas Zink, Lisa M.S. Stiegler, Robert Branscheid, Benjamin Apeleo Zubiri, Stephan Müssig, Wolfgang Peukert, Johannes Walter, Erdmann Spiecker, Karl Mandel. Magnetic in situ determination of surface coordination motifs by utilizing the degree of particle agglomeration. Journal of Colloid and Interface Science 2023, 648 , 633-643. https://doi.org/10.1016/j.jcis.2023.05.182
    15. Hayden J. Good, Olivia C. Sehl, Julia J. Gevaert, Bo Yu, Maryam A. Berih, Sebastian A. Montero, Carlos M. Rinaldi-Ramos, Paula J. Foster. Inter-user Comparison for Quantification of Superparamagnetic Iron Oxides with Magnetic Particle Imaging Across Two Institutions Highlights a Need for Standardized Approaches. Molecular Imaging and Biology 2023, 25 (5) , 954-967. https://doi.org/10.1007/s11307-023-01829-2
    16. Fabian Mohn, Miriam Exner, Patryk Szwargulski, Martin Möddel, Tobias Knopp, Matthias Graeser. Saline bolus for negative contrast perfusion imaging in magnetic particle imaging. Physics in Medicine & Biology 2023, 68 (17) , 175026. https://doi.org/10.1088/1361-6560/ace309
    17. Erica E Mason, Eli Mattingly, Konstantin Herb, Stephen F Cauley, Monika Śliwiak, John M Drago, Matthias Graeser, Emiri T Mandeville, Joseph B Mandeville, Lawrence L Wald. Functional magnetic particle imaging (fMPI) of cerebrovascular changes in the rat brain during hypercapnia. Physics in Medicine & Biology 2023, 68 (17) , 175032. https://doi.org/10.1088/1361-6560/acecd1
    18. Prashant Chandrasekharan, Renesmee Kuo, K. L. Barry Fung, Chinmoy Saayujya, Jacob Bryan, Mariam Yousuf, Benjamin Fellows, Caylin Colson, Quincy Huynh, Owen Doyle, Allison Hartley, Khadija Yousuf, Patrick Goodwill, Steven Conolly, . Magnetic Particle Imaging in Vascular Imaging, Immunotherapy, Cell Tracking, and Noninvasive Diagnosis. Molecular Imaging 2023, 2023 , 1-22. https://doi.org/10.1155/2023/4131117
    19. Lin Yin, Hongbo Guo, Peng Zhang, Yimeng Li, Hui Hui, Yang Du, Jie Tian. System matrix recovery based on deep image prior in magnetic particle imaging. Physics in Medicine & Biology 2023, 68 (3) , 035006. https://doi.org/10.1088/1361-6560/acaf47
    20. Lu Tang, Cong Fu, Aining Zhang, Xiyue Li, Yuqi Cao, Jingwen Feng, Hening Liu, Haijuan Dong, Wei Wang. Harnessing nanobiotechnology for cerebral ischemic stroke management. Biomaterials Science 2023, 11 (3) , 791-812. https://doi.org/10.1039/D2BM01790C
    21. Eduarda P. Oliveira, Joana Silva-Correia, Rui L. Reis, Joaquim M. Oliveira. Encapsulation strategies for the treatment of CNS disorders. 2023, 721-747. https://doi.org/10.1016/B978-0-12-824345-9.00013-1
    22. Hui Xu, Shuang Li, You-Shuo Liu. Nanoparticles in the diagnosis and treatment of vascular aging and related diseases. Signal Transduction and Targeted Therapy 2022, 7 (1) https://doi.org/10.1038/s41392-022-01082-z
    23. Ilhan Bok, Ido Haber, Xiaofei Qu, Aviad Hai. In silico assessment of electrophysiological neuronal recordings mediated by magnetoelectric nanoparticles. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-12303-4
    24. Alper Gungor, Baris Askin, Damla Alptekin Soydan, Emine Ulku Saritas, Can Baris Top, Tolga Cukur. TranSMS: Transformers for Super-Resolution Calibration in Magnetic Particle Imaging. IEEE Transactions on Medical Imaging 2022, 41 (12) , 3562-3574. https://doi.org/10.1109/TMI.2022.3189693
