ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Giant Electron–Phonon Coupling and Deep Conduction Band Resonance in Metal Halide Double Perovskite

  • Julian A. Steele*
    Julian A. Steele
    Centre for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
    *E-mail: [email protected]
  • Pascal Puech
    Pascal Puech
    CEMES/CNRS, Université de Toulouse, 29, rue Jeanne Marvig, 31055 Toulouse, France
    More by Pascal Puech
  • Masoumeh Keshavarz
    Masoumeh Keshavarz
    Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
  • Ruoxi Yang
    Ruoxi Yang
    Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
    Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
    More by Ruoxi Yang
  • Subhasree Banerjee
    Subhasree Banerjee
    Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
    School of Science, Department of Chemistry, Adamas University, Barasat-Barrackpore Road, Kolkata 700126, West Bengal, India
  • Elke Debroye
    Elke Debroye
    Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
    More by Elke Debroye
  • Cheol Woong Kim
    Cheol Woong Kim
    Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
  • Haifeng Yuan
    Haifeng Yuan
    Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
    More by Haifeng Yuan
  • Nam Ho Heo
    Nam Ho Heo
    Department of Applied Chemistry, School of Applied Chemical Engineering, College of Engineering, Kyungpook National University, Daegu 41566, Korea
    More by Nam Ho Heo
  • Johan Vanacken
    Johan Vanacken
    INPAC-Institute for Nanoscale Physics and Chemistry, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
  • Aron Walsh
    Aron Walsh
    Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
    Global E3 Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Korea
    More by Aron Walsh
  • Johan Hofkens
    Johan Hofkens
    Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
  • , and 
  • Maarten B. J. Roeffaers
    Maarten B. J. Roeffaers
    Centre for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
Cite this: ACS Nano 2018, 12, 8, 8081–8090
Publication Date (Web):August 7, 2018
https://doi.org/10.1021/acsnano.8b02936
Copyright © 2018 American Chemical Society

    Article Views

    6513

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The room-temperature charge carrier mobility and excitation–emission properties of metal halide perovskites are governed by their electronic band structures and intrinsic lattice phonon scattering mechanisms. Establishing how charge carriers interact within this scenario will have far-reaching consequences for developing high-efficiency materials for optoelectronic applications. Herein we evaluate the charge carrier scattering properties and conduction band environment of the double perovskite Cs2AgBiBr6via a combinatorial approach; single crystal X-ray diffraction, optical excitation and temperature-dependent emission spectroscopy, resonant and nonresonant Raman scattering, further supported by first-principles calculations. We identify deep conduction band energy levels and that scattering from longitudinal optical phonons—via the Fröhlich interaction—dominates electron scattering at room temperature, manifesting within the nominally nonresonant Raman spectrum as multiphonon processes up to the fourth order. A Fröhlich coupling constant nearing 230 meV is inferred from a temperature-dependent emission line width analysis and is found to be extremely large compared to popular lead halide perovskites (between 40 and 60 meV), highlighting the fundamentally different nature of the two “single” and “double” perovskite materials branches.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.8b02936.

    • Crystallographic information derived from single crystal XRD, group factor analysis and Cs2AgBiBr6 vibrational assignment, EDX and Raman spectroscopic mapping of the so-called yellow phase, power dependence of laser-induced Cs2AgBiBr6 surface modifications, low-temperature Raman spectrum, and a comparison of the temperature dependence of Cs2AgBiBr6 emission line width before and after thermal annealing (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 187 publications.

    1. Jayita Pradhan, Anustoop Das, Arpita Panda, Kanishka Biswas. Curious Case of CsPb2Br5: Extremely Soft Structure-Induced Broadband Emission. Chemistry of Materials 2024, 36 (7) , 3405-3416. https://doi.org/10.1021/acs.chemmater.4c00247
    2. Jur W. de Wit, Lars L. Sonneveld, Andries Meijerink. Shedding Light on Host-to-Yb3+ Energy Transfer in Cs2AgBiBr6:Yb3+ (nano)crystals. Chemistry of Materials 2024, 36 (6) , 2857-2866. https://doi.org/10.1021/acs.chemmater.3c03201
