ACS Publications. Most Trusted. Most Cited. Most Read
Direct and Indirect Interlayer Excitons in a van der Waals Heterostructure of hBN/WS2/MoS2/hBN
My Activity
    Article

    Direct and Indirect Interlayer Excitons in a van der Waals Heterostructure of hBN/WS2/MoS2/hBN
    Click to copy article linkArticle link copied!

    • Mitsuhiro Okada
      Mitsuhiro Okada
      Department of Chemistry, Nagoya University, Nagoya 464-8602, Japan
    • Alex Kutana
      Alex Kutana
      Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
      More by Alex Kutana
    • Yusuke Kureishi
      Yusuke Kureishi
      Department of Chemistry, Nagoya University, Nagoya 464-8602, Japan
    • Yu Kobayashi
      Yu Kobayashi
      Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
      More by Yu Kobayashi
    • Yuika Saito
      Yuika Saito
      Department of Chemistry, Gakushuin University, Tokyo 171-0031, Japan
      More by Yuika Saito
    • Tetsuki Saito
      Tetsuki Saito
      Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
    • Kenji Watanabe
      Kenji Watanabe
      National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
    • Takashi Taniguchi
      Takashi Taniguchi
      National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
    • Sunny Gupta
      Sunny Gupta
      Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
      More by Sunny Gupta
    • Yasumitsu Miyata
      Yasumitsu Miyata
      Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
    • Boris I. Yakobson
      Boris I. Yakobson
      Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
    • Hisanori Shinohara*
      Hisanori Shinohara
      Department of Chemistry, Nagoya University, Nagoya 464-8602, Japan
      *E-mail: [email protected]
    • Ryo Kitaura*
      Ryo Kitaura
      Department of Chemistry, Nagoya University, Nagoya 464-8602, Japan
      *E-mail: [email protected]
      More by Ryo Kitaura
    Other Access OptionsSupporting Information (1)

    ACS Nano

    Cite this: ACS Nano 2018, 12, 3, 2498–2505
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.7b08253
    Published February 26, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A van der Waals (vdW) heterostructure composed of multivalley systems can show excitonic optical responses from interlayer excitons that originate from several valleys in the electronic structure. In this work, we studied photoluminescence (PL) from a vdW heterostructure, WS2/MoS2, deposited on hexagonal boron nitride (hBN) flakes. PL spectra from the fabricated heterostructures observed at room temperature show PL peaks at 1.3–1.7 eV, which are absent in the PL spectra of WS2 or MoS2 monolayers alone. The low-energy PL peaks we observed can be decomposed into three distinct peaks. Through detailed PL measurements and theoretical analysis, including PL imaging, time-resolved PL measurements, and calculation of dielectric function ε(ω) by solving the Bethe–Salpeter equation with G0W0, we concluded that the three PL peaks originate from direct K–K interlayer excitons, indirect Q−Γ interlayer excitons, and indirect K−Γ interlayer excitons.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.7b08253.

    • Characterization of CVD-grown monolayer WS2 and MoS2, low-frequency Raman spectrum of hBN/WS2/MoS2/hBN, characterization of CVD-grown WS2/MoS2/hBN, statistics on the peak position of the low-energy PL peaks, PL spectra of hBN/WS2/MoS2/hBN with different stacking angle, details on the determination of the diffusion constant, excitation power dependence of the low-energy PL peaks, DFT calculation of transition energies of WS2/MoS2, another example of time-resolved PL intensity of hBN/WS2/MoS2/hBN, and a PL spectrum from intralayer excitons at low temperature (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 114 publications.

    1. Sunny Gupta, Jun-Jie Zhang, Jincheng Lei, Henry Yu, Mingjie Liu, Xiaolong Zou, Boris I. Yakobson. Two-Dimensional Transition Metal Dichalcogenides: A Theory and Simulation Perspective. Chemical Reviews 2025, 125 (2) , 786-834. https://doi.org/10.1021/acs.chemrev.4c00628
    2. Chao Zhang, Kai Wu, Lu Gan, Xiaoyi Liu, Cheng Zhang, Shaolong Wu, Xiaoming Yuan, Linglong Zhang, Jinyang Xi, Jiong Yang, Xiaofeng Li. Momentum-Direct Infrared Interlayer Exciton and Photodetection in Multilayer van der Waals Heterostructures. ACS Nano 2024, 18 (49) , 33520-33530. https://doi.org/10.1021/acsnano.4c11195
    3. Saroj Poudyal, Mrinal Deka, Priyo Adhikary, Ranju D, Prahalad Kanti Barman, Renu Yadav, Bubunu Biswal, Ramesh Rajarapu, Shantanu Mukherjee, Birabar Ranjit Kumar Nanda, Akshay Singh, Abhishek Misra. Room Temperature, Twist Angle Independent, Momentum Direct Interlayer Excitons in van der Waals Heterostructures with Wide Spectral Tunability. Nano Letters 2024, 24 (31) , 9575-9582. https://doi.org/10.1021/acs.nanolett.4c02180
    4. Amandeep Kaur, Simran Arora, Subhabrata Dhar. Spatially Indirect Excitons in GaN–ZnO Heterostructures with Long and Electrically Controllable Lifetime. ACS Applied Optical Materials 2024, 2 (4) , 549-555. https://doi.org/10.1021/acsaom.3c00466
    5. Xixi Huang, Siwei Luo, Gencai Guo, Jibo Zhang, Long Ren, Qiong Chen, Jianxin Zhong, Xiang Qi. Angle-Dependent Oscillatory Interlayer Coupling in Twisted MoS2/TaSe2 Heterostructure. The Journal of Physical Chemistry C 2024, 128 (8) , 3393-3399. https://doi.org/10.1021/acs.jpcc.3c08154
    6. Xueqian Sun, Manuka Suriyage, Ahmed Raza Khan, Mingyuan Gao, Jie Zhao, Boqing Liu, Md Mehedi Hasan, Sharidya Rahman, Ruo-si Chen, Ping Koy Lam, Yuerui Lu. Twisted van der Waals Quantum Materials: Fundamentals, Tunability, and Applications. Chemical Reviews 2024, 124 (4) , 1992-2079. https://doi.org/10.1021/acs.chemrev.3c00627
    7. Huan Zhao, Linghan Zhu, Xiangzhi Li, Vigneshwaran Chandrasekaran, Jon Kevin Baldwin, Michael T. Pettes, Andrei Piryatinski, Li Yang, Han Htoon. Manipulating Interlayer Excitons for Near-Infrared Quantum Light Generation. Nano Letters 2023, 23 (23) , 11006-11012. https://doi.org/10.1021/acs.nanolett.3c03296
    8. Chenkai Li, Wenjing Cheng, Xinyu Zhang, Peijie Zhang, Qunfei Zheng, Zhipeng Yan, Jun Han, Guangyang Dai, Shanmin Wang, Zewei Quan, Ying Liu, Jinlong Zhu. Tuning of Interlayer Interaction in MoS2–WS2 van der Waals Heterostructures Using Hydrostatic Pressure. The Journal of Physical Chemistry C 2023, 127 (16) , 7784-7791. https://doi.org/10.1021/acs.jpcc.3c01428
    9. Ekaterina Khestanova, Tatyana Ivanova, Roland Gillen, Alessandro D’Elia, Oliver Nicholas Gallego Lacey, Lena Wysocki, Alexander Grüneis, Vasily Kravtsov, Wlodek Strupinski, Janina Maultzsch, Viktor Kandyba, Mattia Cattelan, Alexei Barinov, José Avila, Pavel Dudin, Boris V. Senkovskiy. Robustness of Momentum-Indirect Interlayer Excitons in MoS2/WSe2 Heterostructure against Charge Carrier Doping. ACS Photonics 2023, 10 (4) , 1159-1168. https://doi.org/10.1021/acsphotonics.2c01930
    10. Nagendra Bala Murali Athreya, Mingye Xiong, Rajat Chakraborty, Henry T. Crawford-Eng, Jean-Pierre Leburton. Molecular Dynamics and Electrical Modeling of Multi-Layered Nanopores of MoS2 and Hexagonal Boron Nitride for Biosensing of DNA. ACS Applied Nano Materials 2023, 6 (6) , 4406-4416. https://doi.org/10.1021/acsanm.2c05495
    11. David S. Brandão, Eronildo C. Castro, Hao Zeng, Jianhua Zhao, Ginetom S. Diniz, Jiyong Fu, A. L. A. Fonseca, Celso A. N. Júnior, Fanyao Qu. Phonon-Fostered Valley Polarization of Interlayer Excitons in van der Waals Heterostructures. The Journal of Physical Chemistry C 2022, 126 (42) , 18128-18138. https://doi.org/10.1021/acs.jpcc.2c05113
    12. Keisuke Shinokita, Kenji Watanabe, Takashi Taniguchi, Kazunari Matsuda. Valley Relaxation of the Moiré Excitons in a WSe2/MoSe2 Heterobilayer. ACS Nano 2022, 16 (10) , 16862-16868. https://doi.org/10.1021/acsnano.2c06813
    13. Paul R. Wrona, Eran Rabani, Phillip L. Geissler. A Pair of 2D Quantum Liquids: Investigating the Phase Behavior of Indirect Excitons. ACS Nano 2022, 16 (9) , 15339-15346. https://doi.org/10.1021/acsnano.2c06947
    14. Jia-Pei Deng, Hong-Juan Li, Xu-Fei Ma, Xiao-Yi Liu, Yu Cui, Xin-Jun Ma, Zhi-Qing Li, Zi-Wu Wang. Self-Trapped Interlayer Excitons in van der Waals Heterostructures. The Journal of Physical Chemistry Letters 2022, 13 (16) , 3732-3739. https://doi.org/10.1021/acs.jpclett.2c00565
    15. Ming-Ming Yang, Yu-Chen Leng, Yan-Liang Liu, Yi Liu, Ya-Nan Zhao, Li Tan, Xiao-Wen Hu, Ru-Qian Lian, Xue-Lu Liu, Ri-Dong Cong, Shi-Shuai Sun, Xiao-Li Li. Phonon and Exciton Properties between WS2 and MoS2 Layers via Inversion Heterostructure Engineering. ACS Applied Materials & Interfaces 2022, 14 (16) , 19012-19022. https://doi.org/10.1021/acsami.1c24368
    16. Keisuke Shinokita, Yuhei Miyauchi, Kenji Watanabe, Takashi Taniguchi, Kazunari Matsuda. Resonant Coupling of a Moiré Exciton to a Phonon in a WSe2/MoSe2 Heterobilayer. Nano Letters 2021, 21 (14) , 5938-5944. https://doi.org/10.1021/acs.nanolett.1c00733
    17. Evgeni S. Penev, Yuanyue Liu, Tariq Altalhi, Alex Kutana, Boris I. Yakobson. Stable Low-Dimensional Boron Chalcogenides from Planar Structural Motifs. The Journal of Physical Chemistry A 2021, 125 (28) , 6059-6063. https://doi.org/10.1021/acs.jpca.1c02865
    18. Veronica R. Policht, Mattia Russo, Fang Liu, Chiara Trovatello, Margherita Maiuri, Yusong Bai, Xiaoyang Zhu, Stefano Dal Conte, Giulio Cerullo. Dissecting Interlayer Hole and Electron Transfer in Transition Metal Dichalcogenide Heterostructures via Two-Dimensional Electronic Spectroscopy. Nano Letters 2021, 21 (11) , 4738-4743. https://doi.org/10.1021/acs.nanolett.1c01098
    19. Feng He, Yongjian Zhou, Zefang Ye, Sang-Hyeok Cho, Jihoon Jeong, Xianghai Meng, Yaguo Wang. Moiré Patterns in 2D Materials: A Review. ACS Nano 2021, 15 (4) , 5944-5958. https://doi.org/10.1021/acsnano.0c10435
    20. Davoud Hejazi, Renda Tan, Neda Kari Rezapour, Mehrnaz Mojtabavi, Meni Wanunu, Swastik Kar. MoS2 Nanosheets with Narrowest Excitonic Line Widths Grown by Flow-Less Direct Heating of Bulk Powders: Implications for Sensing and Detection. ACS Applied Nano Materials 2021, 4 (3) , 2583-2593. https://doi.org/10.1021/acsanm.0c03244
    21. Molly A. May, Tao Jiang, Chenfeng Du, Kyoung-Duck Park, Xiaodong Xu, Alexey Belyanin, Markus B. Raschke. Nanocavity Clock Spectroscopy: Resolving Competing Exciton Dynamics in WSe2/MoSe2 Heterobilayers. Nano Letters 2021, 21 (1) , 522-528. https://doi.org/10.1021/acs.nanolett.0c03979
    22. Jun-Jie Zhang, Dongyang Zhu, Boris I. Yakobson. Heterobilayer with Ferroelectric Switching of Topological State. Nano Letters 2021, 21 (1) , 785-790. https://doi.org/10.1021/acs.nanolett.0c04531
    23. Mitsuhiro Okada, Mina Maruyama, Susumu Okada, Jamie H. Warner, Yusuke Kureishi, Yosuke Uchiyama, Takashi Taniguchi, Kenji Watanabe, Tetsuo Shimizu, Toshitaka Kubo, Masatou Ishihara, Hisanori Shinohara, Ryo Kitaura. Microscopic Mechanism of Van der Waals Heteroepitaxy in the Formation of MoS2/hBN Vertical Heterostructures. ACS Omega 2020, 5 (49) , 31692-31699. https://doi.org/10.1021/acsomega.0c04168
    24. Evgeny M. Alexeev, Nic Mullin, Pablo Ares, Harriet Nevison-Andrews, Oleksandr Skrypka, Tillmann Godde, Aleksey Kozikov, Lee Hague, Yibo Wang, Kostya S. Novoselov, Laura Fumagalli, Jamie K. Hobbs, Alexander I. Tartakovskii. Emergence of Highly Linearly Polarized Interlayer Exciton Emission in MoSe2/WSe2 Heterobilayers with Transfer-Induced Layer Corrugation. ACS Nano 2020, 14 (9) , 11110-11119. https://doi.org/10.1021/acsnano.0c01146
    25. Wei Wang, Xuedan Ma. Strain-Induced Trapping of Indirect Excitons in MoSe2/WSe2 Heterostructures. ACS Photonics 2020, 7 (9) , 2460-2467. https://doi.org/10.1021/acsphotonics.0c00567
    26. Lingli Huang, Quoc Huy Thi, Fangyuan Zheng, Xin Chen, Yee Wa Chu, Chun-Sing Lee, Jiong Zhao, Thuc Hue Ly. Catalyzed Kinetic Growth in Two-Dimensional MoS2. Journal of the American Chemical Society 2020, 142 (30) , 13130-13135. https://doi.org/10.1021/jacs.0c05057
    27. E. V. Calman, L. H. Fowler-Gerace, D. J. Choksy, L. V. Butov, D. E. Nikonov, I. A. Young, S. Hu, A. Mishchenko, A. K. Geim. Indirect Excitons and Trions in MoSe2/WSe2 van der Waals Heterostructures. Nano Letters 2020, 20 (3) , 1869-1875. https://doi.org/10.1021/acs.nanolett.9b05086
    28. Sunny Gupta, Ji-Hui Yang, Boris I. Yakobson. Two-Level Quantum Systems in Two-Dimensional Materials for Single Photon Emission. Nano Letters 2019, 19 (1) , 408-414. https://doi.org/10.1021/acs.nanolett.8b04159
    29. Sunny Gupta, Sharmila N. Shirodkar, Alex Kutana, Boris I. Yakobson. In Pursuit of 2D Materials for Maximum Optical Response. ACS Nano 2018, 12 (11) , 10880-10889. https://doi.org/10.1021/acsnano.8b03754
    30. Yoshihiro Miyauchi, Yasuyuki Hirata, Shinya Ohno. Layer-selective Optical Second-harmonic Generation Spectroscopy of a MoS2/WSe2 Heterobilayer. e-Journal of Surface Science and Nanotechnology 2025, https://doi.org/10.1380/ejssnt.2025-013
    31. Yingying Chen, Qiubao Lin, Haizhen Wang, Dehui Li. Interlayer excitons diffusion and transport in van der Waals heterostructures. Materials Futures 2025, 4 (1) , 012701. https://doi.org/10.1088/2752-5724/ad8cf2
    32. Johannes Holler, Malte Selig, Dmitry S. Smirnov, Michael Kempf, Jonas Zipfel, Philipp Nagler, Manuel Katzer, Florian Katsch, Mariana V. Ballottin, Anatolie A. Mitioglu, Alexey Chernikov, Peter C. M. Christianen, Christian Schüller, Andreas Knorr, Tobias Korn. Magneto‐Spectroscopy of Interlayer Excitons in Transition‐Metal Dichalcogenide Heterostructures. physica status solidi (b) 2025, 262 (3) https://doi.org/10.1002/pssb.202400079
    33. Zhihui Yan, Shudong Wang. Interlayer excitons in MoS 2 /CSiH 2 /WS 2 heterostructures: the role of the Janus intermediate layer. Journal of Physics: Condensed Matter 2025, 37 (7) , 075002. https://doi.org/10.1088/1361-648X/ad9724
    34. Jinqiang Huang, Zhiren Xiong, Jinkun He, Xingguang Wu, Kenji Watanabe, Takashi Taniguchi, Shen Lai, Tongyao Zhang, Zheng Vitto Han, Siwen Zhao. Electrically tunable Γ–Q interlayer excitons in twisted MoSe2 bilayers. Journal of Materials Science & Technology 2025, 207 , 70-75. https://doi.org/10.1016/j.jmst.2024.04.029
    35. Tshiamo Manyepedza, Thomas Auvray, Ruba Hendi, Gazi N. Aliev, Tomislav Friščić, Neil V. Rees. Novel electrocatalysts via mechanochemistry: Binary & ternary mixed transition metal dichalcogenides. Applied Materials Today 2025, 42 , 102582. https://doi.org/10.1016/j.apmt.2025.102582
    36. Abhay Kumar Singh. 2D TMDs Properties. 2025, 199-303. https://doi.org/10.1007/978-981-96-0247-6_4
    37. Eunice Paik, Long Zhang, Kin Fai Mak, Jie Shan, Hui Deng. Excitons and polaritons in two-dimensional transition metal dichalcogenides: a tutorial. Advances in Optics and Photonics 2024, 16 (4) , 1064. https://doi.org/10.1364/AOP.504035
    38. Zhiwen Zhou, E. A. Szwed, D. J. Choksy, L. H. Fowler-Gerace, L. V. Butov. Long-distance decay-less spin transport in indirect excitons in a van der Waals heterostructure. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-53445-5
    39. Hannah C. Nerl, Juan Pablo Guerrero-Felipe, Ana M. Valencia, Khairi Fahad Elyas, Katja Höflich, Christoph T. Koch, Caterina Cocchi. Mapping the energy-momentum dispersion of hBN excitons and hybrid plasmons in hBN-WSe2 heterostructures. npj 2D Materials and Applications 2024, 8 (1) https://doi.org/10.1038/s41699-024-00500-w
    40. Wei Li, Qiuyin Qin, Xin Li, Ying Huangfu, Dingyi Shen, Jialing Liu, Jia Li, Bo Li, Ruixia Wu, Xidong Duan. Robust Growth of 2D Transition Metal Dichalcogenide Vertical Heterostructures via Ammonium‐Assisted CVD Strategy. Advanced Materials 2024, 36 (46) https://doi.org/10.1002/adma.202408367
    41. Jie You, Zhao Han, Ningning Zhang, Qiancui Zhang, Yichi Zhang, Yang Liu, Yang Li, Jinping Ao, Zuimin Jiang, Zhenyang Zhong, Hui Guo, Huiyong Hu, Liming Wang, Zhangming Zhu. All‐Optic Logical Operations Based on the Visible‐Near Infrared Bipolar Optical Response. Advanced Science 2024, 11 (40) https://doi.org/10.1002/advs.202404336
    42. Ji Zhou, Xuguang Cao, Debao Zhang, Wanggui Ye, Changcheng Zheng, Kenji Watanabe, Takashi Taniguchi, Jiqiang Ning, Shijie Xu. Optical detection of passive thermal lattice deformation of monolayer WS2 in van der Waals heterostructures of WS2/h-BN. Journal of Alloys and Compounds 2024, 999 , 174895. https://doi.org/10.1016/j.jallcom.2024.174895
    43. Wentao Ma, Kai Wu, Jiong Yang, Xiaofeng Li, . Enhanced emission from interlayer excitons coupled to silicon nanodisk array. 2024, 22. https://doi.org/10.1117/12.3033182
    44. Ruben Canton‐Vitoria, Ryo Kitaura. Insulating 6,6‐Phenyl‐C61‐butyric Acid Methyl Ester on Transition‐Metal Dichalcogenides: Impact of the Hybrid Materials on the Optical and Electrical Properties. Chemistry – A European Journal 2024, 30 (21) https://doi.org/10.1002/chem.202400150
    45. Sarah C Gillespie, Marco van der Laan, Deepika Poonia, Sourav Maiti, Sachin Kinge, Laurens D A Siebbeles, Peter Schall. Optical signatures of charge- and energy transfer in TMDC/TMDC and TMDC/perovskite heterostructures. 2D Materials 2024, 11 (2) , 022005. https://doi.org/10.1088/2053-1583/ad341c
    46. Luthviyah Choirotul Muhimmah, Yu-Hung Peng, Ching-Hwa Ho. Light emission, structure-phase evolution, and photocatalytic behavior in full-series multilayered GaTe1−xSx (0 ≤ x ≤ 1) with direct-transition edge. Materials Today Advances 2024, 21 , 100450. https://doi.org/10.1016/j.mtadv.2023.100450
    47. Koushik Dey, Farsia Kawsar Chowdhury, Anindya Sen, Arnab Mustafi Arka, Oyshee Chowdhury, Hridoy Roy, Md Zillur Rahman. Graphene and its hybrid materials: Properties and applications. 2024, 1-40. https://doi.org/10.1016/B978-0-323-96020-5.00214-4
    48. Anran Wang, Wendian Yao, Zidi Yang, Dingqi Zheng, Songlin Li, Yi Shi, Dehui Li, Fengqiu Wang. Probing the interlayer excitation dynamics in WS 2 /WSe 2 heterostructures with broadly tunable pump and probe energies. Nanoscale 2023, 15 (48) , 19777-19783. https://doi.org/10.1039/D3NR04878K
    49. Veronica R. Policht, Henry Mittenzwey, Oleg Dogadov, Manuel Katzer, Andrea Villa, Qiuyang Li, Benjamin Kaiser, Aaron M. Ross, Francesco Scotognella, Xiaoyang Zhu, Andreas Knorr, Malte Selig, Giulio Cerullo, Stefano Dal Conte. Time-domain observation of interlayer exciton formation and thermalization in a MoSe2/WSe2 heterostructure. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-42915-x
    50. Luthviyah Choirotul Muhimmah, Yu-Hong Peng, Feng-Han Yu, Ching-Hwa Ho. Near-infrared to red-light emission and carrier dynamics in full series multilayer GaTe1−xSex (0≤x≤1) with structural evolution. npj 2D Materials and Applications 2023, 7 (1) https://doi.org/10.1038/s41699-023-00365-5
    51. Frank Volmer, Manfred Ersfeld, Paulo E. Faria Junior, Lutz Waldecker, Bharti Parashar, Lars Rathmann, Sudipta Dubey, Iulia Cojocariu, Vitaliy Feyer, Kenji Watanabe, Takashi Taniguchi, Claus M. Schneider, Lukasz Plucinski, Christoph Stampfer, Jaroslav Fabian, Bernd Beschoten. Twist angle dependent interlayer transfer of valley polarization from excitons to free charge carriers in WSe2/MoSe2 heterobilayers. npj 2D Materials and Applications 2023, 7 (1) https://doi.org/10.1038/s41699-023-00420-1
    52. Kousik Bera, Dipankar Chugh, Aditya Bandopadhyay, Hark Hoe Tan, Anushree Roy, Chennupati Jagadish. Decoupling the roles of defects/impurities and wrinkles in thermal conductivity of wafer-scale hBN films. Journal of Applied Physics 2023, 134 (15) https://doi.org/10.1063/5.0168186
    53. Akichika Kumatani, Hiroto Ogawa, Takahiko Endo, Yu Kobayashi, Jana Lustikova, Hiroki Ida, Yasufumi Takahashi, Tomokazu Matsue, Yasumitsu Miyata, Hitoshi Shiku. Electrochemical imaging correlated to hydrogen evolution reaction on transition metal dichalcogenide, WS2. Journal of Vacuum Science & Technology B 2023, 41 (5) https://doi.org/10.1116/6.0002706
    54. Yao Xiao, Chengyi Xiong, Miao-Miao Chen, Shengfu Wang, Lei Fu, Xiuhua Zhang. Structure modulation of two-dimensional transition metal chalcogenides: recent advances in methodology, mechanism and applications. Chemical Society Reviews 2023, 52 (4) , 1215-1272. https://doi.org/10.1039/D1CS01016F
    55. Georgios Vailakis, Georgios Kopidakis. Unfolding the band structure of van der Waals heterostructures. Physical Review Materials 2023, 7 (2) https://doi.org/10.1103/PhysRevMaterials.7.024004
    56. Eronildo C. Castro, David S. Brandão, Helena Bragança, A. S. Martins, Flavio Riche, A. C. Dias, J. H. Zhao, A. L. A. Fonseca, Fanyao Qu. Mechanisms of interlayer exciton emission and giant valley polarization in van der Waals heterostructures. Physical Review B 2023, 107 (3) https://doi.org/10.1103/PhysRevB.107.035439
    57. Mike Tebyetekerwa, Thien N. Truong, Wei Yan, Cheng Tang, Ary Anggara Wibowo, James Bullock, Aijun Du, Cheng Yan, Daniel Macdonald, Hieu T. Nguyen. Twist Angle Effects on the Absorbance, Carrier Lifetime, and Diffusion Properties in Low Dimension Type‐II MoS 2 /WS 2 Heterobilayers. Advanced Materials Interfaces 2022, 9 (34) https://doi.org/10.1002/admi.202201649
    58. Wenwen Li, Zhiqiang Yang, Mengtao Sun, Jun Dong. Interlayer interactions in transition metal dichalcogenides heterostructures. Reviews in Physics 2022, 9 , 100077. https://doi.org/10.1016/j.revip.2022.100077
    59. Meng-Hsi Chuang, Chun-An Chen, Po-Yen Liu, Xin-Quan Zhang, Nai-Yu Yeh, Hao-Jen Shih, Yi-Hsien Lee. Scalable Moiré Lattice with Oriented TMD Monolayers. Nanoscale Research Letters 2022, 17 (1) https://doi.org/10.1186/s11671-022-03670-y
    60. Wenyu Liu, Xiuting Li, Yushu Wang, Rui Xu, Hao Ying, Le Wang, Zhihai Cheng, Yufeng Hao, Shanshan Chen. Direct growth of hBN/Graphene heterostructure via surface deposition and segregation for independent thickness regulation. Nanotechnology 2022, 33 (47) , 475601. https://doi.org/10.1088/1361-6528/ac8994
    61. Ya-Bing Shan, Xiao-Fei Yue, Jia-Jun Chen, Jin-Kun Han, Garel Ekoya, Lai-Gui Hu, Ran Liu, Zhi-Jun Qiu, Chun-Xiao Cong. Revealing layer-dependent interlayer interactions by doping effect on graphene in WSe2/N-layer graphene heterostructures using Raman and photoluminescence spectroscopy. Rare Metals 2022, 41 (11) , 3646-3653. https://doi.org/10.1007/s12598-022-02053-7
    62. Yang Pan, Dietrich R. T. Zahn. Raman Fingerprint of Interlayer Coupling in 2D TMDCs. Nanomaterials 2022, 12 (22) , 3949. https://doi.org/10.3390/nano12223949
    63. Kun Zhao, Dawei He, Shaohua Fu, Zhiying Bai, Qing Miao, Mohan Huang, Yongsheng Wang, Xiaoxian Zhang. Interfacial Coupling and Modulation of van der Waals Heterostructures for Nanodevices. Nanomaterials 2022, 12 (19) , 3418. https://doi.org/10.3390/nano12193418
    64. Ufuk Erkılıç, Shengnan Wang, Yoshiaki Sekine, Yoshitaka Taniyasu. Stacking-order-dependent interlayer coupling in Janus WSSe/WS2 heterostructures. Applied Physics Letters 2022, 121 (11) https://doi.org/10.1063/5.0114685
    65. Sharidya Rahman, Yuerui Lu. Nano-engineering and nano-manufacturing in 2D materials: marvels of nanotechnology. Nanoscale Horizons 2022, 7 (8) , 849-872. https://doi.org/10.1039/D2NH00226D
    66. Shu‐Wen Zheng, Hai Wang, Lei Wang, Hai‐Yu Wang. Dexter‐Type Exciton Transfer in van der Waals Heterostructures. Advanced Functional Materials 2022, 32 (26) https://doi.org/10.1002/adfm.202201123
    67. He-Chun Chou, Xin-Quan Zhang, Shiue-Yuan Shiau, Ching-Hang Chien, Po-Wen Tang, Chun-Te Sung, Yia-Chung Chang, Yi-Hsien Lee, Chi Chen. Near-field spectroscopic imaging of exciton quenching at atomically sharp MoS 2 /WS 2 lateral heterojunctions. Nanoscale 2022, 14 (17) , 6323-6330. https://doi.org/10.1039/D2NR00216G
    68. Yonghao Zhu, Wei-Hai Fang, Angel Rubio, Run Long, Oleg V. Prezhdo. The twist angle has weak influence on charge separation and strong influence on recombination in the MoS 2 /WS 2 bilayer: ab initio quantum dynamics. Journal of Materials Chemistry A 2022, 10 (15) , 8324-8333. https://doi.org/10.1039/D1TA10788G
    69. Xiaojian Wang, Qingliang Feng, Shichen Xu, Jing Shang, Yan Zhao, Shanshan Wang, Xi Zhou, Liling Chen, Xingfeng Lei, Chun Li, Liangzhi Kou, Qiuyu Zhang, Jin Zhang. Passivation of Transition Metal Dichalcogenides Monolayers with a Surface‐Confined Atomically Thick Sulfur Layer. Small Structures 2022, 3 (4) https://doi.org/10.1002/sstr.202100224
    70. Biao Wu, Yunpeng Wang, Jiahong Zhong, Cheng Zeng, Yassine Madoune, Wanting Zhu, Zongwen Liu, Yanping Liu. Observation of double indirect interlayer exciton in MoSe2/WSe2 heterostructure. Nano Research 2022, 15 (3) , 2661-2666. https://doi.org/10.1007/s12274-021-3728-x
    71. Zhiheng Huang, Yanchong Zhao, Tao Bo, Yanbang Chu, Jinpeng Tian, Le Liu, Yalong Yuan, Fanfan Wu, Jiaojiao Zhao, Lede Xian, Kenji Watanabe, Takashi Taniguchi, Rong Yang, Dongxia Shi, Luojun Du, Zhipei Sun, Sheng Meng, Wei Yang, Guangyu Zhang. Spatially indirect intervalley excitons in bilayer W Se 2 . Physical Review B 2022, 105 (4) https://doi.org/10.1103/PhysRevB.105.L041409
    72. Ying Jiang, Shula Chen, Weihao Zheng, Biyuan Zheng, Anlian Pan. Interlayer exciton formation, relaxation, and transport in TMD van der Waals heterostructures. Light: Science & Applications 2021, 10 (1) https://doi.org/10.1038/s41377-021-00500-1
    73. Soumyabrata Roy, Xiang Zhang, Anand B. Puthirath, Ashokkumar Meiyazhagan, Sohini Bhattacharyya, Muhammad M. Rahman, Ganguli Babu, Sandhya Susarla, Sreehari K. Saju, Mai Kim Tran, Lucas M. Sassi, M. A. S. R. Saadi, Jiawei Lai, Onur Sahin, Seyed Mohammad Sajadi, Bhuvaneswari Dharmarajan, Devashish Salpekar, Nithya Chakingal, Abhijit Baburaj, Xinting Shuai, Aparna Adumbumkulath, Kristen A. Miller, Jessica M. Gayle, Alec Ajnsztajn, Thibeorchews Prasankumar, Vijay Vedhan Jayanthi Harikrishnan, Ved Ojha, Harikishan Kannan, Ali Zein Khater, Zhenwei Zhu, Sathvik Ajay Iyengar, Pedro Alves da Silva Autreto, Eliezer Fernando Oliveira, Guanhui Gao, A. Glen Birdwell, Mahesh R. Neupane, Tony G. Ivanov, Jaime Taha‐Tijerina, Ram Manohar Yadav, Sivaram Arepalli, Robert Vajtai, Pulickel M. Ajayan. Structure, Properties and Applications of Two‐Dimensional Hexagonal Boron Nitride. Advanced Materials 2021, 33 (44) https://doi.org/10.1002/adma.202101589
    74. Thinh N. Tran, Sejeong Kim, Simon J. U. White, Minh Anh Phan Nguyen, Licheng Xiao, Stefan Strauf, Tieshan Yang, Igor Aharonovich, Zai‐Quan Xu. Enhanced Emission from Interlayer Excitons Coupled to Plasmonic Gap Cavities. Small 2021, 17 (45) https://doi.org/10.1002/smll.202103994
    75. Guang Yang, Shang-Peng Gao. A method to restore the intrinsic dielectric functions of 2D materials in periodic calculations. Nanoscale 2021, 13 (40) , 17057-17067. https://doi.org/10.1039/D1NR04896A
    76. L. H. Fowler-Gerace, D. J. Choksy, L. V. Butov. Voltage-controlled long-range propagation of indirect excitons in a van der Waals heterostructure. Physical Review B 2021, 104 (16) https://doi.org/10.1103/PhysRevB.104.165302
    77. P. Riya Mol, Prahalad Kanti Barman, Prasad V. Sarma, Abhishek S. Kumar, Satyam Sahu, Manikoth M. Shaijumon, Rajeev N. Kini. Anomalously polarised emission from a MoS 2 /WS 2 heterostructure. Nanoscale Advances 2021, 3 (19) , 5676-5682. https://doi.org/10.1039/D1NA00462J
    78. Hongwei Liu, Chae Young You, Jingwei Li, Patrick Ryan Galligan, Jiawen You, Zhenjing Liu, Yuting Cai, Zhengtang Luo. Synthesis of hexagonal boron nitrides by chemical vapor deposition and their use as single photon emitters. Nano Materials Science 2021, 3 (3) , 291-312. https://doi.org/10.1016/j.nanoms.2021.03.002
    79. Tao Han, Hongxia Liu, Shupeng Chen, Shulong Wang, Kun Yang. Preparation and Research of Monolayer WS2 FETs Encapsulated by h-BN Material. Micromachines 2021, 12 (9) , 1006. https://doi.org/10.3390/mi12091006
    80. Mike Tebyetekerwa, Jian Zhang, Sandra Elizabeth Saji, Ary Anggara Wibowo, Sharidya Rahman, Thien N. Truong, Yuerui Lu, Zongyou Yin, Daniel Macdonald, Hieu T. Nguyen. Twist-driven wide freedom of indirect interlayer exciton emission in MoS2/WS2 heterobilayers. Cell Reports Physical Science 2021, 2 (8) , 100509. https://doi.org/10.1016/j.xcrp.2021.100509
    81. Roland Gillen. Interlayer Excitonic Spectra of Vertically Stacked MoSe 2 /WSe 2 Heterobilayers. physica status solidi (b) 2021, 258 (7) https://doi.org/10.1002/pssb.202000614
    82. Lishu Wu, Chunxiao Cong, Jingzhi Shang, Weihuang Yang, Yu Chen, Jiadong Zhou, Wei Ai, Yanlong Wang, Shun Feng, Hongbo Zhang, Zheng Liu, Ting Yu. Raman scattering investigation of twisted WS2/MoS2 heterostructures: interlayer mechanical coupling versus charge transfer. Nano Research 2021, 14 (7) , 2215-2223. https://doi.org/10.1007/s12274-020-3193-y
    83. Philipp Parzefall, Johannes Holler, Marten Scheuck, Andreas Beer, Kai-Qiang Lin, Bo Peng, Bartomeu Monserrat, Philipp Nagler, Michael Kempf, Tobias Korn, Christian Schüller. Moiré phonons in twisted MoSe 2 –WSe 2 heterobilayers and their correlation with interlayer excitons. 2D Materials 2021, 8 (3) , 035030. https://doi.org/10.1088/2053-1583/abf98e
    84. Yanchong Zhao, Tao Bo, Luojun Du, Jinpeng Tian, Xiaomei Li, Kenji Watanabe, Takashi Taniguchi, Rong Yang, Dongxia Shi, Sheng Meng, Wei Yang, Guangyu Zhang. Thermally induced band hybridization in bilayer-bilayer MoS 2 /WS 2 heterostructure*. Chinese Physics B 2021, 30 (5) , 057801. https://doi.org/10.1088/1674-1056/abeee3
    85. A Rodriguez, M Kalbáč, O Frank. Strong localization effects in the photoluminescence of transition metal dichalcogenide heterobilayers. 2D Materials 2021, 8 (2) , 025028. https://doi.org/10.1088/2053-1583/abe363
    86. Simona Pace, Marzia Ferrera, Domenica Convertino, Giulia Piccinini, Michele Magnozzi, Neeraj Mishra, Stiven Forti, Francesco Bisio, Maurizio Canepa, Filippo Fabbri, Camilla Coletti. Thermal stability of monolayer WS 2 in BEOL conditions. Journal of Physics: Materials 2021, 4 (2) , 024002. https://doi.org/10.1088/2515-7639/abd4f2
    87. Tao Han, Hongxia Liu, Shulong Wang, Shupeng Chen, Kun Yang, Zhandong Li. Synthesis and Spectral Characteristics Investigation of the 2D-2D vdWs Heterostructure Materials. International Journal of Molecular Sciences 2021, 22 (3) , 1246. https://doi.org/10.3390/ijms22031246
    88. Fabio Bussolotti, Jing Yang, Hiroyo Kawai, Jing Yee Chee, Kuan Eng Johnson Goh. Influence of many-body effects on hole quasiparticle dynamics in a WS 2 monolayer. Physical Review B 2021, 103 (4) https://doi.org/10.1103/PhysRevB.103.045412
    89. Sunny Gupta, Alex Kutana, Boris I. Yakobson. Heterobilayers of 2D materials as a platform for excitonic superfluidity. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-16737-0
    90. Tao Han, Hongxia Liu, Shupeng Chen, Yanning Chen, Shulong Wang, Zhandong Li. Fabrication and Characterization of MoS2/h-BN and WS2/h-BN Heterostructures. Micromachines 2020, 11 (12) , 1114. https://doi.org/10.3390/mi11121114
    91. Yusong Bai, Lin Zhou, Jue Wang, Wenjing Wu, Leo J. McGilly, Dorri Halbertal, Chiu Fan Bowen Lo, Fang Liu, Jenny Ardelean, Pasqual Rivera, Nathan R. Finney, Xu-Chen Yang, D. N. Basov, Wang Yao, Xiaodong Xu, James Hone, Abhay N. Pasupathy, X.-Y. Zhu. Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions. Nature Materials 2020, 19 (10) , 1068-1073. https://doi.org/10.1038/s41563-020-0730-8
    92. H. L. Pradeepa, Aveek Bid, Jaydeep K. Basu. Strong suppression of emission quenching in core quantum dots coupled to monolayer MoS 2. Nanoscale Advances 2020, 2 (9) , 3858-3864. https://doi.org/10.1039/D0NA00384K
    93. Takato Hotta, Shohei Higuchi, Akihiro Ueda, Keisuke Shinokita, Yuhei Miyauchi, Kazunari Matsuda, Keiji Ueno, Takashi Taniguchi, Kenji Watanabe, Ryo Kitaura. Exciton diffusion in h BN -encapsulated monolayer Mo Se 2 . Physical Review B 2020, 102 (11) https://doi.org/10.1103/PhysRevB.102.115424
    94. Thorsten Deilmann, Michael Rohlfing, Ursula Wurstbauer. Light–matter interaction in van der Waals hetero-structures. Journal of Physics: Condensed Matter 2020, 32 (33) , 333002. https://doi.org/10.1088/1361-648X/ab8661
    95. Kewei Tang, Weihong Qi. Moiré‐Pattern‐Tuned Electronic Structures of van der Waals Heterostructures. Advanced Functional Materials 2020, 30 (32) https://doi.org/10.1002/adfm.202002672
    96. Durgesh Kumar Sharma, Sudhir Kumar, Sushil Auluck. Strain induced optoelectronic properties of two dimensional MnPSe 3 /WS 2 heterostructure. Journal of Physics: Condensed Matter 2020, 32 (31) , 315501. https://doi.org/10.1088/1361-648X/ab7f6d
    97. Qilin Cheng, Jinbo Pang, Dehui Sun, Jingang Wang, Shu Zhang, Fan Liu, Yuke Chen, Ruiqi Yang, Na Liang, Xiheng Lu, Yanchen Ji, Jian Wang, Congcong Zhang, Yuanhua Sang, Hong Liu, Weijia Zhou. WSe 2 2D p‐type semiconductor‐based electronic devices for information technology: Design, preparation, and applications. InfoMat 2020, 2 (4) , 656-697. https://doi.org/10.1002/inf2.12093
    98. Yuika Saito, Takahiro Kondo, Hiroki Ito, Mitsuhiro Okada, Tetsuo Shimizu, Toshitaka Kubo, Ryo Kitaura. Low frequency Raman study of interlayer couplings in WS 2 –MoS 2 van der Waals heterostructures. Japanese Journal of Applied Physics 2020, 59 (6) , 062004. https://doi.org/10.35848/1347-4065/ab9400
    99. Fang Liu, Qiuyang Li, X.-Y. Zhu. Direct determination of momentum-resolved electron transfer in the photoexcited van der Waals heterobilayer W S 2 / Mo S 2 . Physical Review B 2020, 101 (20) https://doi.org/10.1103/PhysRevB.101.201405
    100. Jonas Kiemle, Florian Sigger, Michael Lorke, Bastian Miller, Kenji Watanabe, Takashi Taniguchi, Alexander Holleitner, Ursula Wurstbauer. Control of the orbital character of indirect excitons in MoS 2 / WS 2 heterobilayers. Physical Review B 2020, 101 (12) https://doi.org/10.1103/PhysRevB.101.121404
    Load all citations

    ACS Nano

    Cite this: ACS Nano 2018, 12, 3, 2498–2505
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.7b08253
    Published February 26, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    9769

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.