    25. Susmita Chennareddy, Roshini Kalagara, Colton Smith, Stavros Matsoukas, Abhiraj Bhimani, John Liang, Steven Shapiro, Reade De Leacy, Maxim Mokin, Johanna T. Fifi, J Mocco, Christopher P. Kellner. Portable stroke detection devices: a systematic scoping review of prehospital applications. BMC Emergency Medicine 2022, 22 (1) https://doi.org/10.1186/s12873-022-00663-z
    26. Roger M. Pallares, Felix M. Mottaghy, Volkmar Schulz, Fabian Kiessling, Twan Lammers. Nanoparticle Diagnostics and Theranostics in the Clinic. Journal of Nuclear Medicine 2022, 63 (12) , 1802-1808. https://doi.org/10.2967/jnumed.122.263895
    27. H. T. Kim Duong, Ashkan Abdibastami, Lucy Gloag, Liam Barrera, J. Justin Gooding, Richard D. Tilley. A guide to the design of magnetic particle imaging tracers for biomedical applications. Nanoscale 2022, 14 (38) , 13890-13914. https://doi.org/10.1039/D2NR01897G
    28. Cristina de la Encarnación, Dorleta Jimenez de Aberasturi, Luis M. Liz-Marzán. Multifunctional plasmonic-magnetic nanoparticles for bioimaging and hyperthermia. Advanced Drug Delivery Reviews 2022, 189 , 114484. https://doi.org/10.1016/j.addr.2022.114484
    29. Tao Jiang, Wentong Yi, Zhongzhou Du, Wenzhong Liu. An improved point spread function for complex susceptibility-based magnetic particle imaging. Measurement Science and Technology 2022, 33 (9) , 095402. https://doi.org/10.1088/1361-6501/ac72fc
    30. Masoumeh Kalantari Khandani, Azadeh Vosoughi. A Review of Enabling Technologies for Magnetic Particle Imaging. 2022, 1-5. https://doi.org/10.1109/MWSCAS54063.2022.9859431
    31. Sebastien Bar, Oliver Buchholz, Dominik Von Elverfeldt, Ulrich G. Hofmann. Adaptive Micro-liter Fiducials for Pre-clinical MPI and MRI Imaging. 2022, 2190-2193. https://doi.org/10.1109/EMBC48229.2022.9871102
    32. Fabian Mohn, Tobias Knopp, Marija Boberg, Florian Thieben, Patryk Szwargulski, Matthias Graeser. System Matrix Based Reconstruction for Pulsed Sequences in Magnetic Particle Imaging. IEEE Transactions on Medical Imaging 2022, 41 (7) , 1862-1873. https://doi.org/10.1109/TMI.2022.3149583
    33. Xue Yang, Guoqing Shao, Yanyan Zhang, Wei Wang, Yu Qi, Shuai Han, Hongjun Li. Applications of Magnetic Particle Imaging in Biomedicine: Advancements and Prospects. Frontiers in Physiology 2022, 13 https://doi.org/10.3389/fphys.2022.898426
    34. Dennis Pantke, Florian Mueller, Sebastian Reinartz, Jonas Philipps, Seyed Mohammadali Dadfar, Maximilian Peters, Jochen Franke, Franziska Schrank, Fabian Kiessling, Volkmar Schulz. Frequency-selective signal enhancement by a passive dual coil resonator for magnetic particle imaging. Physics in Medicine & Biology 2022, 67 (11) , 115004. https://doi.org/10.1088/1361-6560/ac6a9f
    35. Matthias Gräser, Franz Wegner, Jonas Schumacher, Mandy Ahlborg, Ksenija Gräfe, Eric Aderhold, Yvonne Blancke Soares, Kerstin Lüdtke-Buzug, Alexander Neumann, Pascal Stagge, Huimin Wei, Justin Ackers, Thorsten M. Buzug. „Magnetic particle imaging“. Die Radiologie 2022, 62 (6) , 496-503. https://doi.org/10.1007/s00117-022-01011-9