    3. Julian G. Mann, Fei He, Quinten A. Akkerman, Tushar Debnath, Jochen Feldmann. A Bound Exciton Resonance Modulated by Bulk and Localized Coherent Phonons in Double Perovskites. The Journal of Physical Chemistry Letters 2024, 15 (8) , 2169-2176. https://doi.org/10.1021/acs.jpclett.3c03443
    4. Mehmet Baskurt, Julia Wiktor. Charge Localization in Cs2AgBiBr6 Double Perovskite: Small Polarons and Self-Trapped Excitons. The Journal of Physical Chemistry C 2023, 127 (49) , 23966-23972. https://doi.org/10.1021/acs.jpcc.3c06551
    5. Xin Yang, Saif M. H. Qaid, Baiqian Wang, Wensi Cai, Qingkai Qian, Zhigang Zang. Broadband Near-Infrared Emission from 0D Hybrid Copper Halides. Inorganic Chemistry 2023, 62 (45) , 18591-18598. https://doi.org/10.1021/acs.inorgchem.3c02900
    6. Cheng Yang, Qi Wei, Yiyang Gong, Mingzhu Long, Guofu Zhou, Guichuan Xing, Bo Wu. Correlated Self-Trapped Excitons and Free Excitons with Intermediate Exciton–Phonon Coupling in 2D Mixed-Halide Perovskites. The Journal of Physical Chemistry Letters 2023, 14 (44) , 10046-10053. https://doi.org/10.1021/acs.jpclett.3c02346
    7. Hanjun Yang, Sagarmoy Mandal, Yoon Ho Lee, Jee Yung Park, Han Zhao, Chongli Yuan, Libai Huang, Ming Chen, Letian Dou. Dimensionality Engineering of Lead Organic Chalcogenide Semiconductors. Journal of the American Chemical Society 2023, 145 (44) , 23963-23971. https://doi.org/10.1021/jacs.3c05745
    8. Donato Valli, Martin Ottesen, Martin Bremholm, Steffen Wiedmann, Paul Tinnemans, Joris Van de Vondel, Maarten Roeffaers, Elke Debroye, Johan Hofkens, Masoumeh Keshavarz. Temperature-Dependent Evolution of the Structural and Optoelectronic Properties of (NH4)3Sb2I9 Single Crystals. The Journal of Physical Chemistry C 2023, 127 (41) , 20419-20425. https://doi.org/10.1021/acs.jpcc.3c05132
    9. Yanan Li, Li Yang, Xuejiao Wu, Jidong Deng, Jinbao Zhang. Composition and Illumination-Driven Phase Segregation in Hybrid Perovskite Cs2AgBi(Br1–xIx)6. The Journal of Physical Chemistry C 2023, 127 (32) , 16061-16070. https://doi.org/10.1021/acs.jpcc.3c02994
    10. Bapi Pradhan, Masoumeh Keshavarz, Yiyue Zhang, Li Sun, Carlos Marquez, Simon Smolders, Dirk De Vos, Eduard Fron, Joris Van de Vondel, Denys Naumenko, Heinz Amenitsch, Elke Debroye, Maarten BJ Roeffaers, Johan Hofkens. Mn Doping in Low-Dimensional Perovskites: A Switch for Controlling Dopant and Host Emission. The Journal of Physical Chemistry C 2023, 127 (22) , 10629-10639. https://doi.org/10.1021/acs.jpcc.3c01774
    11. Bin Zhang, Johan Klarbring, Fuxiang Ji, Sergei I. Simak, Igor A. Abrikosov, Feng Gao, Galyna Yu Rudko, Weimin M. Chen, Irina A. Buyanova. Lattice Dynamics and Electron–Phonon Coupling in Double Perovskite Cs2NaFeCl6. The Journal of Physical Chemistry C 2023, 127 (4) , 1908-1916. https://doi.org/10.1021/acs.jpcc.2c07493
    12. Vipinraj Sugathan, Jiban Kangsabanik, Aftab Alam, Aswani Yella. Lead-Free Potassium Alloyed Cs2AgBiBr6: Tunable Optoelectronic Properties and Carrier-Lattice Interaction. Energy & Fuels 2022, 36 (18) , 11100-11107. https://doi.org/10.1021/acs.energyfuels.2c01857
    13. Cheng Zhu, Jianbo Jin, Mengyu Gao, Alexander M. Oddo, Maria C. Folgueras, Ye Zhang, Chung-Kuan Lin, Peidong Yang. Supramolecular Assembly of Halide Perovskite Building Blocks. Journal of the American Chemical Society 2022, 144 (27) , 12450-12458. https://doi.org/10.1021/jacs.2c04357
    14. Anupriya Singh, Rajneesh Chaurasiya, Amarnath Bheemaraju, Jen-Sue Chen, Soumitra Satapathi. Strain-Induced Band-Edge Modulation in Lead-Free Antimony-Based Double Perovskite for Visible-Light Absorption. ACS Applied Energy Materials 2022, 5 (4) , 3926-3932. https://doi.org/10.1021/acsaem.1c03598
    15. Martina Pantaler, Valentin Diez-Cabanes, Valentin I. E. Queloz, Albertus Sutanto, Pascal Alexander Schouwink, Mariachiara Pastore, Inés García-Benito, Mohammad Khaja Nazeeruddin, David Beljonne, Doru C. Lupascu, Claudio Quarti, Giulia Grancini. Revealing Weak Dimensional Confinement Effects in Excitonic Silver/Bismuth Double Perovskites. JACS Au 2022, 2 (1) , 136-149. https://doi.org/10.1021/jacsau.1c00429
    16. Athrey C. Dakshinamurthy, C. Sudakar. Sublattice Distortion Enabled Strong Interplay between Phonon Vibrations, Electron–Phonon Coupling, and Self-Trapped Excitonic Emissions in Cs2Ag1–xNaxBiCl6 Double Perovskites. The Journal of Physical Chemistry Letters 2022, 13 (2) , 433-439. https://doi.org/10.1021/acs.jpclett.1c03862
    17. Yan Zhao, Shuqing Zhang, Bo Xu, Shishu Zhang, Shiyi Han, Jin Zhang, Lianming Tong. Monitoring Strain-Controlled Exciton–Phonon Coupling in Layered MoS2 by Circularly Polarized Light. The Journal of Physical Chemistry Letters 2021, 12 (47) , 11555-11562. https://doi.org/10.1021/acs.jpclett.1c03481
    18. Maria C. Folgueras, Jianbo Jin, Mengyu Gao, Li Na Quan, Julian A. Steele, Shivani Srivastava, Michael B. Ross, Rui Zhang, Fabian Seeler, Kerstin Schierle-Arndt, Mark Asta, Peidong Yang. Lattice Dynamics and Optoelectronic Properties of Vacancy-Ordered Double Perovskite Cs2TeX6 (X = Cl–, Br–, I–) Single Crystals. The Journal of Physical Chemistry C 2021, 125 (45) , 25126-25139. https://doi.org/10.1021/acs.jpcc.1c08332
    19. Yalan She, Zhufeng Hou, Oleg V. Prezhdo, Wei Li. Identifying and Passivating Killer Defects in Pb-Free Double Cs2AgBiBr6 Perovskite. The Journal of Physical Chemistry Letters 2021, 12 (43) , 10581-10588. https://doi.org/10.1021/acs.jpclett.1c03134
    20. Bruno I. Ito, Eelco K. Tekelenburg, Graeme R. Blake, Maria A. Loi, Ana Flavia Nogueira. Double Perovskite Single-Crystal Photoluminescence Quenching and Resurge: The Role of Cu Doping on its Photophysics and Crystal Structure. The Journal of Physical Chemistry Letters 2021, 12 (42) , 10444-10449. https://doi.org/10.1021/acs.jpclett.1c03035
    21. Paz Sebastiá-Luna, Joaquín Calbo, Nicolás Albiach-Sebastián, Michele Sessolo, Francisco Palazón, Enrique Ortí, Henk J. Bolink. Tuning the Optical Absorption of Sn-, Ge-, and Zn-Substituted Cs2AgBiBr6 Double Perovskites: Structural and Electronic Effects. Chemistry of Materials 2021, 33 (20) , 8028-8035. https://doi.org/10.1021/acs.chemmater.1c02236
    22. Shabnum Maqbool, Tariq Sheikh, Ziyad Thekkayil, Swati Deswal, Ramamoorthy Boomishankar, Angshuman Nag, Pankaj Mandal. Third Harmonic Upconversion and Self-Trapped Excitonic Emission in 1D Pyridinium Lead Iodide. The Journal of Physical Chemistry C 2021, 125 (41) , 22674-22683. https://doi.org/10.1021/acs.jpcc.1c07639
    23. Zhiwei Ma, Qian Li, Jiajun Luo, Shunran Li, Laizhi Sui, Dianlong Zhao, Kaijun Yuan, Guanjun Xiao, Jiang Tang, Zewei Quan, Bo Zou. Pressure-Driven Reverse Intersystem Crossing: New Path toward Bright Deep-Blue Emission of Lead-Free Halide Double Perovskites. Journal of the American Chemical Society 2021, 143 (37) , 15176-15184. https://doi.org/10.1021/jacs.1c06207
    24. Bin Yang, Keli Han. Ultrafast Dynamics of Self-Trapped Excitons in Lead-Free Perovskite Nanocrystals. The Journal of Physical Chemistry Letters 2021, 12 (34) , 8256-8262. https://doi.org/10.1021/acs.jpclett.1c01828
    25. Xiaotong Li, Boubacar Traoré, Mikaël Kepenekian, Linda Li, Constantinos C. Stoumpos, Peijun Guo, Jacky Even, Claudine Katan, Mercouri G. Kanatzidis. Bismuth/Silver-Based Two-Dimensional Iodide Double and One-Dimensional Bi Perovskites: Interplay between Structural and Electronic Dimensions. Chemistry of Materials 2021, 33 (15) , 6206-6216. https://doi.org/10.1021/acs.chemmater.1c01952
    26. Amrita Dey, Junzhi Ye, Apurba De, Elke Debroye, Seung Kyun Ha, Eva Bladt, Anuraj S. Kshirsagar, Ziyu Wang, Jun Yin, Yue Wang, Li Na Quan, Fei Yan, Mengyu Gao, Xiaoming Li, Javad Shamsi, Tushar Debnath, Muhan Cao, Manuel A. Scheel, Sudhir Kumar, Julian A. Steele, Marina Gerhard, Lata Chouhan, Ke Xu, Xian-gang Wu, Yanxiu Li, Yangning Zhang, Anirban Dutta, Chuang Han, Ilka Vincon, Andrey L. Rogach, Angshuman Nag, Anunay Samanta, Brian A. Korgel, Chih-Jen Shih, Daniel R. Gamelin, Dong Hee Son, Haibo Zeng, Haizheng Zhong, Handong Sun, Hilmi Volkan Demir, Ivan G. Scheblykin, Iván Mora-Seró, Jacek K. Stolarczyk, Jin Z. Zhang, Jochen Feldmann, Johan Hofkens, Joseph M. Luther, Julia Pérez-Prieto, Liang Li, Liberato Manna, Maryna I. Bodnarchuk, Maksym V. Kovalenko, Maarten B. J. Roeffaers, Narayan Pradhan, Omar F. Mohammed, Osman M. Bakr, Peidong Yang, Peter Müller-Buschbaum, Prashant V. Kamat, Qiaoliang Bao, Qiao Zhang, Roman Krahne, Raquel E. Galian, Samuel D. Stranks, Sara Bals, Vasudevanpillai Biju, William A. Tisdale, Yong Yan, Robert L. Z. Hoye, Lakshminarayana Polavarapu. State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano 2021, 15 (7) , 10775-10981. https://doi.org/10.1021/acsnano.0c08903
    27. Peigeng Han, Cheng Luo, Wei Zhou, Jie Hou, Cheng Li, Daoyuan Zheng, Keli Han. Band-Gap Engineering of Lead-Free Iron-Based Halide Double-Perovskite Single Crystals and Nanocrystals by an Alloying or Doping Strategy. The Journal of Physical Chemistry C 2021, 125 (21) , 11743-11749. https://doi.org/10.1021/acs.jpcc.1c02636
    28. Joshua Leveillee, George Volonakis, Feliciano Giustino. Phonon-Limited Mobility and Electron–Phonon Coupling in Lead-Free Halide Double Perovskites. The Journal of Physical Chemistry Letters 2021, 12 (18) , 4474-4482. https://doi.org/10.1021/acs.jpclett.1c00841
    29. Adam D. Wright, Leonardo R. V. Buizza, Kimberley J. Savill, Giulia Longo, Henry J. Snaith, Michael B. Johnston, Laura M. Herz. Ultrafast Excited-State Localization in Cs2AgBiBr6 Double Perovskite. The Journal of Physical Chemistry Letters 2021, 12 (13) , 3352-3360. https://doi.org/10.1021/acs.jpclett.1c00653
    30. Raisa-Ioana Biega, Marina R. Filip, Linn Leppert, Jeffrey B. Neaton. Chemically Localized Resonant Excitons in Silver–Pnictogen Halide Double Perovskites. The Journal of Physical Chemistry Letters 2021, 12 (8) , 2057-2063. https://doi.org/10.1021/acs.jpclett.0c03579
    31. Heng Zhang, Elke Debroye, Julian A. Steele, Maarten B. J. Roeffaers, Johan Hofkens, Hai I. Wang, Mischa Bonn. Highly Mobile Large Polarons in Black Phase CsPbI3. ACS Energy Letters 2021, 6 (2) , 568-573. https://doi.org/10.1021/acsenergylett.0c02482
    32. Wei Zheng, Ruijia Sun, Yeqi Liu, Xiaojia Wang, Nianqiao Liu, Yanchen Ji, Liangling Wang, Hong Liu, Yuhai Zhang. Excitation Management of Lead-Free Perovskite Nanocrystals Through Doping. ACS Applied Materials & Interfaces 2021, 13 (5) , 6404-6410. https://doi.org/10.1021/acsami.0c20230
    33. Beatriz Martín-García, Davide Spirito, Giulia Biffi, Sergey Artyukhin, Francesco Bonaccorso, Roman Krahne. Phase Transitions in Low-Dimensional Layered Double Perovskites: The Role of the Organic Moieties. The Journal of Physical Chemistry Letters 2021, 12 (1) , 280-286. https://doi.org/10.1021/acs.jpclett.0c03275
    34. Samuel P. Girdzis, Yu Lin, Linn Leppert, Adam H. Slavney, Sulgiye Park, Karena W. Chapman, Hemamala I. Karunadasa, Wendy L. Mao. Revealing Local Disorder in a Silver-Bismuth Halide Perovskite upon Compression. The Journal of Physical Chemistry Letters 2021, 12 (1) , 532-536. https://doi.org/10.1021/acs.jpclett.0c03412
    35. Xiaoman Ma, Peng Shen, Ya-Nan Wang, Fang Pan, Guangde Chen, Shijie Xu, Honggang Ye. Local Phonon Modes Concerned with the Self-Trapped Exciton State in CsPbBr3 Nanocrystals. The Journal of Physical Chemistry C 2020, 124 (49) , 27130-27135. https://doi.org/10.1021/acs.jpcc.0c07879
    36. Hassan Siddique, Zilong Xu, Xiangdong Li, Sara Saeed, Wentao Liang, Xiangqi Wang, Chan Gao, Rucheng Dai, Zhongping Wang, Zengming Zhang. Anomalous Octahedron Distortion of Bi-Alloyed Cs2AgInCl6 Crystal via XRD, Raman, Huang–Rhys Factor, and Photoluminescence. The Journal of Physical Chemistry Letters 2020, 11 (22) , 9572-9578. https://doi.org/10.1021/acs.jpclett.0c02852
    37. Liang Qin, Zhilin Wen, Xiaoxian Zhang, Ke Zhang, Yunxiang Lin, Li Song, Xiaojun Wu, Xiaohui Qiu. Multiphonon Raman Scattering and Strong Electron–Phonon Coupling in 2D Ternary Cu2MoS4 Nanoflakes. The Journal of Physical Chemistry Letters 2020, 11 (20) , 8483-8489. https://doi.org/10.1021/acs.jpclett.0c02530
    38. Xiaoqing Yang, Wei Wang, Ran Ran, Wei Zhou, Zongping Shao. Recent Advances in Cs2AgBiBr6-Based Halide Double Perovskites as Lead-Free and Inorganic Light Absorbers for Perovskite Solar Cells. Energy & Fuels 2020, 34 (9) , 10513-10528. https://doi.org/10.1021/acs.energyfuels.0c02236
    39. Yanfeng Yin, Wenming Tian, Jing Leng, Jiming Bian, Shengye Jin. Carrier Transport Limited by Trap State in Cs2AgBiBr6 Double Perovskites. The Journal of Physical Chemistry Letters 2020, 11 (17) , 6956-6963. https://doi.org/10.1021/acs.jpclett.0c01817
    40. Ryosuke Nishikubo, Hiroyuki Kanda, Inés García-Benito, Agustín Molina-Ontoria, Gianluca Pozzi, Abdullah M. Asiri, Mohammad Khaja Nazeeruddin, Akinori Saeki. Optoelectronic and Energy Level Exploration of Bismuth and Antimony-Based Materials for Lead-Free Solar Cells. Chemistry of Materials 2020, 32 (15) , 6416-6424. https://doi.org/10.1021/acs.chemmater.0c01503
    41. Giulia Longo, Suhas Mahesh, Leonardo R. V. Buizza, Adam D. Wright, Alexandra J. Ramadan, Mojtaba Abdi-Jalebi, Pabitra K. Nayak, Laura M. Herz, Henry J. Snaith. Understanding the Performance-Limiting Factors of Cs2AgBiBr6 Double-Perovskite Solar Cells. ACS Energy Letters 2020, 5 (7) , 2200-2207. https://doi.org/10.1021/acsenergylett.0c01020
    42. Y. Puttisong, F. Moro, S. L. Chen, P. Höjer, W. Ning, F. Gao, I. A. Buyanova, W. M. Chen. Effect of Crystal Symmetry on the Spin States of Fe3+ and Vibration Modes in Lead-free Double-Perovskite Cs2AgBi(Fe)Br6. The Journal of Physical Chemistry Letters 2020, 11 (12) , 4873-4878. https://doi.org/10.1021/acs.jpclett.0c01543
    43. Abhoy Karmakar, Guy M. Bernard, Alkiviathes Meldrum, Anton O. Oliynyk, Vladimir K. Michaelis. Tailorable Indirect to Direct Band-Gap Double Perovskites with Bright White-Light Emission: Decoding Chemical Structure Using Solid-State NMR. Journal of the American Chemical Society 2020, 142 (24) , 10780-10793. https://doi.org/10.1021/jacs.0c02198
    44. Amrita Dey, Alexander F. Richter, Tushar Debnath, He Huang, Lakshminarayana Polavarapu, Jochen Feldmann. Transfer of Direct to Indirect Bound Excitons by Electron Intervalley Scattering in Cs2AgBiBr6 Double Perovskite Nanocrystals. ACS Nano 2020, 14 (5) , 5855-5861. https://doi.org/10.1021/acsnano.0c00997
    45. Pengfei Shen, Thomas Vogt, Yongjae Lee. Pressure-Induced Enhancement of Broad-Band White Light Emission in Butylammonium Lead Bromide. The Journal of Physical Chemistry Letters 2020, 11 (10) , 4131-4137. https://doi.org/10.1021/acs.jpclett.0c01160
    46. Thomas Burwig, Maxim Guc, Victor Izquierdo-Roca, Paul Pistor. Synthesis and Crystal Structure Evolution of Co-Evaporated Cs2AgBiBr6 Thin Films upon Thermal Treatment. The Journal of Physical Chemistry C 2020, 124 (17) , 9249-9255. https://doi.org/10.1021/acs.jpcc.0c02480
    47. Debjit Manna, Jiban Kangsabanik, Tapan Kumar Das, Debashish Das, Aftab Alam, Aswani Yella. Lattice Dynamics and Electron–Phonon Coupling in Lead-Free Cs2AgIn1–xBixCl6 Double Perovskite Nanocrystals. The Journal of Physical Chemistry Letters 2020, 11 (6) , 2113-2120. https://doi.org/10.1021/acs.jpclett.0c00206
    48. Alexander Schmitz, L. Leander Schaberg, Svetlana Sirotinskaya, Martina Pantaler, Doru C. Lupascu, Niels Benson, Gerd Bacher. Fine Structure of the Optical Absorption Resonance in Cs2AgBiBr6 Double Perovskite Thin Films. ACS Energy Letters 2020, 5 (2) , 559-565. https://doi.org/10.1021/acsenergylett.9b02781
    49. Long Zhang, Yuanyuan Fang, Laizhi Sui, Jiejuan Yan, Kai Wang, Kaijun Yuan, Wendy L. Mao, Bo Zou. Tuning Emission and Electron–Phonon Coupling in Lead-Free Halide Double Perovskite Cs2AgBiCl6 under Pressure. ACS Energy Letters 2019, 4 (12) , 2975-2982. https://doi.org/10.1021/acsenergylett.9b02155
    50. Felix J. Hofmann, Maryna I. Bodnarchuk, Dmitry N. Dirin, Jan Vogelsang, Maksym V. Kovalenko, John M. Lupton. Energy Transfer from Perovskite Nanocrystals to Dye Molecules Does Not Occur by FRET. Nano Letters 2019, 19 (12) , 8896-8902. https://doi.org/10.1021/acs.nanolett.9b03779
    51. Bin Yang, Keli Han. Charge-Carrier Dynamics of Lead-Free Halide Perovskite Nanocrystals. Accounts of Chemical Research 2019, 52 (11) , 3188-3198. https://doi.org/10.1021/acs.accounts.9b00422
    52. Kyle M. McCall, Constantinos C. Stoumpos, Oleg Y. Kontsevoi, Grant C. B. Alexander, Bruce W. Wessels, Mercouri G. Kanatzidis. From 0D Cs3Bi2I9 to 2D Cs3Bi2I6Cl3: Dimensional Expansion Induces a Direct Band Gap but Enhances Electron–Phonon Coupling. Chemistry of Materials 2019, 31 (7) , 2644-2650. https://doi.org/10.1021/acs.chemmater.9b00636
    53. Laura Schade, Adam D. Wright, Roger D. Johnson, Markus Dollmann, Bernard Wenger, Pabitra K. Nayak, Dharmalingam Prabhakaran, Laura M. Herz, Robin Nicholas, Henry J. Snaith, Paolo G. Radaelli. Structural and Optical Properties of Cs2AgBiBr6 Double Perovskite. ACS Energy Letters 2019, 4 (1) , 299-305. https://doi.org/10.1021/acsenergylett.8b02090
    54. Bin Yang, Xin Mao, Feng Hong, Weiwei Meng, Yuxuan Tang, Xusheng Xia, Songqiu Yang, Weiqiao Deng, Keli Han. Lead-Free Direct Band Gap Double-Perovskite Nanocrystals with Bright Dual-Color Emission. Journal of the American Chemical Society 2018, 140 (49) , 17001-17006. https://doi.org/10.1021/jacs.8b07424
    55. Robin Kentsch, Mirko Scholz, Jonas Horn, Derck Schlettwein, Kawon Oum, Thomas Lenzer. Exciton Dynamics and Electron–Phonon Coupling Affect the Photovoltaic Performance of the Cs2AgBiBr6 Double Perovskite. The Journal of Physical Chemistry C 2018, 122 (45) , 25940-25947. https://doi.org/10.1021/acs.jpcc.8b09911
    56. Fei He, Yiou Wang, Tushar Debnath, Markus Döblinger, Quinten A. Akkerman, Jochen Feldmann, Amrita Dey. Silver‐Nanoclusters and Vacancies Influence the Optical Properties of Spherical Cs 2 AgBiCl 6 Nanocrystals. Advanced Optical Materials 2024, 38 https://doi.org/10.1002/adom.202302898
    57. Fabian Schmitz, Ribhu Bhatia, Julian Burkhart, Pascal Schweitzer, Marco Allione, Jaime Gallego, Piotr Piotrowski, Jakub Cajzl, Piotr Paszke, Gour Mohan Das, Dorota A. Pawlak, Federico Bella, Derck Schlettwein, Francesco Lamberti, Simone Meloni, Teresa Gatti. Improved Hole Extraction and Band Alignment via Interface Modification in Hole Transport Material‐Free Ag/Bi Double Perovskite Solar Cells. Solar RRL 2024, 8 (6) https://doi.org/10.1002/solr.202300965
    58. Naveen Kumar Tailor, Joanna Kruszyńska, Daniel Prochowicz, Pankaj Yadav, Soumitra Satapathi. Thermochromism in Bismuth Halide Perovskites with Cation and Anion Transmutation. Advanced Optical Materials 2024, 12 (4) https://doi.org/10.1002/adom.202301583
    59. Ying Wang, Haoyu Wang, Fan Zhang, Xingchen Dong, Wei Guan, Peng Wang, Shuo Zhang, Lina Sui, Zhixing Gan, Lifeng Dong, Liyan Yu. Modulating Luminescence of Double Perovskites by Intrinsic Strain Effect and Applications in White Light Emitting Devices. Advanced Optical Materials 2024, 8 https://doi.org/10.1002/adom.202302494
    60. Arzu Öcebe, İsmail Cihan Kaya. From particles to films: production of Cs 2 AgBiBr 6 -based perovskite solar cells and enhancement of cell performance via ionic liquid utilization at the TiO 2 /perovskite interface. Dalton Transactions 2024, 53 (3) , 1253-1264. https://doi.org/10.1039/D3DT02930A
    61. Cheng Zhu, Jianbo Jin, Zhen Wang, Zhenpeng Xu, Maria C. Folgueras, Yuxin Jiang, Can B. Uzundal, Han K. D. Le, Feng Wang, Xiaoyu (Rayne) Zheng, Peidong Yang. Supramolecular assembly of blue and green halide perovskites with near-unity photoluminescence. Science 2024, 383 (6678) , 86-93. https://doi.org/10.1126/science.adi4196
    62. Lotte Clinckemalie, Bapi Pradhan, Roel Vanden Brande, Heng Zhang, Jonathan Vandenwijngaerden, Rafikul Ali Saha, Giacomo Romolini, Li Sun, Dirk Vandenbroucke, Mischa Bonn, Hai I. Wang, Elke Debroye. Phase-engineering compact and flexible CsPbBr 3 microcrystal films for robust X-ray detection. Journal of Materials Chemistry C 2024, 12 (2) , 655-663. https://doi.org/10.1039/D3TC01903A
    63. Fuxiang Ji, Bin Zhang, Weimin M Chen, Irina A Buyanova, Feng Wang, Gerrit Boschloo. Amine Gas‐Induced Reversible Optical Bleaching of Bismuth‐Based Lead‐Free Perovskite Thin Films. Advanced Science 2024, 11 (4) https://doi.org/10.1002/advs.202306391
    64. Zhang-Jun Bai, An-Jia Yang, Sheng Tian, Lang Chen, Bing-Hao Wang, Biao Hu, Xiong Wang, Tian-Qin Zeng, Chao Peng, Yu Mao, Mengistu Tulu, Chak-Tong Au, Shuang-Feng Yin. Multi-dimensional lead-free hybrid double perovskite toward efficient and stable photocatalytic selective oxidation of toluene. Chemical Engineering Science 2023, 282 , 119334. https://doi.org/10.1016/j.ces.2023.119334
    65. Samuel M. Neguse, Songhak Yoon, Alexander Frebel, Dennis M. Jöckel, Marc Widenmeyer, Stefan Lange, Arnulf Rosspeintner, Stefan G. Ebbinghaus, Christian Hagendorf, Benjamin Balke, Anke Weidenkaff. Tunable Optical Properties and the Role of Defects on the Carrier Lifetimes of Cs 3 Sb 2 I 9 Synthesized in Various Solvents. Advanced Photonics Research 2023, 4 (12) https://doi.org/10.1002/adpr.202300184
    66. Guobiao Cen, Haigang Sheng, Zhengxuan Wang, Ling Yi, Hengchao Sun, Yipeng An, Chuanxi Zhao, Wenjie Mai. Boosting photodetection performance of Cs2AgBiBr6 through A-site Rb substitution and interfacial engineering. Journal of Colloid and Interface Science 2023, 652 , 34-40. https://doi.org/10.1016/j.jcis.2023.07.194
    67. Supriya Ghosh, Debkumar Rana, Bapi Pradhan, Patrice Donfack, Johan Hofkens, Arnulf Materny. Raman Spectroscopy of Formamidinium‐Based Lead Mixed‐Halide Perovskite Bulk Crystals. ChemPhysChem 2023, 24 (21) https://doi.org/10.1002/cphc.202300303
    68. Xiaoyan Huang, Ke Yin, Senlin Zhang, Tianhui Wu, Yiming Yuan, Xing Wang, Yuhang Jia, Zhourong Xiao, Jianmin Gu, Desong Wang. Interfacial chemical bond-modulated Z-scheme Cs2AgBiBr6/WO3 enables stable and highly efficient photocatalysis. Applied Surface Science 2023, 637 , 157877. https://doi.org/10.1016/j.apsusc.2023.157877
    69. Mengrou Wang, Jingda Zhao, Yubing Xu, Xin Wang, Damian Chinedu Onwudiwe, Omolola Esther Fayemi, Elias Emeka Elemike, Byung Seong Bae, Ying Zhu, Zhuoya Zhu, Zhiwei Zhao, Qing Li, Wei Lei. Spray‐Coated Inorganic Lead‐Free Double Perovskite Cs 2 AgBiBr 6 Based Large‐Scale Triboelectric Nanogenerator for Enhanced Energy Harvesting. Advanced Materials Technologies 2023, 8 (21) https://doi.org/10.1002/admt.202300703
    70. Bingyue Li, Hui Li, Xiangyun Gao, Mark G. Humphrey, Chi Zhang, Zhipeng Huang. Prominent reverse saturable absorption of lead-free two-dimensional organic-inorganic hybrid double perovskites promoted by defects. Materials Today Physics 2023, 38 , 101219. https://doi.org/10.1016/j.mtphys.2023.101219
    71. Marcello Righetto, Yongjie Wang, Karim A. Elmestekawy, Chelsea Q. Xia, Michael B. Johnston, Gerasimos Konstantatos, Laura M. Herz. Cation‐Disorder Engineering Promotes Efficient Charge‐Carrier Transport in AgBiS 2 Nanocrystal Films. Advanced Materials 2023, 35 (48) https://doi.org/10.1002/adma.202305009
    72. Houjiang You, Gaoxuanyu Guan, Tianchun Lang, Mingsheng Cai, Peng Su, Huichao He, Yang Zhong, Tao Han. High thermally stable deep red-emitting Sb3+,Ho3+-codoped Cs2NaScCl6 double perovskite for plant lighting. Journal of Rare Earths 2023, 38 https://doi.org/10.1016/j.jre.2023.10.012
    73. Subhash Chand Yadav, Jena Akash Kumar Satrughna, Parasharam M. Shirage. Investigation of the potential solar cell application of Cs2AgBiBr6 lead-free double perovskite. Journal of Physics and Chemistry of Solids 2023, 181 , 111515. https://doi.org/10.1016/j.jpcs.2023.111515
    74. Gangyi Zhang, Deyin Wang, Jiejun Ren, Xiaopeng Zhou, Yuhua Wang. Highly Efficient Broadband Near‐Infrared Emission from Sn 2+ Alloyed Lead‐Free Cesium Zinc Halides. Laser & Photonics Reviews 2023, 17 (10) https://doi.org/10.1002/lpor.202300158
    75. Lotte Clinckemalie, Rafikul Ali Saha, Donato Valli, Eduard Fron, Maarten B. J. Roeffaers, Johan Hofkens, Bapi Pradhan, Elke Debroye. Transformation of Cs 3 Bi 2 Br 9 to Cs 2 AgBiBr 6 Lead‐Free Perovskite Microcrystals Through Cation Exchange. Advanced Optical Materials 2023, 11 (19) https://doi.org/10.1002/adom.202300578
    76. Fabian Schmitz, Ribhu Bhatia, Francesco Lamberti, Simone Meloni, Teresa Gatti. Heavy pnictogens-based perovskite-inspired materials: Sustainable light-harvesters for indoor photovoltaics. APL Energy 2023, 1 (2) https://doi.org/10.1063/5.0161023
    77. Huygen J. Jöbsis, Kostas Fykouras, Joost W.C. Reinders, Jacco van Katwijk, Joren M. Dorresteijn, Tjom Arens, Ina Vollmer, Loreta A. Muscarella, Linn Leppert, Eline M. Hutter. Conduction Band Tuning by Controlled Alloying of Fe into Cs 2 AgBiBr 6 Double Perovskite Powders. Advanced Functional Materials 2023, https://doi.org/10.1002/adfm.202306106
    78. Bhawna, Aftab Alam, M. Aslam. Oxygen and moisture-induced healing of halide double perovskite surface defects. The Journal of Chemical Physics 2023, 159 (8) https://doi.org/10.1063/5.0154047
    79. Dongxia Zhang, Shengtao Zhu, Juntao Zeng, Hao Ma, Jianjing Gao, Ruijuan Yao, Zemin He. Significance of polymer matrix on the resistive switching performance of lead-free double perovskite nanocomposite based flexible memory device. Ceramics International 2023, 49 (15) , 25105-25112. https://doi.org/10.1016/j.ceramint.2023.05.040
    80. Athrey C. Dakshinamurthy, C. Sudakar. Influence of the octahedral cation on the evolution of lattice phonons in metal halide double perovskites: Raman spectroscopic investigation of Cs 2 B ′ B ″ Cl 6 ( B ′ = Ag 1 − x Na x ; B ″ = Bi 1 − x In x ). Physical Review Materials 2023, 7 (6) https://doi.org/10.1103/PhysRevMaterials.7.065401
    81. Melina Armer, Patrick Dörflinger, Andreas Weis, Carsten Büchner, Andreas Gottscholl, Julian Höcker, Kilian Frank, Lukas Nusser, Maximilian T. Sirtl, Bert Nickel, Thomas Bein, Vladimir Dyakonov. Low Temperature Optical Properties of Novel Lead‐Free Cs 2 NaFeCl 6 Perovskite Single Crystals. Advanced Photonics Research 2023, 4 (5) https://doi.org/10.1002/adpr.202300017
    82. Christoph Kastl, Pietro Bonfà, Lorenzo Maserati. Anharmonic Exciton‐Phonon Coupling in Metal‐Organic Chalcogenides Hybrid Quantum Wells. Advanced Optical Materials 2023, 11 (7) https://doi.org/10.1002/adom.202202213
    83. Min Huang, Mingshu Hou, Haiyang Xing, Jiale Tu, Shuanglian Jia. Transient memristive device based on lead-free double perovskite for secured data storage and artificial learning systems. Ceramics International 2023, 49 (7) , 10365-10374. https://doi.org/10.1016/j.ceramint.2022.11.217
    84. Zahir Muhammad, Jan Szpakowski, Ghulam Abbas, Lin Zu, Rajibul Islam, Yan Wang, Faiz Wali, Arka Karmakar, Maciej R Molas, Yue Zhang, Ling Zhu, Weisheng Zhao, Han Zhang. Anisotropic phonon and magnon vibration and gate-tunable optoelectronic properties of nickel thiophosphite. 2D Materials 2023, 10 (2) , 025001. https://doi.org/10.1088/2053-1583/aca9dc
    85. Y.J. Low, J.Y.C. Liew, M.A. Kamarudin, H.N. Lim, F.D. Muhammad, K.P. Lim, M.H.M. Zaid, T.F. Choo, H.K. Lee, Y.W. Fen, S. Hayase, Z.A. Talib. Synthesis of cesium silver bismuth bromide double perovskite nanoparticles via a microwave-assisted solvothermal method. Materials Today Chemistry 2023, 29 , 101477. https://doi.org/10.1016/j.mtchem.2023.101477
    86. Long Zhang, Shuoxue Li, Huaiyang Sun, Qiwen Jiang, Yue Wang, Yuanyuan Fang, Ying Shi, Defang Duan, Kai Wang, Hong Jiang, Laizhi Sui, Guorong Wu, Kaijun Yuan, Bo Zou. Revealing the Mechanism of Pressure‐Induced Emission in Layered Silver‐Bismuth Double Perovskites. Angewandte Chemie 2023, 135 (14) https://doi.org/10.1002/ange.202301573
    87. Long Zhang, Shuoxue Li, Huaiyang Sun, Qiwen Jiang, Yue Wang, Yuanyuan Fang, Ying Shi, Defang Duan, Kai Wang, Hong Jiang, Laizhi Sui, Guorong Wu, Kaijun Yuan, Bo Zou. Revealing the Mechanism of Pressure‐Induced Emission in Layered Silver‐Bismuth Double Perovskites. Angewandte Chemie International Edition 2023, 62 (14) https://doi.org/10.1002/anie.202301573
    88. Peng Wang, Ying Wang, Wei Guan, Hongzhou Dong, Lina Sui, Zhixing Gan, Lifeng Dong, Liyan Yu. Modulating the afterglow time of Mn 2+ doped double perovskites by size tuning and its applications in dynamic information display. Optics Express 2023, 31 (6) , 10191. https://doi.org/10.1364/OE.484244
    89. Femi Igbari, Fa-Feng Xu, Jiang-Yang Shao, Faraz Ud-Din, Peter Siffalovic, Yu-Wu Zhong. Stacking Interactions and Photovoltaic Performance of Cs 2 AgBiBr 6 Perovskite. Solar RRL 2023, 7 (6) https://doi.org/10.1002/solr.202200932
    90. Xu Chen, Mochen Jia, Wen Xu, Gencai Pan, Jinyang Zhu, Yongtao Tian, Di Wu, Xinjian Li, Zhifeng Shi. Recent Progress and Challenges of Bismuth‐Based Halide Perovskites for Emerging Optoelectronic Applications. Advanced Optical Materials 2023, 11 (3) https://doi.org/10.1002/adom.202202153
    91. Tarek I. Alanazi. Design and Device Numerical Analysis of Lead-Free Cs2AgBiBr6 Double Perovskite Solar Cell. Crystals 2023, 13 (2) , 267. https://doi.org/10.3390/cryst13020267
    92. Shaobo Cui, Jun zhao, Jiaqiong Qin, Gencai Pan. Rare earth doped double perovskite nanocrystals with controllable emission wavelength and model for high-level anti-counterfeiting. Ceramics International 2023, 49 (3) , 4517-4522. https://doi.org/10.1016/j.ceramint.2022.09.337
    93. Pardhasaradhi Nandigana, Sriram Pari, D. Sujatha, M. Shidhin, C. Jeyabharathi, Subhendu K. Panda. Lead‐Free Bismuth‐Based Halide Perovskites with Excellent Stability for Visible‐light‐Driven Photoelectrochemical Water Splitting. ChemistrySelect 2023, 8 (4) https://doi.org/10.1002/slct.202204731
    94. Isak Muzammil, Gede W. P. Adhyaksa. Overcoming the Performance Limitation of Cs 2 AgBiBr 6 Double Perovskites Using Bifacial Photovoltaic Design. Energy Technology 2023, 11 (1) https://doi.org/10.1002/ente.202201078
    95. Kashyap Dave, Wen-Tse Huang, Tadeusz Leśniewski, Agata Lazarowska, Maciej Grzegorczyk, Sebastian Mahlik, Grzegorz Leniec, Sławomir M. Kaczmarek, Ru-Shi Liu. Enhancement of self-trapped excitons and near-infrared emission in Bi 3+ /Er 3+ co-doped Cs 2 Ag 0.4 Na 0.6 InCl 6 double perovskite. Nanoscale 2022, 14 (47) , 17735-17742. https://doi.org/10.1039/D2NR05478G
    96. Sindhu S. Nair, Lucky Krishnia, Alex Trukhanov, Preeti Thakur, Atul Thakur. Prospect of double perovskite over conventional perovskite in photovoltaic applications. Ceramics International 2022, 48 (23) , 34128-34147. https://doi.org/10.1016/j.ceramint.2022.08.184
    97. Xiao‐Kai Gong, Lan Li, Jian‐Ping Xu, Ru‐Kun Ding, Zhao‐Wei Zhang, Qian Li, Long Liu, Xiao‐Song Zhang. Blue‐Light‐Excited Lead‐Free Double Perovskite Cs 2 Ag 0.6 Na 0.4 In 0.8 Bi 0.2 Cl 6 / x KBr(KI) at Room Temperature and Photovoltaic Applications. Advanced Optical Materials 2022, 10 (21) https://doi.org/10.1002/adom.202201053
    98. Alexander Frebel, Songhak Yoon, Samuel Meles Neguse, Dennis M. Jöckel, Marc Widenmeyer, Stefan Lange, Volker Naumann, Arnulf Rosspeintner, Stefan G. Ebbinghaus, Benjamin Balke, Anke Weidenkaff. Controlling the Defects of Cs 2 AgBiBr 6 by Varied Precursor Compositions. Advanced Photonics Research 2022, 3 (11) https://doi.org/10.1002/adpr.202200061
    99. Yan Wang, Chun Wang, Yi Wei, Fang Wei, Lichun Kong, Jiuju Feng, Ji‐Qing Lu, Xiaocheng Zhou, Fa Yang. Efficient and Selective Electroreduction of CO 2 to HCOOH over Bismuth‐Based Bromide Perovskites in Acidic Electrolytes. Chemistry – A European Journal 2022, 28 (58) https://doi.org/10.1002/chem.202201832
    100. Fang Liu, Angelica Simbula, Stefano Lai, Luyan Wu, Qingqian Wang, Daniela Marongiu, Riccardo Pau, Selene Matta, Federico Pitzalis, Alessandra Geddo Lehmann, Kai Wang, Alessio Filippetti, Francesco Quochi, Michele Saba, Andrea Mura, Giovanni Bongiovanni. White light emission with unity efficiency from Cs 2 Na 1− x Ag x In 1− y Bi y Cl 6 double perovskites: the role of bismuth and silver. Journal of Materials Chemistry C 2022, 10 (38) , 14232-14241. https://doi.org/10.1039/D2TC02919G
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect