ACS Publications. Most Trusted. Most Cited. Most Read
The Design and Characterization of Multifunctional Aptamer Nanopore Sensors
My Activity
    Article

    The Design and Characterization of Multifunctional Aptamer Nanopore Sensors
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (1)

    ACS Nano

    Cite this: ACS Nano 2018, 12, 5, 4844–4852
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.8b01583
    Published May 2, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Aptamer-modified nanomaterials provide a simple, yet powerful sensing platform when combined with resistive pulse sensing technologies. Aptamers adopt a more stable tertiary structure in the presence of a target analyte, which results in a change in charge density and velocity of the carrier particle. In practice the tertiary structure is specific for each aptamer and target, and the strength of the signal varies with different applications and experimental conditions. Resistive pulse sensors (RPS) have single particle resolution, allowing for the detailed characterization of the sample. Measuring the velocity of aptamer-modified nanomaterials as they traverse the RPS provides information on their charge state and densities. To help understand how the aptamer structure and charge density effects the sensitivity of aptamer-RPS assays, here we study two metal binding aptamers. This creates a sensor for mercury and lead ions that is capable of being run in a range of electrolyte concentrations, equivalent to river to seawater conditions. The observed results are in excellent agreement with our proposed model. Building on this we combine two aptamers together in an attempt to form a dual sensing strand of DNA for the simultaneous detection of two metal ions. We show experimental and theoretical responses for the aptamer which creates layers of differing charge densities around the nanomaterial. The density and diameter of these zones effects both the viability and sensitivity of the assay. While this approach allows the interrogation of the DNA structure, the data also highlight the limitations and considerations for future assays.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.8b01583.

    • Examples of raw current traces with pulse magnitude distributions for particles, DNA functionalized particles, average particle velocities for DNA functionalized particles in different electrolyte solutions, calculations for determining the relative velocities and charge densities around each particles, and schematic illustration of a system modeled where a dual modified nanoparticle is placed at the tip opening of the conical pore (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 68 publications.

    1. Yameng Jin, Junxiao Wang, Ruping Tang, Yao Jiang, Dongmei Xi. Nucleic Acid-Based Biological Nanopore Sensing Strategies for Tumor Marker Detection. Langmuir 2024, 40 (41) , 21327-21340. https://doi.org/10.1021/acs.langmuir.4c02804
    2. Yukichi Horiguchi, Norihiko Naono, Osamu Sakamoto, Hiroaki Takeuchi, Shoji Yamaoka, Yuji Miyahara. Methodology to Detect Biological Particles Using a Biosensing Surface Integrated in Resistive Pulse Sensing. ACS Applied Materials & Interfaces 2022, 14 (17) , 20168-20178. https://doi.org/10.1021/acsami.1c25006
    3. Tien-Juin Liu, Tianji Ma, Chih-Yuan Lin, Sébastien Balme, Jyh-Ping Hsu. Origin of Ultrahigh Rectification in Polyelectrolyte Bilayers Modified Conical Nanopores. The Journal of Physical Chemistry Letters 2021, 12 (49) , 11858-11864. https://doi.org/10.1021/acs.jpclett.1c03513
    4. Yangyan Li, Le Tu, Xin Ma, Huan Chen, Yifan Fan, Qiang Zhou, Yao Sun. Engineering a Smart Nanofluidic Sensor for High-Performance Peroxynitrite Sensing through a Spirocyclic Ring Open/Close Reaction Strategy. ACS Sensors 2021, 6 (3) , 808-814. https://doi.org/10.1021/acssensors.0c01719
    5. I. Heaton, M. Platt. Multiuse Nanopore Platform with Disposable Paper Analytical Device for the Detection of Heavy Metal Ions. Industrial & Engineering Chemistry Research 2020, 59 (49) , 21403-21412. https://doi.org/10.1021/acs.iecr.0c04806
    6. Liwei Ni, Rubia Shaik, Ruiting Xu, Ge Zhang, Jiang Zhe. A Microfluidic Sensor for Continuous, in Situ Surface Charge Measurement of Single Cells. ACS Sensors 2020, 5 (2) , 527-534. https://doi.org/10.1021/acssensors.9b02411
    7. Chih-Yuan Lin, Pei-Hsuan Wong, Pei-Hsin Wang, Zuzanna S. Siwy, Li-Hsien Yeh. Electrodiffusioosmosis-Induced Negative Differential Resistance in pH-Regulated Mesopores Containing Purely Monovalent Solutions. ACS Applied Materials & Interfaces 2020, 12 (2) , 3198-3204. https://doi.org/10.1021/acsami.9b18524
    8. Yao Wu, Israel Belmonte, Kiana S. Sykes, Yi Xiao, Ryan J. White. Perspective on the Future Role of Aptamers in Analytical Chemistry. Analytical Chemistry 2019, 91 (24) , 15335-15344. https://doi.org/10.1021/acs.analchem.9b03853
    9. Gregorio Laucirica, Gonzalo Pérez-Mitta, M. Eugenia Toimil-Molares, Christina Trautmann, Waldemar A. Marmisollé, Omar Azzaroni. Amine-Phosphate Specific Interactions within Nanochannels: Binding Behavior and Nanoconfinement Effects. The Journal of Physical Chemistry C 2019, 123 (47) , 28997-29007. https://doi.org/10.1021/acs.jpcc.9b07977
    10. Imogen Heaton, Mark Platt. Peptide Nanocarriers for Detection of Heavy Metal Ions Using Resistive Pulse Sensing. Analytical Chemistry 2019, 91 (17) , 11291-11296. https://doi.org/10.1021/acs.analchem.9b02353
    11. Hong Cheng, Wei Li, Shuangdi Duan, Jiaxin Peng, Jinquan Liu, Wenjie Ma, Huizhen Wang, Xiaoxiao He, Kemin Wang. Mesoporous Silica Containers and Programmed Catalytic Hairpin Assembly/Hybridization Chain Reaction Based Electrochemical Sensing Platform for MicroRNA Ultrasensitive Detection with Low Background. Analytical Chemistry 2019, 91 (16) , 10672-10678. https://doi.org/10.1021/acs.analchem.9b01947
    12. Liping Liu, Zhen Fang, Xiangjiang Zheng, Dongmei Xi. Nanopore-Based Strategy for Sensing of Copper(II) Ion and Real-Time Monitoring of a Click Reaction. ACS Sensors 2019, 4 (5) , 1323-1328. https://doi.org/10.1021/acssensors.9b00236
    13. Tsai-Wei Lin, Jyh-Ping Hsu, Chih-Yuan Lin, Shiojenn Tseng. Dual pH Gradient and Voltage Modulation of Ion Transport and Current Rectification in Biomimetic Nanopores Functionalized with a pH-Tunable Polyelectrolyte. The Journal of Physical Chemistry C 2019, 123 (19) , 12437-12443. https://doi.org/10.1021/acs.jpcc.8b11707
    14. Yamin Nie, Xiaoding Yuan, Pu Zhang, Ya-qin Chai, Ruo Yuan. Versatile and Ultrasensitive Electrochemiluminescence Biosensor for Biomarker Detection Based on Nonenzymatic Amplification and Aptamer-Triggered Emitter Release. Analytical Chemistry 2019, 91 (5) , 3452-3458. https://doi.org/10.1021/acs.analchem.8b05001
    15. Sarah M. Hampson, Marcus Pollard, Peter Hauer, Hayden Salway, Steven D. R. Christie, Mark Platt. Additively Manufactured Flow-Resistive Pulse Sensors. Analytical Chemistry 2019, 91 (4) , 2947-2954. https://doi.org/10.1021/acs.analchem.8b05140
    16. Jie Yan, Runcheng Liu, Jian Shi, Wen Yang, Shouzhen Jiang, Zihao Zhang, Mingshun Jiang. Ultra-sensitive, multi-component, and real-time detection of heavy metal ions via AgNPs@Cu-TCPP(Pt) sensitized strong coupling plasmonic sensor. Chemical Engineering Journal 2025, 493 , 162772. https://doi.org/10.1016/j.cej.2025.162772
    17. Ethan Cao, Zuzanna S. Siwy. Heterogeneous Nanopore Arrays – Selective Modification of Nanopores Embedded in a Membrane. Advanced Materials 2025, 123 https://doi.org/10.1002/adma.202418987
    18. Juncheng Zhao, Xiaohan He, Liuyong Shi, Teng Zhou. Changes in charge characteristics of nanoparticles modified by roughness brush layer. Materials Today Communications 2025, 42 , 111172. https://doi.org/10.1016/j.mtcomm.2024.111172
    19. Xiang Ren, Man Wang, Jingui Chen, Jinxiu Zhao, Huan Wang, Dan Wu, Rui Xu, Yong Zhang, Huangxian Ju, Qin Wei. Sulfur defect–engineered Bi2S3–x/In2S3–y mediated signal enhancement of photoelectrochemical sensor for lead ions detection. Talanta 2024, 273 , 125871. https://doi.org/10.1016/j.talanta.2024.125871
    20. Xuan Zhou, Zongbao Sun, Xiaoyu Su, Kaiyi Zheng, Xuechao Xu, Xiaobo Zou, Wen Zhang. Regenerable ratiometric aptasensor based on electro-oxidation conducted host-guest dissociation for aflatoxin B1 detection in grains. Sensors and Actuators B: Chemical 2024, 406 , 135348. https://doi.org/10.1016/j.snb.2024.135348
    21. Xiao-Min Li, Junchao Jia, Danting Yang, Jiali Jin, Junkuo Gao. Construction of biomimetic proton transport channels in metal-organic framework. Chinese Chemical Letters 2024, 35 (3) , 108474. https://doi.org/10.1016/j.cclet.2023.108474
    22. Siyuan Fu, Yaqi Hu, Yazhi Yang, Xuan Yi, Jinfeng Miao, Peng Miao, Yuanyuan Xu. Graphene oxide-supported berberine and aloe-emodin nanocomposites for dual-drug release and antimicrobial therapy. Fundamental Research 2024, 13 https://doi.org/10.1016/j.fmre.2024.02.012
    23. Wenhao Ma, Wanyi Xie, Shaoxi Fang, Shixuan He, Bohua Yin, Yongjia Wang, Changjun Hou, Danqun Huo, Deqiang Wang. Nanopore electrochemical sensors for emerging hazardous pollutants detection. Electrochimica Acta 2024, 475 , 143678. https://doi.org/10.1016/j.electacta.2023.143678
    24. Woo-Ri Shin, Gna Ahn, Jin-Pyo Lee, In-Hwan Oh, Ji-Young Ahn, Yang-Hoon Kim, Soryong Chae. Recent advances in engineering aptamer-based sensing and recovery of heavy metals and rare earth elements for environmental sustainability. Chemical Engineering Journal 2023, 472 , 144742. https://doi.org/10.1016/j.cej.2023.144742
    25. Teng Zhou, Juncheng Zhao, Xiaohan He, Liuyong Shi, Liping Wen. Effect of brush roughness on volume charge density. Journal of Electroanalytical Chemistry 2023, 936 , 117368. https://doi.org/10.1016/j.jelechem.2023.117368
    26. Qun Ma, Liang Chen, Pengcheng Gao, Fan Xia. Solid-state nanopore/channels meet DNA nanotechnology. Matter 2023, 6 (2) , 373-396. https://doi.org/10.1016/j.matt.2022.11.026
    27. Sneha Verma, B.M.A. Rahman. Computational Investigation of Advanced Refractive Index Sensor Using 3-Dimensional Metamaterial Based Nanoantenna Array. Sensors 2023, 23 (3) , 1290. https://doi.org/10.3390/s23031290
    28. Annina Stuber, Tilman Schlotter, Julian Hengsteler, Nako Nakatsuka. Solid-State Nanopores for Biomolecular Analysis and Detection. 2023, 283-316. https://doi.org/10.1007/10_2023_240
    29. Shupan Ge, Xiaohua Ma. Electrochemical aptamer-based sensors for the detection of heavy metals. International Journal of Electrochemical Science 2022, 17 (9) , 220926. https://doi.org/10.20964/2022.09.06
    30. Kang In Yeo, Insu Park, Sang Hyun Lee, Sei Young Lee, Woo-Jin Chang, Rashid Bashir, Seungyeop Choi, Sang Woo Lee. Ultra-sensitive dielectrophoretic surface charge multiplex detection inside a micro-dielectrophoretic device. Biosensors and Bioelectronics 2022, 210 , 114235. https://doi.org/10.1016/j.bios.2022.114235
    31. Ruiting Xu, Lidya Abune, Brandon Davis, Leixin Ouyang, Ge Zhang, Yong Wang, Jiang Zhe. Ultrasensitive detection of small biomolecules using aptamer-based molecular recognition and nanoparticle counting. Biosensors and Bioelectronics 2022, 203 , 114023. https://doi.org/10.1016/j.bios.2022.114023
    32. Caizhi Liao, Fiach Antaw, Alain Wuethrich, Matt Trau. A T‐Junction Dual Nanopore for Single Nanoparticle Analysis. Advanced Engineering Materials 2022, 24 (4) https://doi.org/10.1002/adem.202101015
    33. Ning Feng, Lei Zhang, Jingjing Shen, Yanling Hu, Weibing Wu, Essy Kouadio Fodjo, Shufen Chen, Wei Huang, Lianhui Wang. SERS molecular-ruler based DNA aptamer single-molecule and its application to multi-level optical storage. Chemical Engineering Journal 2022, 433 , 133666. https://doi.org/10.1016/j.cej.2021.133666
    34. Marcus Pollard, Rushabh Maugi, Mark Platt. Multi-resistive pulse sensor microfluidic device. The Analyst 2022, 147 (7) , 1417-1424. https://doi.org/10.1039/D2AN00128D
    35. Zehui Xia, Chih‐Yuan Lin, Marija Drndić. Protein‐enabled detection of ibuprofen and sulfamethoxazole using solid‐state nanopores. PROTEOMICS 2022, 22 (5-6) https://doi.org/10.1002/pmic.202100071
    36. Wenfei Guo, Chuanxiang Zhang, Tingting Ma, Xueying Liu, Zhu Chen, Song Li, Yan Deng. Advances in aptamer screening and aptasensors’ detection of heavy metal ions. Journal of Nanobiotechnology 2021, 19 (1) https://doi.org/10.1186/s12951-021-00914-4
    37. Wei-Hao Huang, Van-Phung Mai, Ruo-Yin Wu, Ko-Li Yeh, Ruey-Jen Yang. A Microfluidic Aptamer-Based Sensor for Detection of Mercury(II) and Lead(II) Ions in Water. Micromachines 2021, 12 (11) , 1283. https://doi.org/10.3390/mi12111283
    38. Tianyue Qian, Chen Zhao, Ruoxin Wang, Xiaofang Chen, Jue Hou, Huanting Wang, Huacheng Zhang. Synthetic azobenzene-containing metal–organic framework ion channels toward efficient light-gated ion transport at the subnanoscale. Nanoscale 2021, 13 (41) , 17396-17403. https://doi.org/10.1039/D1NR04595D
    39. Ziyu Huang, Hao Chen, Huarong Ye, Zixuan Chen, Nicole Jaffrezic-Renault, Zhenzhong Guo. An ultrasensitive aptamer-antibody sandwich cortisol sensor for the noninvasive monitoring of stress state. Biosensors and Bioelectronics 2021, 190 , 113451. https://doi.org/10.1016/j.bios.2021.113451
    40. Ana S. Peinetti, Ryan J. Lake, Wen Cong, Laura Cooper, Yuting Wu, Yuan Ma, Gregory T. Pawel, María Eugenia Toimil-Molares, Christina Trautmann, Lijun Rong, Benito Mariñas, Omar Azzaroni, Yi Lu. Direct detection of human adenovirus or SARS-CoV-2 with ability to inform infectivity using DNA aptamer-nanopore sensors. Science Advances 2021, 7 (39) https://doi.org/10.1126/sciadv.abh2848
    41. Haowei Mao, Qun Ma, Hongquan Xu, Lei Xu, Qiujiao Du, Pengcheng Gao, Fan Xia. Exploring the contribution of charged species at the outer surface to the ion current signal of nanopores: a theoretical study. The Analyst 2021, 146 (16) , 5089-5094. https://doi.org/10.1039/D1AN00826A
    42. Jiarong Cai, Wei Ma, Changlong Hao, Maozhong Sun, Jun Guo, Liguang Xu, Chuanlai Xu, Hua Kuang. Artificial light-triggered smart nanochannels relying on optoionic effects. Chem 2021, 7 (7) , 1802-1826. https://doi.org/10.1016/j.chempr.2021.04.008
    43. Katsuhiko Sato, Fumiya Sato, Masayuki Kumano, Toshio Kamijo, Takaya Sato, Yuanshu Zhou, Yuri Korchev, Takeshi Fukuma, Tsutomu Fujimura, Yasufumi Takahashi. Electrochemical Quantitative Evaluation of the Surface Charge of a Poly(1‐Vinylimidazole) Multilayer Film and Application to Nanopore pH Sensor. Electroanalysis 2021, 33 (6) , 1633-1638. https://doi.org/10.1002/elan.202100041
    44. Lifang Fan, Guifang Liang, Caiyun Zhang, Li Fan, Wenjun Yan, Yujing Guo, Shaomin Shuang, Yingpu Bi, Feng Li, Chuan Dong. Visible-light-driven photoelectrochemical sensing platform based on BiOI nanoflowers/TiO2 nanotubes for detection of atrazine in environmental samples. Journal of Hazardous Materials 2021, 409 , 124894. https://doi.org/10.1016/j.jhazmat.2020.124894
    45. Rushabh Maugi, Bernadette Gamble, David Bunka, Mark Platt. A simple displacement aptamer assay on resistive pulse sensor for small molecule detection. Talanta 2021, 225 , 122068. https://doi.org/10.1016/j.talanta.2020.122068
    46. Rachel A. Lucas, Chih-Yuan Lin, Lane A. Baker, Zuzanna S. Siwy. Ionic amplifying circuits inspired by electronics and biology. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-15398-3
    47. Yinyin Peng, Teng Zhou, Ting Li, Liuyong Shi, Liping Wen. The polarization reverse of diode-like conical nanopore under pH gradient. SN Applied Sciences 2020, 2 (11) https://doi.org/10.1007/s42452-020-03675-1
    48. Jinxiu Guo, Xianzhi Ke, Yu Ma, Yajie Yang, Xi Zhou, Yanbo Xie. Entrance effects based Janus-faced nanopore for applications of chemical sensing. Journal of Electroanalytical Chemistry 2020, 876 , 114417. https://doi.org/10.1016/j.jelechem.2020.114417
    49. Golbarg Mohammadi Roozbahani, Xiaohan Chen, Youwen Zhang, Liang Wang, Xiyun Guan. Nanopore Detection of Metal Ions: Current Status and Future Directions. Small Methods 2020, 4 (10) https://doi.org/10.1002/smtd.202000266
    50. Imogen Heaton, Mark Platt. DNAzyme Sensor for the Detection of Ca2+ Using Resistive Pulse Sensing. Sensors 2020, 20 (20) , 5877. https://doi.org/10.3390/s20205877
    51. Lucile Reynaud, Aurélie Bouchet-Spinelli, Camille Raillon, Arnaud Buhot. Sensing with Nanopores and Aptamers: A Way Forward. Sensors 2020, 20 (16) , 4495. https://doi.org/10.3390/s20164495
    52. Tianyue Qian, Huacheng Zhang, Xingya Li, Jue Hou, Chen Zhao, Qinfen Gu, Huanting Wang. Efficient Gating of Ion Transport in Three‐Dimensional Metal–Organic Framework Sub‐Nanochannels with Confined Light‐Responsive Azobenzene Molecules. Angewandte Chemie 2020, 132 (31) , 13151-13156. https://doi.org/10.1002/ange.202004657
    53. Tianyue Qian, Huacheng Zhang, Xingya Li, Jue Hou, Chen Zhao, Qinfen Gu, Huanting Wang. Efficient Gating of Ion Transport in Three‐Dimensional Metal–Organic Framework Sub‐Nanochannels with Confined Light‐Responsive Azobenzene Molecules. Angewandte Chemie International Edition 2020, 59 (31) , 13051-13056. https://doi.org/10.1002/anie.202004657
    54. Bence Hohl, Eszter Mádai, Dezső Boda, Mónika Valiskó. Modeling of a pH–tunable dual–response nanopore sensor. Journal of Molecular Liquids 2020, 310 , 112946. https://doi.org/10.1016/j.molliq.2020.112946
    55. Yuan Wan, Jiaxing Zhao, Junlin He, Xinhui Lou. Nano-Affi: a solution-phase, label-free, colorimetric aptamer affinity assay based on binding-inhibited aggregation of gold nanoparticles. The Analyst 2020, 145 (12) , 4276-4282. https://doi.org/10.1039/D0AN00827C
    56. Songyue Chen, Hong Chen, Jian Zhang, Hepeng Dong, Kan Zhan, Yongliang Tang. A glass nanopore ionic sensor for surface charge analysis. RSC Advances 2020, 10 (36) , 21615-21620. https://doi.org/10.1039/D0RA03353G
    57. Matthew J. Healey, Muttuswamy Sivakumaran, Mark Platt. Rapid quantification of prion proteins using resistive pulse sensing. The Analyst 2020, 145 (7) , 2595-2601. https://doi.org/10.1039/D0AN00063A
    58. Songyue Chen, Hepeng Dong, Jing Yang. Surface Potential/Charge Sensing Techniques and Applications. Sensors 2020, 20 (6) , 1690. https://doi.org/10.3390/s20061690
    59. Rhushabh Maugi, Zarina Salkenova, Mark Platt. Incorporating peptide aptamers into resistive pulse sensing. MEDICAL DEVICES & SENSORS 2020, 3 (1) https://doi.org/10.1002/mds3.10059
    60. R. Maugi, P. Hauer, J. Bowen, E. Ashman, E. Hunsicker, M. Platt. A methodology for characterising nanoparticle size and shape using nanopores. Nanoscale 2020, 12 (1) , 262-270. https://doi.org/10.1039/C9NR09100A
    61. Mohammad Khavani, Mohammad Izadyar, Mohammad Reza Housaindokht. Theoretical design and experimental study on the gold nanoparticles based colorimetric aptasensors for detection of neomycin B. Sensors and Actuators B: Chemical 2019, 300 , 126947. https://doi.org/10.1016/j.snb.2019.126947
    62. Eszter Mádai, Mónika Valiskó, Dezső Boda. Application of a bipolar nanopore as a sensor: rectification as an additional device function. Physical Chemistry Chemical Physics 2019, 21 (36) , 19772-19784. https://doi.org/10.1039/C9CP03821C
    63. Lulu Fu, Jin Zhai. Biomimetic stimuli‐responsive nanochannels and their applications. ELECTROPHORESIS 2019, 40 (16-17) , 2058-2074. https://doi.org/10.1002/elps.201800536
    64. Jyh-Ping Hsu, Yu-Min Chen, Chih-Yuan Lin, Shiojenn Tseng. Electrokinetic ion transport in an asymmetric double-gated nanochannel with a pH-tunable zwitterionic surface. Physical Chemistry Chemical Physics 2019, 21 (15) , 7773-7780. https://doi.org/10.1039/C9CP00266A
    65. Shuang Shuang Wu, Min Wei, Wei Wei, Yong Liu, Songqin Liu. Electrochemical aptasensor for aflatoxin B1 based on smart host-guest recognition of β-cyclodextrin polymer. Biosensors and Bioelectronics 2019, 129 , 58-63. https://doi.org/10.1016/j.bios.2019.01.022
    66. Jyh-Ping Hsu, Yu-You Chu, Chih-Yuan Lin, Shiojenn Tseng. Ion transport in a pH-regulated conical nanopore filled with a power-law fluid. Journal of Colloid and Interface Science 2019, 537 , 358-365. https://doi.org/10.1016/j.jcis.2018.11.020
    67. Jyh-Ping Hsu, Shu-Tuan Yang, Chih-Yuan Lin, Shiojenn Tseng. Voltage-controlled ion transport and selectivity in a conical nanopore functionalized with pH-tunable polyelectrolyte brushes. Journal of Colloid and Interface Science 2019, 537 , 496-504. https://doi.org/10.1016/j.jcis.2018.11.046
    68. Juan Song, Songling Li, Feng Gao, Qingxiang Wang, Zhenyu Lin. An in situ assembly strategy for the construction of a sensitive and reusable electrochemical aptasensor. Chemical Communications 2019, 55 (7) , 905-908. https://doi.org/10.1039/C8CC08615J

    ACS Nano

    Cite this: ACS Nano 2018, 12, 5, 4844–4852
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.8b01583
    Published May 2, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    4099

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.