    36. Ehsanul Hoque Apu, Md Nafiujjaman, Srikumar Sandeep, Ashley V. Makela, Ali Khaleghi, Seppo Vainio, Christopher H. Contag, Jinxing Li, Ilangko Balasingham, Taeho Kim, Nureddin Ashammakhi. Biomedical applications of multifunctional magnetoelectric nanoparticles. Materials Chemistry Frontiers 2022, 6 (11) , 1368-1390. https://doi.org/10.1039/D2QM00093H
    37. A. Coene, J. Leliaert. Magnetic nanoparticles in theranostic applications. Journal of Applied Physics 2022, 131 (16) https://doi.org/10.1063/5.0085202
    38. C Brandt, C Schmidt. Motion compensation for non-periodic dynamic tracer distributions in multi-patch magnetic particle imaging. Physics in Medicine & Biology 2022, 67 (8) , 085005. https://doi.org/10.1088/1361-6560/ac5ce6
    39. Stanley Harvell-Smith, Le Duc Tung, Nguyen Thi Kim Thanh. Magnetic particle imaging: tracer development and the biomedical applications of a radiation-free, sensitive, and quantitative imaging modality. Nanoscale 2022, 14 (10) , 3658-3697. https://doi.org/10.1039/D1NR05670K
    40. Peter Ludewig, Matthias Graeser, Nils D. Forkert, Florian Thieben, Javier Rández‐Garbayo, Johanna Rieckhoff, Katrin Lessmann, Fynn Förger, Patryk Szwargulski, Tim Magnus, Tobias Knopp. Magnetic particle imaging for assessment of cerebral perfusion and ischemia. WIREs Nanomedicine and Nanobiotechnology 2022, 14 (1) https://doi.org/10.1002/wnan.1757
    41. Mohammad Imran, Ajay Kumar, Akshay Vyawahare, Puspita Saha, Anas Ahmad, Md. Meraj Ansari, Rakesh Kumar Mishra, Aneesh Ali, Abdul Quaiyoom Khan, Rehan Khan. Nanotechnology: A Daydream for Advanced Imaging, Diagnosis, and Therapeutic Approach for Cerebral Ischemia. 2022, 53-83. https://doi.org/10.1007/978-981-16-8562-0_3
    42. Jochen Franke, Jorge Chacon-Caldera. Magnetic particle imaging. 2022, 339-393. https://doi.org/10.1016/B978-0-12-822532-5.00015-7
    43. Antonella Antonelli, Mauro Magnani. SPIO nanoparticles and magnetic erythrocytes as contrast agents for biomedical and diagnostic applications. Journal of Magnetism and Magnetic Materials 2022, 541 , 168520. https://doi.org/10.1016/j.jmmm.2021.168520
    44. Hui Du, Ozioma Udochukwu Akakuru, Chenyang Yao, Fang Yang, Aiguo Wu. Transition metal ion-doped ferrites nanoparticles for bioimaging and cancer therapy. Translational Oncology 2022, 15 (1) , 101264. https://doi.org/10.1016/j.tranon.2021.101264
    45. Chan Kim, Jiyun Nan, Jayoung Kim, Jong-Oh Park, Chang-Sei Kim. Open-Structure Magnetic Particle Spectroscopy (OMPS): Feasibility Study. IEEE Magnetics Letters 2022, 13 , 1-5. https://doi.org/10.1109/LMAG.2022.3142720
    46. Christina Brandt, Christiane Schmidt. Modeling Magnetic Particle Imaging for Dynamic Tracer Distributions. Sensing and Imaging 2021, 22 (1) https://doi.org/10.1007/s11220-021-00368-w
    47. Erica E. Mason, Eli Mattingly, Konstantin Herb, Monika Śliwiak, Sofia Franconi, Clarissa Zimmerman Cooley, Priscilla J. Slanetz, Lawrence L. Wald. Concept for using magnetic particle imaging for intraoperative margin analysis in breast-conserving surgery. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-92644-8
    48. Anna C. Bakenecker, Anselm von Gladiss, Hannes Schwenke, André Behrends, Thomas Friedrich, Kerstin Lüdtke-Buzug, Alexander Neumann, Joerg Barkhausen, Franz Wegner, Thorsten M. Buzug. Navigation of a magnetic micro-robot through a cerebral aneurysm phantom with magnetic particle imaging. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-93323-4
    49. Tobias Knopp, Mirco Grosser, Matthias Graeser, Timo Gerkmann, Martin Moddel. Efficient Joint Estimation of Tracer Distribution and Background Signals in Magnetic Particle Imaging Using a Dictionary Approach. IEEE Transactions on Medical Imaging 2021, 40 (12) , 3568-3579. https://doi.org/10.1109/TMI.2021.3090928
    50. Zhi Wei Tay, Shehaab Savliwala, Daniel W. Hensley, K.L. Barry Fung, Caylin Colson, Benjamin D. Fellows, Xinyi Zhou, Quincy Huynh, Yao Lu, Bo Zheng, Prashant Chandrasekharan, Sindia M. Rivera‐Jimenez, Carlos M. Rinaldi‐Ramos, Steven M. Conolly. Superferromagnetic Nanoparticles Enable Order‐of‐Magnitude Resolution & Sensitivity Gain in Magnetic Particle Imaging. Small Methods 2021, 5 (11) https://doi.org/10.1002/smtd.202100796
    51. Neeharika Senthilkumar, Preetam Kumar Sharma, Neeru Sood, Nikhil Bhalla. Designing magnetic nanoparticles for in vivo applications and understanding their fate inside human body. Coordination Chemistry Reviews 2021, 445 , 214082. https://doi.org/10.1016/j.ccr.2021.214082
    52. Ashley V. Makela, Jeffrey M. Gaudet, Donna H. Murrell, James R. Mansfield, Max Wintermark, Christopher H. Contag. Mind Over Magnets – How Magnetic Particle Imaging is Changing the Way We Think About the Future of Neuroscience. Neuroscience 2021, 474 , 100-109. https://doi.org/10.1016/j.neuroscience.2020.10.036
    53. Lena Zdun, Christina Brandt. Fast MPI reconstruction with non-smooth priors by stochastic optimization and data-driven splitting. Physics in Medicine & Biology 2021, 66 (17) , 175004. https://doi.org/10.1088/1361-6560/ac176c
    54. Suko Bagus Trisnanto, Tamon Kasajima, Taiju Akushichi, Yasushi Takemura. Magnetic particle imaging using linear magnetization response-driven harmonic signal of magnetoresistive sensor. Applied Physics Express 2021, 14 (9) , 095001. https://doi.org/10.35848/1882-0786/ac1d63
    55. M. Herzberg, F. Dorn, P. Dietrich, M.A. Rückert, T. Kampf, T.A. Bley, V.C. Behr, S. Herz, P. Vogel. Magnetic particle imaging for artifact-free imaging of intracranial flow diverter stents: A phantom study. Physica Medica 2021, 88 , 65-70. https://doi.org/10.1016/j.ejmp.2021.06.018
    56. Chang Lu, Linbo Han, Joanna Wang, Jiacheng Wan, Guosheng Song, Jianghong Rao. Engineering of magnetic nanoparticles as magnetic particle imaging tracers. Chemical Society Reviews 2021, 50 (14) , 8102-8146. https://doi.org/10.1039/D0CS00260G
    57. Caroline Billings, Mitchell Langley, Gavin Warrington, Farzin Mashali, Jacqueline Anne Johnson. Magnetic Particle Imaging: Current and Future Applications, Magnetic Nanoparticle Synthesis Methods and Safety Measures. International Journal of Molecular Sciences 2021, 22 (14) , 7651. https://doi.org/10.3390/ijms22147651
    58. Nabid Ahmed, Dheeraj Gandhi, Elias R. Melhem, Victor Frenkel. MRI Guided Focused Ultrasound-Mediated Delivery of Therapeutic Cells to the Brain: A Review of the State-of-the-Art Methodology and Future Applications. Frontiers in Neurology 2021, 12 https://doi.org/10.3389/fneur.2021.669449
    59. Angelie Rivera-Rodriguez, Carlos M. Rinaldi-Ramos. Emerging Biomedical Applications Based on the Response of Magnetic Nanoparticles to Time-Varying Magnetic Fields. Annual Review of Chemical and Biomolecular Engineering 2021, 12 (1) , 163-185. https://doi.org/10.1146/annurev-chembioeng-102720-015630
    60. Carolyn Shasha, Kannan M. Krishnan. Nonequilibrium Dynamics of Magnetic Nanoparticles with Applications in Biomedicine. Advanced Materials 2021, 33 (23) https://doi.org/10.1002/adma.201904131
    61. Muzahidul I. Anik, M. Khalid Hossain, Imran Hossain, A. M. U. B. Mahfuz, M. Tayebur Rahman, Isteaque Ahmed. Recent progress of magnetic nanoparticles in biomedical applications: A review. Nano Select 2021, 2 (6) , 1146-1186. https://doi.org/10.1002/nano.202000162
    62. Harald Kratz, Azadeh Mohtashamdolatshahi, Dietmar Eberbeck, Olaf Kosch, Frank Wiekhorst, Matthias Taupitz, Bernd Hamm, Nicola Stolzenburg, Jörg Schnorr. Tailored Magnetic Multicore Nanoparticles for Use as Blood Pool MPI Tracers. Nanomaterials 2021, 11 (6) , 1532. https://doi.org/10.3390/nano11061532
    63. Marija Boberg, Nadine Gdaniec, Patryk Szwargulski, Franziska Werner, Martin Möddel, Tobias Knopp. Simultaneous imaging of widely differing particle concentrations in MPI: problem statement and algorithmic proposal for improvement. Physics in Medicine & Biology 2021, 66 (9) , 095004. https://doi.org/10.1088/1361-6560/abf202
    64. Maria Monteserín, Silvia Larumbe, Alejandro V. Martínez, Saioa Burgui, L. Francisco Martín. Recent Advances in the Development of Magnetic Nanoparticles for Biomedical Applications. Journal of Nanoscience and Nanotechnology 2021, 21 (5) , 2705-2741. https://doi.org/10.1166/jnn.2021.19062
    65. Tobias Knopp, Mirco Grosser, Matthias Graeser, Timo Gerkmann, Martin MOddel. Dictionary-Based Background Signal Estimation For Magnetic Particle Imaging. 2021, 1540-1543. https://doi.org/10.1109/ISBI48211.2021.9434048
    66. Augustas Karpavičius, Annelies Coene, Philipp Bender, Jonathan Leliaert. Advanced analysis of magnetic nanoflower measurements to leverage their use in biomedicine. Nanoscale Advances 2021, 3 (6) , 1633-1645. https://doi.org/10.1039/D0NA00966K
    67. Nady Braidy, Wei Wen, Andre Bongers, Perminder S. Sachdev. Applications of magnetic particle imaging in the dementias. Current Opinion in Psychiatry 2021, 34 (2) , 186-192. https://doi.org/10.1097/YCO.0000000000000668
    68. Ana F. Almeida, Adriana Vinhas, Ana I. Gonçalves, Margarida S. Miranda, Márcia T. Rodrigues, Manuela E. Gomes. Magnetic triggers in biomedical applications – prospects for contact free cell sensing and guidance. Journal of Materials Chemistry B 2021, 9 (5) , 1259-1271. https://doi.org/10.1039/D0TB02474K
    69. Xun Zhang, Jie Zhou, Zhongwei Gu, Hu Zhang, Qiyong Gong, Kui Luo. Advances in nanomedicines for diagnosis of central nervous system disorders. Biomaterials 2021, 269 , 120492. https://doi.org/10.1016/j.biomaterials.2020.120492
    70. Johannes Boltze, Jaroslaw A. Aronowski, Jerome Badaut, Marion S. Buckwalter, Mateo Caleo, Michael Chopp, Kunjan R. Dave, Nadine Didwischus, Rick M. Dijkhuizen, Thorsten R. Doeppner, Jens P. Dreier, Karim Fouad, Mathias Gelderblom, Karen Gertz, Dominika Golubczyk, Barbara A. Gregson, Edith Hamel, Daniel F. Hanley, Wolfgang Härtig, Friedhelm C. Hummel, Maulana Ikhsan, Miroslaw Janowski, Jukka Jolkkonen, Saravanan S. Karuppagounder, Richard F. Keep, Inga K. Koerte, Zaal Kokaia, Peiying Li, Fudong Liu, Ignacio Lizasoain, Peter Ludewig, Gerlinde A. S. Metz, Axel Montagne, Andre Obenaus, Alex Palumbo, Monica Pearl, Miguel Perez-Pinzon, Anna M. Planas, Nikolaus Plesnila, Ami P. Raval, Maria A. Rueger, Lauren H. Sansing, Farida Sohrabji, Charlotte J. Stagg, R. Anne Stetler, Ann M. Stowe, Dandan Sun, Akihiko Taguchi, Mickael Tanter, Sabine U. Vay, Raghu Vemuganti, Denis Vivien, Piotr Walczak, Jian Wang, Ye Xiong, Marietta Zille. New Mechanistic Insights, Novel Treatment Paradigms, and Clinical Progress in Cerebrovascular Diseases. Frontiers in Aging Neuroscience 2021, 13 https://doi.org/10.3389/fnagi.2021.623751
    71. Prashant Chandrasekharan, Zhi Wei Tay, Xinyi Y. Zhou, Elaine Y. Yu, Barry K.L. Fung, Caylin Colson, Benjamin D. Fellows, Yao Lu, Quincy Huynh, Chinmoy Saayujya, Paul Keselman, Daniel Hensley, Kuan Lu, Ryan Orendorff, Justin Konkle, Emine Ulku Saritas, Bo Zheng, Patrick Goodwill, Steven Conolly. Magnetic Particle Imaging for Vascular, Cellular and Molecular Imaging. 2021, 265-282. https://doi.org/10.1016/B978-0-12-816386-3.00015-6
    72. Muzahidul I. Anik, M. Khalid Hossain, Imran Hossain, Isteaque Ahmed, Rashed M. Doha. Biomedical applications of magnetic nanoparticles. 2021, 463-497. https://doi.org/10.1016/B978-0-12-823688-8.00002-8
    73. Yao Lu, Angelie Rivera-Rodriguez, Zhi Wei Tay, Daniel Hensley, K.L. Barry Fung, Caylin Colson, Chinmoy Saayujya, Quincy Huynh, Leyla Kabuli, Benjamin Fellows, Prashant Chandrasekharan, Carlos Rinaldi, Steven Conolly. Combining magnetic particle imaging and magnetic fluid hyperthermia for localized and image-guided treatment. International Journal of Hyperthermia 2020, 37 (3) , 141-154. https://doi.org/10.1080/02656736.2020.1853252
    74. Matthias Graeser, Peter Ludewig, Patryk Szwargulski, Fynn Foerger, Tom Liebing, Nils D Forkert, Florian Thieben, Tim Magnus, Tobias Knopp. Design of a head coil for high resolution mouse brain perfusion imaging using magnetic particle imaging. Physics in Medicine & Biology 2020, 65 (23) , 235007. https://doi.org/10.1088/1361-6560/abc09e
    75. J. Salamon, J. Dieckhoff, M. G. Kaul, C. Jung, G. Adam, M. Möddel, T. Knopp, S. Draack, F. Ludwig, H. Ittrich. Visualization of spatial and temporal temperature distributions with magnetic particle imaging for liver tumor ablation therapy. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-64280-1
    76. Suko Bagus Trisnanto, Yasushi Takemura. High-Frequency Néel Relaxation Response for Submillimeter Magnetic Particle Imaging Under Low Field Gradient. Physical Review Applied 2020, 14 (6) https://doi.org/10.1103/PhysRevApplied.14.064065
    77. Can Baris Top, Alper Gungor. Tomographic Field Free Line Magnetic Particle Imaging With an Open-Sided Scanner Configuration. IEEE Transactions on Medical Imaging 2020, 39 (12) , 4164-4173. https://doi.org/10.1109/TMI.2020.3014197
    78. Jochen Franke, Nicoleta Baxan, Heinrich Lehr, Ulrich Heinen, Sebastian Reinartz, Jorg Schnorr, Michael Heidenreich, Fabian Kiessling, Volkmar Schulz. Hybrid MPI-MRI System for Dual-Modal In Situ Cardiovascular Assessments of Real-Time 3D Blood Flow Quantification—A Pre-Clinical In Vivo Feasibility Investigation. IEEE Transactions on Medical Imaging 2020, 39 (12) , 4335-4345. https://doi.org/10.1109/TMI.2020.3017160
    79. Hannah A Lumley, Darren Flynn, Lisa Shaw, Graham McClelland, Gary A Ford, Phil M White, Christopher I Price. A scoping review of pre-hospital technology to assist ambulance personnel with patient diagnosis or stratification during the emergency assessment of suspected stroke. BMC Emergency Medicine 2020, 20 (1) https://doi.org/10.1186/s12873-020-00323-0
    80. Hossein Etemadi, Paul G. Plieger. Magnetic Fluid Hyperthermia Based on Magnetic Nanoparticles: Physical Characteristics, Historical Perspective, Clinical Trials, Technological Challenges, and Recent Advances. Advanced Therapeutics 2020, 3 (11) https://doi.org/10.1002/adtp.202000061
    81. Nadine Gdaniec, Marija Boberg, Martin Moddel, Patryk Szwargulski, Tobias Knopp. Suppression of Motion Artifacts Caused by Temporally Recurring Tracer Distributions in Multi-Patch Magnetic Particle Imaging. IEEE Transactions on Medical Imaging 2020, 39 (11) , 3548-3558. https://doi.org/10.1109/TMI.2020.2998910
    82. Xin Liang, Kun Wang, Jiangfeng Du, Jie Tian, Hui Zhang. The first visualization of chemotherapy-induced tumor apoptosis via magnetic particle imaging in a mouse model. Physics in Medicine & Biology 2020, 65 (19) , 195004. https://doi.org/10.1088/1361-6560/abad7c
    83. Xiao Han, Yang Li, Weifeng Liu, Xiaojun Chen, Zeyu Song, Xiaolin Wang, Yulin Deng, Xiaoying Tang, Zhenqi Jiang. The Applications of Magnetic Particle Imaging: From Cell to Body. Diagnostics 2020, 10 (10) , 800. https://doi.org/10.3390/diagnostics10100800
    84. James Wells, Shailey Twamley, Aparna Sekar, Antje Ludwig, Hendrik Paysen, Olaf Kosch, Frank Wiekhorst. Lissajous scanning magnetic particle imaging as a multifunctional platform for magnetic hyperthermia therapy. Nanoscale 2020, 12 (35) , 18342-18355. https://doi.org/10.1039/D0NR00604A
    85. Christos Tapeinos, Matteo Battaglini, Attilio Marino, Gianni Ciofani. Smart diagnostic nano-agents for cerebral ischemia. Journal of Materials Chemistry B 2020, 8 (29) , 6233-6251. https://doi.org/10.1039/D0TB00260G
    86. Teruyoshi Sasayama, Takashi Yoshida, Keiji Enpuku. Two-dimensional magnetic nanoparticle imaging using multiple magnetic sensors based on amplitude modulation. Journal of Magnetism and Magnetic Materials 2020, 505 , 166765. https://doi.org/10.1016/j.jmmm.2020.166765
    87. Nazanin Talebloo, Mithil Gudi, Neil Robertson, Ping Wang. Magnetic Particle Imaging: Current Applications in Biomedical Research. Journal of Magnetic Resonance Imaging 2020, 51 (6) , 1659-1668. https://doi.org/10.1002/jmri.26875
    88. André Gonçalves Próspero, Guilherme Augusto Soares, Gustavo Morlin Moretto, Caio C. Quini, Andris Figueiroa Bakuzis, José Ricardo de Arruda Miranda. Dynamic cerebral perfusion parameters and magnetic nanoparticle accumulation assessed by AC biosusceptometry. Biomedical Engineering / Biomedizinische Technik 2020, 65 (3) , 343-351. https://doi.org/10.1515/bmt-2019-0089
    89. Marija Boberg, Tobias Knopp, Patryk Szwargulski, Martin Moddel. Generalized MPI Multi-Patch Reconstruction Using Clusters of Similar System Matrices. IEEE Transactions on Medical Imaging 2020, 39 (5) , 1347-1358. https://doi.org/10.1109/TMI.2019.2949171
    90. Zhi Wei Tay, Daniel W. Hensley, Prashant Chandrasekharan, Bo Zheng, Steven M. Conolly. Optimization of Drive Parameters for Resolution, Sensitivity and Safety in Magnetic Particle Imaging. IEEE Transactions on Medical Imaging 2020, 39 (5) , 1724-1734. https://doi.org/10.1109/TMI.2019.2957041
    91. Jinqi Li, Jizheng Sun, Tongsheng Chen, Xinlei Li. Towards a better understanding of the effects of the magnetic nanoparticles size and magnetic field on cellular endocytosis. Journal of Physics D: Applied Physics 2020, 53 (17) , 175401. https://doi.org/10.1088/1361-6463/ab6fcc
    92. Antonella Antonelli, Patryk Szwargulski, Emanuele-Salvatore Scarpa, Florian Thieben, Grüttner Cordula, Gianluca Ambrosi, Loretta Guidi, Peter Ludewig, Tobias Knopp, Mauro Magnani. Development of long circulating magnetic particle imaging tracers: use of novel magnetic nanoparticles and entrapment into human erythrocytes. Nanomedicine 2020, 15 (8) , 739-753. https://doi.org/10.2217/nnm-2019-0449
    93. Lucy Gloag, Milad Mehdipour, Marina Ulanova, Kevin Mariandry, Muhammad Azrhy Nichol, Daniela J. Hernández-Castillo, Jeff Gaudet, Ruirui Qiao, Ji Zhang, Melanie Nelson, Benjamin Thierry, Mayra A. Alvarez-Lemus, Thiam T. Tan, J. Justin Gooding, Nady Braidy, Perminder S. Sachdev, Richard D. Tilley. Zero valent iron core–iron oxide shell nanoparticles as small magnetic particle imaging tracers. Chemical Communications 2020, 56 (24) , 3504-3507. https://doi.org/10.1039/C9CC08972A
    94. Guosheng Song, Michael Kenney, Yun-Sheng Chen, Xianchuang Zheng, Yong Deng, Zhuo Chen, Shan X. Wang, Sanjiv Sam Gambhir, Hongjie Dai, Jianghong Rao. Carbon-coated FeCo nanoparticles as sensitive magnetic-particle-imaging tracers with photothermal and magnetothermal properties. Nature Biomedical Engineering 2020, 4 (3) , 325-334. https://doi.org/10.1038/s41551-019-0506-0
    95. Christos Tapeinos, Aitor Larrañaga, Francesca Tomatis, Joëlle Bizeau, Attilio Marino, Matteo Battaglini, Abhay Pandit, Gianni Ciofani. Advanced Functional Materials and Cell‐Based Therapies for the Treatment of Ischemic Stroke and Postischemic Stroke Effects. Advanced Functional Materials 2020, 30 (1) https://doi.org/10.1002/adfm.201906283
    96. G.M. Lekha, Sony George. Colloidal magnetic metal oxide nanocrystals and their applications. 2020, 289-335. https://doi.org/10.1016/B978-0-12-813357-6.00013-9
    97. Qiong Wu, Rong Yan, Jingjing Sun. Probing the drug delivery strategies in ischemic stroke therapy. Drug Delivery 2020, 27 (1) , 1644-1655. https://doi.org/10.1080/10717544.2020.1850918
    98. Mirco Grosser, Martin Moddel, Tobias Knopp. Using Low-Rank Tensors for the Recovery of MPI System Matrices. IEEE Transactions on Computational Imaging 2020, 6 , 1389-1402. https://doi.org/10.1109/TCI.2020.3024078
    99. Zhongzhou Du, Yi Sun, Oji Higashi, Yuki Noguchi, Keiji Enpuku, Sebastian Draack, Klaas-Julian Janssen, Tamara Kahmann, Jing Zhong, Thilo Viereck, Frank Ludwig, Takashi Yoshida. Effect of core size distribution on magnetic nanoparticle harmonics for thermometry. Japanese Journal of Applied Physics 2020, 59 (1) , 010904. https://doi.org/10.7567/1347-4065/ab5c9b
    100. Kai Wu, Diqing Su, Jinming Liu, Renata Saha, Jian-Ping Wang. Magnetic nanoparticles in nanomedicine: a review of recent advances. Nanotechnology 2019, 30 (50) , 502003. https://doi.org/10.1088/1361-6528/ab4241
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect