ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Shape Stability of Octahedral PtNi Nanocatalysts for Electrochemical Oxygen Reduction Reaction Studied by in situ Transmission Electron Microscopy

  • Martin Gocyla
    Martin Gocyla
    Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
  • Stefanie Kuehl
    Stefanie Kuehl
    Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623 Berlin, Germany
  • Meital Shviro
    Meital Shviro
    Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
  • Henner Heyen
    Henner Heyen
    Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623 Berlin, Germany
    More by Henner Heyen
  • Soeren Selve
    Soeren Selve
    ZELMI−Zentraleinrichtung für Elektronenmikroskopie, Technical University Berlin, 10623 Berlin, Germany
    More by Soeren Selve
  • Rafal E. Dunin-Borkowski
    Rafal E. Dunin-Borkowski
    Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
  • Marc Heggen*
    Marc Heggen
    Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
    *E-mail: [email protected]
    More by Marc Heggen
  • , and 
  • Peter Strasser*
    Peter Strasser
    Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623 Berlin, Germany
    *E-mail: [email protected]
Cite this: ACS Nano 2018, 12, 6, 5306–5311
Publication Date (Web):May 25, 2018
https://doi.org/10.1021/acsnano.7b09202
Copyright © 2018 American Chemical Society

    Article Views

    3433

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (6 MB)
    Supporting Info (3)»

    Abstract

    Abstract Image

    Octahedral faceted nanoparticles are highly attractive fuel cell catalysts as a result of their activity for the oxygen reduction reaction (ORR). However, their surface compositional and morphological stability currently limits their long-term performance in real membrane electrode assemblies. Here, we perform in situ heating of compositionally segregated PtNi1.5 octahedral nanoparticles inside a transmission electron microscope, in order to study their compositional and morphological changes. The starting PtNi1.5 octahedra have Pt-rich edges and concave Ni-rich {111} facets. We reveal a morphological evolution sequence, which involves transformation from concave octahedra to particles with atomically flat {100} and {111} facets, ideally representing truncated octahedra or cuboctahedra. The flat {100} and {111} facets are thought to comprise a thin Pt layer with a Ni-rich subsurface, which may boost catalytic activity. However, the transformation to truncated octahedra/cuboctahedra also decreases the area of the highly active {111} facets. The morphological and surface compositional evolution, therefore, results in a compromise between catalytic activity and morphological stability. Our findings are important for the design of more stable faceted PtNi nanoparticles with high activities for the ORR.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.7b09202.

    • Video showing image sequences of a continuous in situ LMTEM heating experiment (AVI)

    • Video showing image sequences of a continuous in situ LMTEM heating experiment (AVI)

    • Additional images of in situ LMTEM measurements, details of a continuous in situ LMTEM heating experiment, as well as additional STEM images (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 54 publications.

    1. Katherine E. MacArthur, Shlomi Polani, Malte Klingenhof, Nina Gumbiowski, Tim Möller, Paul Paciok, Jiaqi Kang, Matthias Epple, Shibabrata Basak, Rüdiger-A. Eichel, Peter Strasser, Rafal E. Dunin-Borkowski, Marc Heggen. Post-Synthesis Heat Treatment of Doped PtNi-Alloy Fuel-Cell Catalyst Nanoparticles Studied by In-Situ Electron Microscopy. ACS Applied Energy Materials 2023, 6 (11) , 5959-5967. https://doi.org/10.1021/acsaem.3c00405
    2. Ji-Li Li, Ye-Fei Li, Zhi-Pan Liu. In Situ Structure of a Mo-Doped Pt–Ni Catalyst during Electrochemical Oxygen Reduction Resolved from Machine Learning-Based Grand Canonical Global Optimization. JACS Au 2023, 3 (4) , 1162-1175. https://doi.org/10.1021/jacsau.3c00038
    3. Alexander Gunnarson, Jacopo De Bellis, Timo Imhof, Norbert Pfänder, Marc Ledendecker, Ferdi Schüth. Facile Solid-State Synthesis of Supported PtNi and PtCo Bimetallic Nanoparticles for the Oxygen Reduction Reaction. Chemistry of Materials 2023, 35 (5) , 2006-2015. https://doi.org/10.1021/acs.chemmater.2c03337
    4. Lu Xia, Wulyu Jiang, Heinrich Hartmann, Joachim Mayer, Werner Lehnert, Meital Shviro. Multistep Sulfur Leaching for the Development of a Highly Efficient and Stable NiSx/Ni(OH)2/NiOOH Electrocatalyst for Anion Exchange Membrane Water Electrolysis. ACS Applied Materials & Interfaces 2022, 14 (17) , 19397-19408. https://doi.org/10.1021/acsami.2c01302
    5. Isaac Martens, Antonis Vamvakeros, Nicolas Martinez, Raphaël Chattot, Janne Pusa, Maria Valeria Blanco, Elizabeth A. Fisher, Tristan Asset, Sylvie Escribano, Fabrice Micoud, Tim Starr, Alan Coelho, Veijo Honkimäki, Dan Bizzotto, David P. Wilkinson, Simon D. M. Jacques, Frédéric Maillard, Laetitia Dubau, Sandrine Lyonnard, Arnaud Morin, Jakub Drnec. Imaging Heterogeneous Electrocatalyst Stability and Decoupling Degradation Mechanisms in Operating Hydrogen Fuel Cells. ACS Energy Letters 2021, 6 (8) , 2742-2749. https://doi.org/10.1021/acsenergylett.1c00718
    6. Yao Yang, Yin Xiong, Rui Zeng, Xinyao Lu, Mihail Krumov, Xin Huang, Weixuan Xu, Hongsen Wang, Francis J. DiSalvo, Joel. D. Brock, David A. Muller, Héctor D. Abruña. Operando Methods in Electrocatalysis. ACS Catalysis 2021, 11 (3) , 1136-1178. https://doi.org/10.1021/acscatal.0c04789
    7. Nathaly Ortiz Peña, Dris Ihiawakrim, Madeleine Han, Benedikt Lassalle-Kaiser, Sophie Carenco, Clément Sanchez, Christel Laberty-Robert, David Portehault, Ovidiu Ersen. Morphological and Structural Evolution of Co3O4 Nanoparticles Revealed by in Situ Electrochemical Transmission Electron Microscopy during Electrocatalytic Water Oxidation. ACS Nano 2019, 13 (10) , 11372-11381. https://doi.org/10.1021/acsnano.9b04745
    8. Haitao Wang, Yuhan Pu, Beibei Shan, Ming Li. Combining Experiments and Theoretical Modeling To Interrogate the Anisotropic Growth and Structure–Plasmonic Property Relationships of Gold Nanostars. Inorganic Chemistry 2019, 58 (18) , 12457-12466. https://doi.org/10.1021/acs.inorgchem.9b02187
    9. Xiaochen Shen, Tomoyuki Nagai, Feipeng Yang, Li Qin Zhou, Yanbo Pan, Libo Yao, Dezhen Wu, Yi-Sheng Liu, Jun Feng, Jinghua Guo, Hongfei Jia, Zhenmeng Peng. Dual-Site Cascade Oxygen Reduction Mechanism on SnOx/Pt–Cu–Ni for Promoting Reaction Kinetics. Journal of the American Chemical Society 2019, 141 (24) , 9463-9467. https://doi.org/10.1021/jacs.9b02286
    10. Feng Yang, Haofei Zhao, Xiaowei Wang, Xu Liu, Qidong Liu, Xiyan Liu, Chuanhong Jin, Rongming Wang, Yan Li. Atomic Scale Stability of Tungsten–Cobalt Intermetallic Nanocrystals in Reactive Environment at High Temperature. Journal of the American Chemical Society 2019, 141 (14) , 5871-5879. https://doi.org/10.1021/jacs.9b00473
    11. Jinyu Zhao, Jie Lian, Zhenxin Zhao, Xiaomin Wang, Jiujun Zhang. A Review of In-Situ Techniques for Probing Active Sites and Mechanisms of Electrocatalytic Oxygen Reduction Reactions. Nano-Micro Letters 2023, 15 (1) https://doi.org/10.1007/s40820-022-00984-5
    12. Shi Zeng, Jingxian Zhang, Haifan Wang, Xu Zhang, Huaming Hou, Yiling Bai, Guangjin Zhang. Ternary PtZrNi nanorods for efficient multifunctional electrocatalysis towards oxygen reduction and alcohol oxidation. Journal of Colloid and Interface Science 2023, 638 , 901-907. https://doi.org/10.1016/j.jcis.2023.01.117
    13. Miao-Ying Chen, Yuan Li, Hao-Ran Wu, Bang-An Lu, Jia-Nan Zhang. Highly Stable Pt-Based Oxygen Reduction Electrocatalysts toward Practical Fuel Cells: Progress and Perspectives. Materials 2023, 16 (7) , 2590. https://doi.org/10.3390/ma16072590
    14. Xinru Yue, Xiang Zhang, Mengmeng Zhang, Wei Du, Haibing Xia. The enhancement in the performance of ultra-small core–shell Au@AuPt nanoparticles toward HER and ORR by surface engineering. Nanoscale 2023, 15 (9) , 4378-4387. https://doi.org/10.1039/D2NR06170H
    15. Wenxin Guo, Xiaoping Gao, Mengzhao Zhu, Chenxi Xu, Xiaorong Zhu, Xuyan Zhao, Rongbo Sun, Zhenggang Xue, Jia Song, Lin Tian, Jie Xu, Wenxing Chen, Yue Lin, Yafei Li, Huang Zhou, Yuen Wu. A closely packed Pt 1.5 Ni 1− x /Ni–N–C hybrid for relay catalysis towards oxygen reduction. Energy & Environmental Science 2023, 55 https://doi.org/10.1039/D2EE02381D
    16. Jun Young Cheong, Su‐Ho Cho, Jiyoung Lee, Ji‐Won Jung, Chanhoon Kim, Il‐Doo Kim. Multifunctional 1D Nanostructures toward Future Batteries: A Comprehensive Review. Advanced Functional Materials 2022, 32 (49) https://doi.org/10.1002/adfm.202208374
    17. Han‐Wen Cheng, Shan Wang, Guanyu Chen, Zhengwang Liu, Dominic Caracciolo, Merry Madiou, Shiyao Shan, Jincang Zhang, Heyong He, Renchao Che, Chuan‐Jian Zhong. Insights into Heterogeneous Catalysts under Reaction Conditions by In Situ/Operando Electron Microscopy. Advanced Energy Materials 2022, 12 (38) https://doi.org/10.1002/aenm.202202097
    18. Quanchen Feng, Xingli Wang, Malte Klingenhof, Marc Heggen, Peter Strasser. Low‐Pt NiNC‐Supported PtNi Nanoalloy Oxygen Reduction Reaction Electrocatalysts—In Situ Tracking of the Atomic Alloying Process. Angewandte Chemie 2022, 134 (36) https://doi.org/10.1002/ange.202203728
    19. Quanchen Feng, Xingli Wang, Malte Klingenhof, Marc Heggen, Peter Strasser. Low‐Pt NiNC‐Supported PtNi Nanoalloy Oxygen Reduction Reaction Electrocatalysts—In Situ Tracking of the Atomic Alloying Process. Angewandte Chemie International Edition 2022, 61 (36) https://doi.org/10.1002/anie.202203728
    20. Sergey Belenov, Anastasia Alekseenko, Angelina Pavlets, Alina Nevelskaya, Maria Danilenko. Architecture Evolution of Different Nanoparticles Types: Relationship between the Structure and Functional Properties of Catalysts for PEMFC. Catalysts 2022, 12 (6) , 638. https://doi.org/10.3390/catal12060638
    21. Hongkui Zheng, Xiner Lu, Kai He. In situ transmission electron microscopy and artificial intelligence enabled data analytics for energy materials. Journal of Energy Chemistry 2022, 68 , 454-493. https://doi.org/10.1016/j.jechem.2021.12.001
    22. Jeonghoon Lim, Chanwon Jung, Doosun Hong, Junu Bak, Jaewook Shin, MinJoong Kim, DongHoon Song, Changsoo Lee, Jinkyu Lim, Hyunjoo Lee, Hyuck Mo Lee, EunAe Cho. Atomically ordered Pt 3 Mn intermetallic electrocatalysts for the oxygen reduction reaction in fuel cells. Journal of Materials Chemistry A 2022, 10 (13) , 7399-7408. https://doi.org/10.1039/D2TA00127F
    23. Bin Wang, Fuxiang Zhang. Main Descriptors To Correlate Structures with the Performances of Electrocatalysts. Angewandte Chemie International Edition 2022, 61 (4) https://doi.org/10.1002/anie.202111026
    24. Bin Wang, Fuxiang Zhang. Main Descriptors To Correlate Structures with the Performances of Electrocatalysts. Angewandte Chemie 2022, 134 (4) https://doi.org/10.1002/ange.202111026
    25. Dnyaneshwar S. Gavhane, Atul D. Sontakke, Marijn A. van Huis. Selective Vertical and Horizontal Growth of 2D WS 2 Revealed by In Situ Thermolysis using Transmission Electron Microscopy. Advanced Functional Materials 2022, 32 (1) https://doi.org/10.1002/adfm.202106450
    26. Yanyan Sun, Shlomi Polani, Fang Luo, Sebastian Ott, Peter Strasser, Fabio Dionigi. Advancements in cathode catalyst and cathode layer design for proton exchange membrane fuel cells. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-25911-x
    27. Sahar Pishgar, Saumya Gulati, Jacob M. Strain, Ying Liang, Matthew C. Mulvehill, Joshua M. Spurgeon. In Situ Analytical Techniques for the Investigation of Material Stability and Interface Dynamics in Electrocatalytic and Photoelectrochemical Applications. Small Methods 2021, 5 (7) https://doi.org/10.1002/smtd.202100322
    28. Xiaojia Zhao, Pradip Pachfule, Arne Thomas. Covalent organic frameworks (COFs) for electrochemical applications. Chemical Society Reviews 2021, 50 (12) , 6871-6913. https://doi.org/10.1039/D0CS01569E
    29. Ruijie Gao, Jian Wang, Zhen-Feng Huang, Rongrong Zhang, Wei Wang, Lun Pan, Junfeng Zhang, Weikang Zhu, Xiangwen Zhang, Chengxiang Shi, Jongwoo Lim, Ji-Jun Zou. Pt/Fe2O3 with Pt–Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading. Nature Energy 2021, 6 (6) , 614-623. https://doi.org/10.1038/s41560-021-00826-5
    30. Lifeng Zhang, Zejian Dong, Shuangbao Wang, Langli Luo. Gas adsorbate-induced Au atomic segregation and clustering from Cu(Au). Science China Materials 2021, 64 (5) , 1256-1266. https://doi.org/10.1007/s40843-020-1529-3
    31. Liping Huang, Wei Zhang, Yanfei Zhong, Peng Li, Dong Xiang, Waqar Uddin, Xiaowu Li, Yang-Gang Wang, Xiaoyou Yuan, Dingsheng Wang, Manzhou Zhu. Surface-structure tailoring of ultrafine PtCu nanowires for enhanced electrooxidation of alcohols. Science China Materials 2021, 64 (3) , 601-610. https://doi.org/10.1007/s40843-020-1469-2
    32. Hanlei Zhang, Jing Pan, Qitao Zhou, Fan Xia. Nanometal Thermocatalysts: Transformations, Deactivation, and Mitigation. Small 2021, 17 (7) https://doi.org/10.1002/smll.202005771
    33. Junliang Zhang, Shuiyun Shen. The Electrocatalysis of Oxygen Reduction on Platinum and Its Alloys. 2021, 25-61. https://doi.org/10.1007/978-3-662-56070-9_2
    34. Andrew J. Wain, Edmund J.F. Dickinson. Nanoscale characteristics of electrochemical systems. 2021, 1-48. https://doi.org/10.1016/B978-0-12-820055-1.00008-3
    35. Jenni J. Jarju, Marta C. Figueiredo, Yury V. Kolen’ko. Electrocatalysis using nanomaterials. 2021, 343-420. https://doi.org/10.1016/B978-0-12-820055-1.00002-2
    36. Xiashuang Luo, Yangge Guo, Hongru Zhou, Huan Ren, Shuiyun Shen, Guanghua Wei, Junliang Zhang. Thermal annealing synthesis of double-shell truncated octahedral Pt-Ni alloys for oxygen reduction reaction of polymer electrolyte membrane fuel cells. Frontiers in Energy 2020, 14 (4) , 767-777. https://doi.org/10.1007/s11708-020-0667-2
    37. Pramod K. Gupta, Seong Eun Son, Gi Hun Seong. One-pot synthesized citric acid-modified bimetallic PtNi hollow nanospheres as peroxidase mimics for colorimetric detection of human serum albumin. Materials Science and Engineering: C 2020, 116 , 111231. https://doi.org/10.1016/j.msec.2020.111231
    38. Zhenming Cao, Minghao Xie, Haoyan Cheng, Ruhui Chen, Zhiheng Lyu, Zhaoxiong Xie, Younan Xia. A New Catalytic System with Balanced Activity and Durability toward Oxygen Reduction. ChemCatChem 2020, 12 (19) , 4817-4824. https://doi.org/10.1002/cctc.202001028
    39. Gurvinder Singh, Svein Sunde, Frode Seland. Synthesis of CO‐tolerant Ni‐Pt Rhombic Dodecahedra Bimetallic Electrocatalytic Nanoparticles. ChemNanoMat 2020, 6 (8) , 1220-1228. https://doi.org/10.1002/cnma.202000277
    40. Anmin Liu, Chen Li, Xuefeng Ren, Liguo Gao, Tingli Ma. Co loaded on graphene with interfacial structure as high performance catalyst for 4e− ORR: a DFT study. Ionics 2020, 26 (7) , 3483-3490. https://doi.org/10.1007/s11581-020-03471-2
    41. Lishan Peng, Zidong Wei. Catalyst Engineering for Electrochemical Energy Conversion from Water to Water: Water Electrolysis and the Hydrogen Fuel Cell. Engineering 2020, 6 (6) , 653-679. https://doi.org/10.1016/j.eng.2019.07.028
    42. Xingzhu Chen, Wee-Jun Ong, Zhouzhou Kong, Xiujian Zhao, Neng Li. Probing the active sites of site-specific nitrogen doping in metal-free graphdiyne for electrochemical oxygen reduction reactions. Science Bulletin 2020, 65 (1) , 45-54. https://doi.org/10.1016/j.scib.2019.10.016
    43. He Zheng, Fan Cao, Ligong Zhao, Renhui Jiang, Peili Zhao, Ying Zhang, Yanjie Wei, Shuang Meng, Kaixuan Li, Shuangfeng Jia, Luying Li, Jianbo Wang. Atomistic and dynamic structural characterizations in low-dimensional materials: recent applications of in situ transmission electron microscopy. Microscopy 2019, 2 https://doi.org/10.1093/jmicro/dfz038
    44. Batyr Garlyyev, Johannes Fichtner, Oriol Piqué, Oliver Schneider, Aliaksandr S. Bandarenka, Federico Calle-Vallejo. Revealing the nature of active sites in electrocatalysis. Chemical Science 2019, 10 (35) , 8060-8075. https://doi.org/10.1039/C9SC02654A
    45. Yakub Fam, Thomas L. Sheppard, Johannes Becher, Dennis Scherhaufer, Heinz Lambach, Satishkumar Kulkarni, Thomas F. Keller, Arne Wittstock, Felix Wittwer, Martin Seyrich, Dennis Brueckner, Maik Kahnt, Xiaogang Yang, Andreas Schropp, Andreas Stierle, Christian G. Schroer, Jan-Dierk Grunwaldt. A versatile nanoreactor for complementary in situ X-ray and electron microscopy studies in catalysis and materials science. Journal of Synchrotron Radiation 2019, 26 (5) , 1769-1781. https://doi.org/10.1107/S160057751900660X
    46. Shu Fen Tan, See Wee Chee, Zhaslan Baraissov, Hongmei Jin, Teck Leong Tan, Utkur Mirsaidov. Real‐Time Imaging of Nanoscale Redox Reactions over Bimetallic Nanoparticles. Advanced Functional Materials 2019, 29 (37) https://doi.org/10.1002/adfm.201903242
    47. Wenhao Gong, Zheng Jiang, Rifeng Wu, Yang Liu, Lei Huang, Ning Hu, Panagiotis Tsiakaras, Pei Kang Shen. Cross-double dumbbell-like Pt–Ni nanostructures with enhanced catalytic performance toward the reactions of oxygen reduction and methanol oxidation. Applied Catalysis B: Environmental 2019, 246 , 277-283. https://doi.org/10.1016/j.apcatb.2019.01.061
    48. Batyr Garlyyev, Yunchang Liang, Song Xue, Sebastian Watzele, Johannes Fichtner, Wei-Jin Li, Xing Ding, Aliaksandr S. Bandarenka. Theoretical and experimental identification of active electrocatalytic surface sites. Current Opinion in Electrochemistry 2019, 14 , 206-213. https://doi.org/10.1016/j.coelec.2018.09.002
    49. Meital Shviro, Martin Gocyla, Shlomi Polani, Marc Heggen, David Zitoun, Rafal E. Dunin‐Borkowski. Morphological, Structural, and Compositional Evolution of Pt–Ni Octahedral Electrocatalysts with Pt‐Rich Edges and Ni‐Rich Core: Toward the Rational Design of Electrocatalysts for the Oxygen Reduction Reaction. Particle & Particle Systems Characterization 2019, 36 (3) https://doi.org/10.1002/ppsc.201800442
    50. S. Kühl, M. Gocyla, H. Heyen, S. Selve, M. Heggen, R. E. Dunin-Borkowski, P. Strasser. Concave curvature facets benefit oxygen electroreduction catalysis on octahedral shaped PtNi nanocatalysts. Journal of Materials Chemistry A 2019, 7 (3) , 1149-1159. https://doi.org/10.1039/C8TA11298C
    51. Xu Chen, Hanbin Wang, Houzhao Wan, Tianci Wu, Dan Shu, Laifa Shen, Yi Wang, Pierre Ruterana, Peter D. Lund, Hao Wang. Core/shell Cu/FePtCu nanoparticles with face-centered tetragonal texture: An active and stable low-Pt catalyst for enhanced oxygen reduction. Nano Energy 2018, 54 , 280-287. https://doi.org/10.1016/j.nanoen.2018.10.034
    52. Meital Shviro, Martin Gocyla, Roland Schierholz, Hermann Tempel, Hans Kungl, Rüdiger-A. Eichel, Rafal E. Dunin-Borkowski. Transformation of carbon-supported Pt–Ni octahedral electrocatalysts into cubes: toward stable electrocatalysis. Nanoscale 2018, 10 (45) , 21353-21362. https://doi.org/10.1039/C8NR06008H
    53. Shuoyuan Huang, Aixian Shan, Rongming Wang. Low Pt Alloyed Nanostructures for Fuel Cells Catalysts. Catalysts 2018, 8 (11) , 538. https://doi.org/10.3390/catal8110538
    54. Sibin Duan, Zhe Du, Hongsheng Fan, Rongming Wang. Nanostructure Optimization of Platinum-Based Nanomaterials for Catalytic Applications. Nanomaterials 2018, 8 (11) , 949. https://doi.org/10.3390/nano8110949

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect