ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Circular Dichroism of Chiral Molecules in DNA-Assembled Plasmonic Hotspots

  • Luisa M. Kneer
    Luisa M. Kneer
    Fakultät für Physik and Center for Nanoscience, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
  • Eva-Maria Roller
    Eva-Maria Roller
    Fakultät für Physik and Center for Nanoscience, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
  • Lucas V. Besteiro
    Lucas V. Besteiro
    Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
  • Robert Schreiber
    Robert Schreiber
    Fakultät für Physik and Center for Nanoscience, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
  • Alexander O. Govorov
    Alexander O. Govorov
    Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
    Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
  • , and 
  • Tim Liedl*
    Tim Liedl
    Fakultät für Physik and Center for Nanoscience, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
    *E-mail: [email protected]
    More by Tim Liedl
Cite this: ACS Nano 2018, 12, 9, 9110–9115
Publication Date (Web):September 6, 2018
https://doi.org/10.1021/acsnano.8b03146
Copyright © 2018 American Chemical Society

    Article Views

    4890

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The chiral state of a molecule plays a crucial role in molecular recognition and biochemical reactions. Because of this and owing to the fact that most modern drugs are chiral, the sensitive and reliable detection of the chirality of molecules is of great interest to drug development. The majority of naturally occurring biomolecules exhibit circular dichroism (CD) in the UV range. Theoretical studies and several experiments have demonstrated that this UV-CD can be transferred into the plasmonic frequency domain when metal surfaces and chiral biomolecules are in close proximity. Here, we demonstrate that the CD transfer effect can be drastically enhanced by placing chiral molecules, here double-stranded DNA, inside a plasmonic hotspot. By using different particle types (gold, silver, spheres, and rods) and by exploiting the versatility of DNA origami, we were able to systematically study the impact of varying particle distances on the CD transfer efficiency and to demonstrate CD transfer over the whole optical spectrum down to the near-infrared. For this purpose, nanorods were also placed upright on DNA origami sheets, forming strong optical antennas. Theoretical models, demonstrating the intricate relationships between molecular chirality and achiral electric fields, support our experimental findings. From both experimental measurements and theoretical considerations, we conclude that the transferred CD is most intensive for systems with strong plasmonic hotspots, as we find them in relatively small gaps (5–12 nm) between spherical nanoparticles and preferably between the tips of nanorods.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.8b03146.

    • DNA origami structure design, details on the nanoparticle functionalization with DNA, and the assembly of nanoparticle DNA dimer structures, orientation of nanorods on DNA; absorption spectra of CD measurements; TEM analysis including gap size analysis of the CD sensors; silver enhancement of dimer structures (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 110 publications.

    1. Maciej Lipok, Patryk Obstarczyk, Andrzej Żak, Joanna Olesiak-Bańska. Single Gold Nanobipyramids Sensing the Chirality of Amyloids. The Journal of Physical Chemistry Letters 2023, 14 (49) , 11084-11091. https://doi.org/10.1021/acs.jpclett.3c02762
    2. Qingqing Cheng, Jian Yang, Lichao Sun, Chuang Liu, Guizeng Yang, Yunlong Tao, Xuehao Sun, Binbin Zhang, Hongxing Xu, Qingfeng Zhang. Tuning the Plexcitonic Optical Chirality Using Discrete Structurally Chiral Plasmonic Nanoparticles. Nano Letters 2023, 23 (23) , 11376-11384. https://doi.org/10.1021/acs.nanolett.3c04265
    3. Jiayi Liu, Guodong Zhu, Yongqi Chen, Zhiguang Sun, Yurui Fang. Uncovering the Multipolar Contribution for Plasmonic Activity in Multiparticle Metamolecules Manipulated with an Atomic Force Microscope. The Journal of Physical Chemistry C 2023, 127 (44) , 21603-21610. https://doi.org/10.1021/acs.jpcc.3c04979
    4. Sanoop Mambully Somasundaran, Srinath V. K. Kompella, Nila Mohan T. M, Sudip Das, Arshad Abdul Vahid, Vinesh Vijayan, Sundaram Balasubramanian, K. George Thomas. Structurally Induced Chirality of an Achiral Chromophore on Self-Assembled Nanofibers: A Twist Makes It Chiral. ACS Nano 2023, 17 (11) , 11054-11069. https://doi.org/10.1021/acsnano.3c03892
    5. Ershad Mohammadi, T. V. Raziman, Alberto G. Curto. Nanophotonic Chirality Transfer to Dielectric Mie Resonators. Nano Letters 2023, 23 (9) , 3978-3984. https://doi.org/10.1021/acs.nanolett.3c00739
    6. Wenli Wei, Wenhe Wang, Fengxia Wu, Yu Tian, Guobao Xu, Wenxin Niu. Plasmon-Coupled Circular Dichroism of Cysteine-Embedded Ag Nanoparticles with Strong Chiral Amplification and Long-Term Stability. Chemistry of Materials 2023, 35 (8) , 3226-3235. https://doi.org/10.1021/acs.chemmater.3c00115
    7. Pengfei Zhan, Andreas Peil, Qiao Jiang, Dongfang Wang, Shikufa Mousavi, Qiancheng Xiong, Qi Shen, Yingxu Shang, Baoquan Ding, Chenxiang Lin, Yonggang Ke, Na Liu. Recent Advances in DNA Origami-Engineered Nanomaterials and Applications. Chemical Reviews 2023, 123 (7) , 3976-4050. https://doi.org/10.1021/acs.chemrev.3c00028
    8. Hanna T. Fridman, Hadar Manis Levy, Amitai Meir, Andrea Casotto, Rotem Malkinson, Joanna Dehnel, Shira Yochelis, Efrat Lifshitz, Nir Bar-Gill, Elisabetta Collini, Yossi Paltiel. Ultrafast Coherent Delocalization Revealed in Multilayer QDs under a Chiral Potential. The Journal of Physical Chemistry Letters 2023, 14 (8) , 2234-2240. https://doi.org/10.1021/acs.jpclett.2c03743
    9. Ye Wang, Rongjuan Liu, Zongze Zhang, Jingjing Wei, Zhijie Yang. Large Optical Asymmetry in Silver Nanoparticle Assemblies Enabled by CH−π Interaction-Mediated Chirality Transfer. Journal of the American Chemical Society 2023, 145 (7) , 4035-4044. https://doi.org/10.1021/jacs.2c11639
    10. Kateryna Trofymchuk, Karol Kołątaj, Viktorija Glembockyte, Fangjia Zhu, Guillermo P. Acuna, Tim Liedl, Philip Tinnefeld. Gold Nanorod DNA Origami Antennas for 3 Orders of Magnitude Fluorescence Enhancement in NIR. ACS Nano 2023, 17 (2) , 1327-1334. https://doi.org/10.1021/acsnano.2c09577
    11. Shenli Wang, Xing Liu, Stefanos Mourdikoudis, Jie Chen, Weiwei Fu, Zdeněk Sofer, Yuan Zhang, Shunping Zhang, Guangchao Zheng. Chiral Au Nanorods: Synthesis, Chirality Origin, and Applications. ACS Nano 2022, 16 (12) , 19789-19809. https://doi.org/10.1021/acsnano.2c08145
    12. Subhasis Adhikari, Michel Orrit. Optically Probing the Chirality of Single Plasmonic Nanostructures and of Single Molecules: Potential and Obstacles. ACS Photonics 2022, 9 (11) , 3486-3497. https://doi.org/10.1021/acsphotonics.2c01205
    13. Kevin Martens, Timon Funck, Eva Y. Santiago, Alexander O. Govorov, Sven Burger, Tim Liedl. Onset of Chirality in Plasmonic Meta-Molecules and Dielectric Coupling. ACS Nano 2022, 16 (10) , 16143-16149. https://doi.org/10.1021/acsnano.2c04729
    14. Tiago Ramos Leite, Lin Zschiedrich, Orhan Kizilkaya, Kevin M. McPeak. Resonant Plasmonic–Biomolecular Chiral Interactions in the Far-Ultraviolet: Enantiomeric Discrimination of sub-10 nm Amino Acid Films. Nano Letters 2022, 22 (18) , 7343-7350. https://doi.org/10.1021/acs.nanolett.2c01724
    15. Oscar Ávalos-Ovando, Eva Yazmin Santiago, Artur Movsesyan, Xiang-Tian Kong, Peng Yu, Lucas V. Besteiro, Larousse Khosravi Khorashad, Hiromi Okamoto, Joseph M. Slocik, Miguel A. Correa-Duarte, Miguel Comesaña-Hermo, Tim Liedl, Zhiming Wang, Gil Markovich, Sven Burger, Alexander O. Govorov. Chiral Bioinspired Plasmonics: A Paradigm Shift for Optical Activity and Photochemistry. ACS Photonics 2022, 9 (7) , 2219-2236. https://doi.org/10.1021/acsphotonics.2c00445
    16. Clarice D. Aiello, John M. Abendroth, Muneer Abbas, Andrei Afanasev, Shivang Agarwal, Amartya S. Banerjee, David N. Beratan, Jason N. Belling, Bertrand Berche, Antia Botana, Justin R. Caram, Giuseppe Luca Celardo, Gianaurelio Cuniberti, Aitzol Garcia-Etxarri, Arezoo Dianat, Ismael Diez-Perez, Yuqi Guo, Rafael Gutierrez, Carmen Herrmann, Joshua Hihath, Suneet Kale, Philip Kurian, Ying-Cheng Lai, Tianhan Liu, Alexander Lopez, Ernesto Medina, Vladimiro Mujica, Ron Naaman, Mohammadreza Noormandipour, Julio L. Palma, Yossi Paltiel, William Petuskey, João Carlos Ribeiro-Silva, Juan José Saenz, Elton J. G. Santos, Maria Solyanik-Gorgone, Volker J. Sorger, Dominik M. Stemer, Jesus M. Ugalde, Ana Valdes-Curiel, Solmar Varela, David H. Waldeck, Michael R. Wasielewski, Paul S. Weiss, Helmut Zacharias, Qing Hua Wang. A Chirality-Based Quantum Leap. ACS Nano 2022, 16 (4) , 4989-5035. https://doi.org/10.1021/acsnano.1c01347
    17. Lauren A. Warning, Ali Rafiei Miandashti, Anastasiia Misiura, Christy F. Landes, Stephan Link. Naturally Occurring Proteins Direct Chiral Nanorod Aggregation. The Journal of Physical Chemistry C 2022, 126 (5) , 2656-2668. https://doi.org/10.1021/acs.jpcc.1c09644
    18. Jiapeng Zheng, Xizhe Cheng, Han Zhang, Xiaopeng Bai, Ruoqi Ai, Lei Shao, Jianfang Wang. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chemical Reviews 2021, 121 (21) , 13342-13453. https://doi.org/10.1021/acs.chemrev.1c00422
    19. Lauren A. Warning, Ali Rafiei Miandashti, Lauren A. McCarthy, Qingfeng Zhang, Christy F. Landes, Stephan Link. Nanophotonic Approaches for Chirality Sensing. ACS Nano 2021, 15 (10) , 15538-15566. https://doi.org/10.1021/acsnano.1c04992
    20. Nicholas A. Kotov, (Associate Editor)Luis M. Liz-Marzán, (Associate Editor)Paul S. Weiss (Editor-in-Chief). Chiral Nanostructures: New Twists. ACS Nano 2021, 15 (8) , 12457-12460. https://doi.org/10.1021/acsnano.1c06959
    21. Li Tian, Chen Wang, Hongwei Zhao, Fuwei Sun, Hao Dong, Kai Feng, Peng Wang, Guokang He, Guangtao Li. Rational Approach to Plasmonic Dimers with Controlled Gap Distance, Symmetry, and Capability of Precisely Hosting Guest Molecules in Hotspot Regions. Journal of the American Chemical Society 2021, 143 (23) , 8631-8638. https://doi.org/10.1021/jacs.0c13377
    22. Yinan Zhang, Zhi-bei Qu, Chu Jiang, Yingying Liu, Raghu Pradeep Narayanan, Dewight Williams, Xiaolei Zuo, Lihua Wang, Hao Yan, Huajie Liu, Chunhai Fan. Prescribing Silver Chirality with DNA Origami. Journal of the American Chemical Society 2021, 143 (23) , 8639-8646. https://doi.org/10.1021/jacs.1c00363
    23. Hiromasa Niinomi, Teruki Sugiyama, An-Chieh Cheng, Miho Tagawa, Toru Ujihara, Hiroshi Y. Yoshikawa, Ryuzo Kawamura, Jun Nozawa, Junpei T. Okada, Satoshi Uda. Chiral Optical Force Generated by a Superchiral Near-Field of a Plasmonic Triangle Trimer as Origin of Giant Bias in Chiral Nucleation: A Simulation Study. The Journal of Physical Chemistry C 2021, 125 (11) , 6209-6221. https://doi.org/10.1021/acs.jpcc.0c11109
    24. Mihir Dass, Fatih N. Gür, Karol Kołątaj, Maximilian J. Urban, Tim Liedl. DNA Origami-Enabled Plasmonic Sensing. The Journal of Physical Chemistry C 2021, 125 (11) , 5969-5981. https://doi.org/10.1021/acs.jpcc.0c11238
    25. Lauren A. McCarthy, Seyyed Ali Hosseini Jebeli, Stephan Link. Extrinsic Trochoidal Dichroism is Modulated by Nanoparticle Symmetry. The Journal of Physical Chemistry C 2021, 125 (7) , 4092-4101. https://doi.org/10.1021/acs.jpcc.0c11227
    26. Emilia Severoni, Sonia Maniappan, Luis M. Liz-Marzán, Jatish Kumar, F. Javier García de Abajo, Luciano Galantini. Plasmon-Enhanced Optical Chirality through Hotspot Formation in Surfactant-Directed Self-Assembly of Gold Nanorods. ACS Nano 2020, 14 (12) , 16712-16722. https://doi.org/10.1021/acsnano.0c03997
    27. Yang Chen, Chen Zhao, Yongzhe Zhang, Cheng-wei Qiu. Integrated Molar Chiral Sensing Based on High-Q Metasurface. Nano Letters 2020, 20 (12) , 8696-8703. https://doi.org/10.1021/acs.nanolett.0c03506
    28. Michelle L. Solomon, John M. Abendroth, Lisa V. Poulikakos, Jack Hu, Jennifer A. Dionne. Fluorescence-Detected Circular Dichroism of a Chiral Molecular Monolayer with Dielectric Metasurfaces. Journal of the American Chemical Society 2020, 142 (43) , 18304-18309. https://doi.org/10.1021/jacs.0c07140
    29. Ali Rafiei Miandashti, Larousse Khosravi Khorashad, Martin E. Kordesch, Alexander O. Govorov, Hugh H. Richardson. Experimental and Theoretical Observation of Photothermal Chirality in Gold Nanoparticle Helicoids. ACS Nano 2020, 14 (4) , 4188-4195. https://doi.org/10.1021/acsnano.9b09062
    30. Nam Heon Cho, Gi Hyun Byun, Yae-Chan Lim, Sang Won Im, Hyeohn Kim, Hye-Eun Lee, Hyo-Yong Ahn, Ki Tae Nam. Uniform Chiral Gap Synthesis for High Dissymmetry Factor in Single Plasmonic Gold Nanoparticle. ACS Nano 2020, 14 (3) , 3595-3602. https://doi.org/10.1021/acsnano.9b10094
    31. Michelle L. Solomon, Amr A. E. Saleh, Lisa V. Poulikakos, John M. Abendroth, Loza F. Tadesse, Jennifer A. Dionne. Nanophotonic Platforms for Chiral Sensing and Separation. Accounts of Chemical Research 2020, 53 (3) , 588-598. https://doi.org/10.1021/acs.accounts.9b00460
    32. Judith Langer, Dorleta Jimenez de Aberasturi, Javier Aizpurua, Ramon A. Alvarez-Puebla, Baptiste Auguié, Jeremy J. Baumberg, Guillermo C. Bazan, Steven E. J. Bell, Anja Boisen, Alexandre G. Brolo, Jaebum Choo, Dana Cialla-May, Volker Deckert, Laura Fabris, Karen Faulds, F. Javier García de Abajo, Royston Goodacre, Duncan Graham, Amanda J. Haes, Christy L. Haynes, Christian Huck, Tamitake Itoh, Mikael Käll, Janina Kneipp, Nicholas A. Kotov, Hua Kuang, Eric C. Le Ru, Hiang Kwee Lee, Jian-Feng Li, Xing Yi Ling, Stefan A. Maier, Thomas Mayerhöfer, Martin Moskovits, Kei Murakoshi, Jwa-Min Nam, Shuming Nie, Yukihiro Ozaki, Isabel Pastoriza-Santos, Jorge Perez-Juste, Juergen Popp, Annemarie Pucci, Stephanie Reich, Bin Ren, George C. Schatz, Timur Shegai, Sebastian Schlücker, Li-Lin Tay, K. George Thomas, Zhong-Qun Tian, Richard P. Van Duyne, Tuan Vo-Dinh, Yue Wang, Katherine A. Willets, Chuanlai Xu, Hongxing Xu, Yikai Xu, Yuko S. Yamamoto, Bing Zhao, Luis M. Liz-Marzán. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14 (1) , 28-117. https://doi.org/10.1021/acsnano.9b04224
    33. Meng Wang, Jinyi Dong, Chao Zhou, Hao Xie, Weihai Ni, Shun Wang, Huile Jin, Qiangbin Wang. Reconfigurable Plasmonic Diastereomers Assembled by DNA Origami. ACS Nano 2019, 13 (12) , 13702-13708. https://doi.org/10.1021/acsnano.9b06734
    34. Le Chang, Lucas V. Besteiro, Jiachen Sun, Eva Yazmin Santiago, Stephen K. Gray, Zhiming Wang, Alexander O. Govorov. Electronic Structure of the Plasmons in Metal Nanocrystals: Fundamental Limitations for the Energy Efficiency of Hot Electron Generation. ACS Energy Letters 2019, 4 (10) , 2552-2568. https://doi.org/10.1021/acsenergylett.9b01617
    35. Yongkai Wang, Zhongyu Wang, Qijing Wang, Shangqi Zhou, Qingyan Han, Wei Gao, Kaili Ren, Jianxia Qi, Jun Dong. Active Control and Biosensing Application of Induced Chirality between Symmetric Metal and Graphene Nanostructures. The Journal of Physical Chemistry C 2019, 123 (40) , 24754-24762. https://doi.org/10.1021/acs.jpcc.9b07576
    36. Ahlam Nemati, Sasan Shadpour, Lara Querciagrossa, Taizo Mori, Claudio Zannoni, Torsten Hegmann. Highly Sensitive, Tunable Chirality Amplification through Space Visualized for Gold Nanorods Capped with Axially Chiral Binaphthyl Derivatives. ACS Nano 2019, 13 (9) , 10312-10326. https://doi.org/10.1021/acsnano.9b03787
    37. Li Hu, Tim Liedl, Kevin Martens, Zhiming Wang, Alexander O. Govorov. Long-Range Plasmon-Assisted Chiral Interactions in Nanocrystal Assemblies. ACS Photonics 2019, 6 (3) , 749-756. https://doi.org/10.1021/acsphotonics.8b01676
    38. Chen Wang, Dandan Lu, Lichao Sun, Qingfeng Zhang. Rational Design of Plasmonic Nanoparticle‐Molecule Complexes for Chirality Sensing †. Chinese Journal of Chemistry 2024, 42 (8) , 903-919. https://doi.org/10.1002/cjoc.202300602
    39. Tao Zhang, Huajie Liu. The motive forces in DNA-enabled nanomachinery. iScience 2024, 27 (4) , 109453. https://doi.org/10.1016/j.isci.2024.109453
    40. Yu-Cheng Ouyang, Bong-Jun Yeom, Yuan Zhao, Wei Ma. Progress and prospects of chiral nanomaterials for biosensing platforms. Rare Metals 2024, 9 https://doi.org/10.1007/s12598-023-02602-8
    41. Fatih Nadi Gür, , . DNA-assembled plasmonic nanosystems. 2024, 26. https://doi.org/10.1117/12.3004423
    42. Chenguang Rong, Bin Cai, Yongzhi Cheng, Fu Chen, Hui Luo, Xiangcheng Li. Dual-band terahertz chiral metasurface absorber with enhanced circular dichroism based on temperature-tunable InSb for sensing applications. Physical Chemistry Chemical Physics 2024, 26 (6) , 5579-5588. https://doi.org/10.1039/D3CP05528K
    43. Patrick T. Probst, Yue Dong, Ziwei Zhou, Olha Aftenieva, Andreas Fery. Bottom‐Up Assembly of Inorganic Particle‐Based Chiroptical Materials. Advanced Optical Materials 2024, 12 (5) https://doi.org/10.1002/adom.202301834
    44. L. Mauro, J. Fregoni, J. Feist, R. Avriller. Classical approaches to chiral polaritonics. Physical Review A 2024, 109 (2) https://doi.org/10.1103/PhysRevA.109.023528
    45. Guizeng Yang, Lichao Sun, Qingfeng Zhang. Multicomponent chiral plasmonic hybrid nanomaterials: recent advances in synthesis and applications. Nanoscale Advances 2024, 6 (2) , 318-336. https://doi.org/10.1039/D3NA00808H
    46. Dameng Sun, Xin Huang, Ruojun Man, Xinjie Jia, Xinluan Song, Sihan Wang, Xingyong Xue, Hongming Liu, Zhen Ma. Fe( ii ) complexes of 2,2′:6′,2′′-terpyridine ligands functionalized with substituted-phenyl groups: synthesis, crystal structures and anticancer potential. Dalton Transactions 2023, 52 (48) , 18416-18428. https://doi.org/10.1039/D3DT02732E
    47. Lichao Sun, Yunlong Tao, Guizeng Yang, Chuang Liu, Xuehao Sun, Qingfeng Zhang. Geometric Control and Optical Properties of Intrinsically Chiral Plasmonic Nanomaterials. Advanced Materials 2023, 24 https://doi.org/10.1002/adma.202306297
    48. Divita Mathur, Sebastián A. Díaz, Niko Hildebrandt, Ryan D. Pensack, Bernard Yurke, Austin Biaggne, Lan Li, Joseph S. Melinger, Mario G. Ancona, William B. Knowlton, Igor L. Medintz. Pursuing excitonic energy transfer with programmable DNA-based optical breadboards. Chemical Society Reviews 2023, 52 (22) , 7848-7948. https://doi.org/10.1039/D0CS00936A
    49. Tingnuo Pan, Hui Hu, Mingxuan Geng, Zheng Zhu, Yuxiang Li, Chunying Guan, Jinhui Shi. Quasi-Bound States in the Continuum Based on All-Dielectric Metasurface. 2023, 1-3. https://doi.org/10.1109/CSRSWTC60855.2023.10427102
    50. Tingting Hong, Wenhu Zhou, Songwen Tan, Zhiqiang Cai. A cooperation tale of biomolecules and nanomaterials in nanoscale chiral sensing and separation. Nanoscale Horizons 2023, 8 (11) , 1485-1508. https://doi.org/10.1039/D3NH00133D
    51. Chenqi Zhang, Xinshuang Gao, Hanbo Li, Yinglu Ji, Rui Cai, Zhijian Hu, Xiaochun Wu. Regulation of Chirality Transfer and Amplification from Chiral Cysteine to Gold Nanorod Assemblies using Nonchiral Surface Ligands. Advanced Optical Materials 2023, 11 (18) https://doi.org/10.1002/adom.202202804
    52. Artur Movsesyan, Alina Muravitskaya, Lucas V. Besteiro, Eva Yazmin Santiago, Oscar Ávalos‐Ovando, Miguel A. Correa‐Duarte, Zhiming Wang, Gil Markovich, Alexander O. Govorov. Creating Chiral Plasmonic Nanostructures Using Chiral Light in a Solution and on a Substrate: The Near‐Field and Hot‐Electron Routes. Advanced Optical Materials 2023, 11 (18) https://doi.org/10.1002/adom.202300013
    53. Neha, Navneet Kaur. Insight into the binding interactions of fluorenone-pendent Schiff base with calf thymus DNA. Analytical Biochemistry 2023, 675 , 115216. https://doi.org/10.1016/j.ab.2023.115216
    54. A. Olshtrem, I. Panov, S. Chertopalov, K. Zaruba, B. Vokata, P. Sajdl, J. Lancok, J. Storch, V. Církva, V. Svorcik, M. Kartau, A. S. Karimullah, J. Vana, O. Lyutakov. Chiral Plasmonic Response of 2D Ti 3 C 2 T x Flakes: Realization and Applications. Advanced Functional Materials 2023, 33 (30) https://doi.org/10.1002/adfm.202212786
    55. Xiongbin Wang, Xuanyu Zhang, Huan Liu, Zikang Tang, Rui Chen. Self-assembling nanoarchitectonics of low dimensional semiconductors for circularly polarized luminescence. Journal of Materiomics 2023, 9 (4) , 683-700. https://doi.org/10.1016/j.jmat.2023.01.009
    56. Xingyue Lin, Yuhan Zhou, Xinyang Pan, Qin Zhang, Ningneng Hu, Hao Li, Le Wang, Qi Xue, Wei Zhang, Weihai Ni. Trace detection of chiral J-aggregated molecules adsorbed on single Au nanorods. Nanoscale 2023, 15 (25) , 10667-10676. https://doi.org/10.1039/D3NR01147J
    57. Gaoyang Wang, Hongyu Zhang, Hua Kuang, Chuanlai Xu, Liguang Xu. Chiral inorganic nanomaterials for bioapplications. Matter 2023, 6 (6) , 1752-1781. https://doi.org/10.1016/j.matt.2023.04.002
    58. Jakub Skórka, Konrad J. Kapcia, Paweł T. Jochym, Andrzej Ptok. Chiral phonons in binary compounds A Bi ( A = K, Rb, Cs) with P2 1 /c structure. Materials Today Communications 2023, 35 , 105888. https://doi.org/10.1016/j.mtcomm.2023.105888
    59. Bing Yang, Yueli Huang, Biyuan Wu, Zenghong Ma, Kun Zhou, Xiaohu Wu. Enhanced chirality induced in a composite structure consisting of α-MoO 3 film and a silver metasurface. Applied Optics 2023, 62 (15) , 3855. https://doi.org/10.1364/AO.482782
    60. Xin Guan, Haiyan Wen, Benwei Wang, Zhiyuan Wang, Yanling Zhou, Hongming Liu, Hailan Chen, Lixia Pan, Zhen Ma. Anticancer activities and DNA/BSA interactions for five Cu(II) compounds with substituted terpyridine ligands. Journal of Coordination Chemistry 2023, 76 (5-6) , 667-688. https://doi.org/10.1080/00958972.2023.2209270
    61. Atena Sharifi-Rad, Zeinab Amiri-Tehranizadeh, Atiye Talebi, Niknaz Nosrati, Morvarid Medalian, Mahtab Pejhan, Nazanin Hamzkanloo, Mohammad Reza Saberi, Parisa Mokaberi, Jamshidkhan Chamani. Multi spectroscopic and molecular simulation studies of propyl acridone binding to calf thymus DNA in the presence of electromagnetic force. BioImpacts 2023, 13 (1) , 5-16. https://doi.org/10.34172/bi.2022.23592
    62. Yongkai Wang, Zhiduo Li, Qianying Wang, Zhiyu Zhang, Xiang Lan, Qingyan Han, Lipeng Zhu, Chengyun Zhang, Xiaolong Zhao, Jun Dong. Induced circular dichroism of achiral dielectric elliptical hole arrays with a monolayer borophene film. Physical Chemistry Chemical Physics 2022, 24 (46) , 28362-28370. https://doi.org/10.1039/D2CP04072G
    63. Muhammad Waseem Ashraf, Alberto Diaspro. On the structural organization of macromolecules using chiral sensitive differential scattering of circularly polarized light. Optics Communications 2022, 522 , 128639. https://doi.org/10.1016/j.optcom.2022.128639
    64. Hirofumi Shiraki, Nobuhiko Yokoshi, Hajime Ishihara. Chirality-selective superfluorescence based on chiral interactions. Physical Review A 2022, 106 (5) https://doi.org/10.1103/PhysRevA.106.053511
    65. Hanbo Li, Xinshuang Gao, Chenqi Zhang, Yinglu Ji, Zhijian Hu, Xiaochun Wu. Gold-Nanoparticle-Based Chiral Plasmonic Nanostructures and Their Biomedical Applications. Biosensors 2022, 12 (11) , 957. https://doi.org/10.3390/bios12110957
    66. Ana Laura Torres-Huerta, Aurora Antonio-Pérez, Yolanda García-Huante, Nayelhi Julieta Alcázar-Ramírez, Juan Carlos Rueda-Silva. Biomolecule-Based Optical Metamaterials: Design and Applications. Biosensors 2022, 12 (11) , 962. https://doi.org/10.3390/bios12110962
    67. Liu-Li Wang, Yang Gu, Yi-Jing Chen, Ya-Xian Ni, Wen Dong. Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating. Chinese Physics B 2022, 31 (11) , 118103. https://doi.org/10.1088/1674-1056/ac6494
    68. Hongsub Jee, Guanying Chen, Jaehyeong Lee. Amplification of Chirality in Photopatterned 3D Nanostructures of Chiral/Achiral Mixtures. Applied Sciences 2022, 12 (17) , 8702. https://doi.org/10.3390/app12178702
    69. Pankaj Wadhwa, Supriya Sharma, Sanjeev Sahu, Ajit Sharma, Deepak Kumar. A Review of Nanoparticles Characterization Techniques. Current Nanomaterials 2022, 7 (3) , 202-214. https://doi.org/10.2174/2405461507666220405113715
    70. Artur Movsesyan, Lucas V. Besteiro, Xiang‐Tian Kong, Zhiming Wang, Alexander O. Govorov. Engineering Strongly Chiral Plasmonic Lattices with Achiral Unit Cells for Sensing and Photodetection. Advanced Optical Materials 2022, 10 (14) https://doi.org/10.1002/adom.202101943
    71. Xiaojie Sun, Mingzhu Xu, Guangxue Wang, Qiuyang Song, Yang Li, Xiumin Gao. Circular dichroic metasurface based on a “double L” structure. Applied Optics 2022, 61 (12) , 3435. https://doi.org/10.1364/AO.451392
    72. Ying Cui, Xiaosai Wang, Huan Jiang, Yongyuan Jiang. High-efficiency and tunable circular dichroism in chiral graphene metasurface. Journal of Physics D: Applied Physics 2022, 55 (13) , 135102. https://doi.org/10.1088/1361-6463/ac4450
    73. Carina Lee, Jessica Weber, Laura Rodriguez, Rachel Sheppard, Laura Barge, Eve Berger, Aaron Burton. Chirality in Organic and Mineral Systems: A Review of Reactivity and Alteration Processes Relevant to Prebiotic Chemistry and Life Detection Missions. Symmetry 2022, 14 (3) , 460. https://doi.org/10.3390/sym14030460
    74. Suffora Akhter, Mohammad Usman, Farukh Arjmand, Sartaj Tabassum. Synthesis, structural characterization, in vitro comparative DNA/RNA binding, and computational studies of half-sandwich Ru (II)(ƞ6-p-cymene) aminoquinoline complex. Polyhedron 2022, 213 , 115618. https://doi.org/10.1016/j.poly.2021.115618
    75. Wenbing Wu, Matthias Pauly. Chiral plasmonic nanostructures: recent advances in their synthesis and applications. Materials Advances 2022, 3 (1) , 186-215. https://doi.org/10.1039/D1MA00915J
    76. Indrajit Maity, Arash A. Mostofi, Johannes Lischner. Chiral valley phonons and flat phonon bands in moiré materials. Physical Review B 2022, 105 (4) https://doi.org/10.1103/PhysRevB.105.L041408
    77. Kevin Martens, Felix Binkowski, Linh Nguyen, Li Hu, Alexander O. Govorov, Sven Burger, Tim Liedl. Long- and short-ranged chiral interactions in DNA-assembled plasmonic chains. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-22289-8
    78. Hao Yang, Huacheng Li, Pan Tang, Xiang Lan. Progress and perspective on chiral plasmonic nanostructures enabled by DNA programming methodology. Materials Advances 2021, 2 (22) , 7336-7349. https://doi.org/10.1039/D1MA00781E
    79. Jae‐Myoung Kim, Chungyeon Lee, Yeonhee Lee, Jinhaeng Lee, So‐Jung Park, Sungho Park, Jwa‐Min Nam. Synthesis, Assembly, Optical Properties, and Sensing Applications of Plasmonic Gap Nanostructures. Advanced Materials 2021, 33 (46) https://doi.org/10.1002/adma.202006966
    80. Ayşe Tuğça Mina Yeşilyurt, Jer‐Shing Huang. Emission Manipulation by DNA Origami‐Assisted Plasmonic Nanoantennas. Advanced Optical Materials 2021, 9 (21) https://doi.org/10.1002/adom.202100848
    81. Dong Il Park, Sangmin Jung, Hyo Jae Yoon, Kyoungsuk Jin. Directing electrochemical asymmetric synthesis at heterogeneous interfaces: Past, present, and challenges. Electrochimica Acta 2021, 397 , 139271. https://doi.org/10.1016/j.electacta.2021.139271
    82. N. S. Shahana Nizar, Meleppatt Sujith, K. Swathi, Cristina Sissa, Anna Painelli, K. George Thomas. Emergent chiroptical properties in supramolecular and plasmonic assemblies. Chemical Society Reviews 2021, 50 (20) , 11208-11226. https://doi.org/10.1039/D0CS01583K
    83. Yaofeng Zhou, Xiaolin Huang, Xinyu Hu, Weipeng Tong, Yuankui Leng, Yonghua Xiong. Recent advances in colorimetry/fluorimetry-based dual-modal sensing technologies. Biosensors and Bioelectronics 2021, 190 , 113386. https://doi.org/10.1016/j.bios.2021.113386
    84. S. A. Rosales, P. Albella, F. González, Y. Gutiérrez, F. Moreno. CDDA: extension and analysis of the discrete dipole approximation for chiral systems. Optics Express 2021, 29 (19) , 30020. https://doi.org/10.1364/OE.434061
    85. Yongkai Wang, Qijing Wang, Qianying Wang, Yingying Wang, Zhiduo Li, Xiang Lan, Jun Dong, Wei Gao, Qingyan Han, Zhongyue Zhang. Dynamically adjustable-induced THz circular dichroism and biosensing application of symmetric silicon-graphene-metal composite nanostructures. Optics Express 2021, 29 (6) , 8087. https://doi.org/10.1364/OE.419614
    86. David Winogradoff, Pin‐Yi Li, Himanshu Joshi, Lauren Quednau, Christopher Maffeo, Aleksei Aksimentiev. Chiral Systems Made from DNA. Advanced Science 2021, 8 (5) https://doi.org/10.1002/advs.202003113
    87. Yun Wen, Meng-Qi He, Yong-Liang Yu, Jian-Hua Wang. Biomolecule-mediated chiral nanostructures: a review of chiral mechanism and application. Advances in Colloid and Interface Science 2021, 289 , 102376. https://doi.org/10.1016/j.cis.2021.102376
    88. Yuying Jiang, Xin Chen, Zuoxu Xiao, Tianyu Wang, Yanli Chen. Achiral double-decker phthalocyanine assemble into helical nanofibers for electrochemically chiral recognition of tryptophan. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021, 613 , 126040. https://doi.org/10.1016/j.colsurfa.2020.126040
    89. Vladimir E. Bochenkov, Tatyana I. Shabatina. Chiral Hybrid Nanosystems and Their Biosensing Applications. 2020https://doi.org/10.5772/intechopen.93661
    90. Hengjie Zhou, Shaojian Su, Huanxi Ma, Zeyang Zhao, Zhili Lin, Weibin Qiu, Pingping Qiu, Beiju Huang, Qiang Kan. Chiral graphene plasmonic Archimedes’ spiral nanostructure with tunable circular dichroism and enhanced sensing performance. Optics Express 2020, 28 (21) , 31954. https://doi.org/10.1364/OE.403041
    91. Zhaolong Cao, Han Gao, Meng Qiu, Wei Jin, Shaozhi Deng, Kwok‐Yin Wong, Dangyuan Lei. Chirality Transfer from Sub‐Nanometer Biochemical Molecules to Sub‐Micrometer Plasmonic Metastructures: Physiochemical Mechanisms, Biosensing, and Bioimaging Opportunities. Advanced Materials 2020, 32 (41) https://doi.org/10.1002/adma.201907151
    92. Jinyi Dong, Meng Wang, Yihao Zhou, Chao Zhou, Qiangbin Wang. DNA‐Based Adaptive Plasmonic Logic Gates. Angewandte Chemie 2020, 132 (35) , 15148-15152. https://doi.org/10.1002/ange.202006029
    93. Jinyi Dong, Meng Wang, Yihao Zhou, Chao Zhou, Qiangbin Wang. DNA‐Based Adaptive Plasmonic Logic Gates. Angewandte Chemie International Edition 2020, 59 (35) , 15038-15042. https://doi.org/10.1002/anie.202006029
    94. Shao-Ding Liu, Jun-Yan Liu, Zhaolong Cao, Jin-Li Fan, Dangyuan Lei. Dynamic tuning of enhanced intrinsic circular dichroism in plasmonic stereo-metamolecule array with surface lattice resonance. Nanophotonics 2020, 9 (10) , 3419-3434. https://doi.org/10.1515/nanoph-2020-0130
    95. Man-Man Xu, Tong-Tong Jia, Bingjie Li, Wang Ma, Xiaoyuan Chen, Xueli Zhao, Shuang-Quan Zang. Tuning the properties of atomically precise gold nanoclusters for biolabeling and drug delivery. Chemical Communications 2020, 56 (62) , 8766-8769. https://doi.org/10.1039/D0CC03498C
    96. Lauren A. McCarthy, Kyle W. Smith, Xiang Lan, Seyyed Ali Hosseini Jebeli, Luca Bursi, Alessandro Alabastri, Wei-Shun Chang, Peter Nordlander, Stephan Link. Polarized evanescent waves reveal trochoidal dichroism. Proceedings of the National Academy of Sciences 2020, 117 (28) , 16143-16148. https://doi.org/10.1073/pnas.2004169117
    97. . Increasingly complex DNA assemblies. Nature Materials 2020, 689-689. https://doi.org/10.1038/s41563-020-0727-3
    98. Kyle J. Gibson, Aleksander Prominski, Margaret S. Lee, Timothy M. Cronin, John Parker, Yossi Weizmann. Discrete pH-Responsive Plasmonic Actuators via Site-Selective Encoding of Nanoparticles with DNA Triple Helix Motif. Cell Reports Physical Science 2020, 1 (6) , 100080. https://doi.org/10.1016/j.xcrp.2020.100080
    99. Morgane Loretan, Ivana Domljanovic, Mathias Lakatos, Curzio Rüegg, Guillermo P. Acuna. DNA Origami as Emerging Technology for the Engineering of Fluorescent and Plasmonic-Based Biosensors. Materials 2020, 13 (9) , 2185. https://doi.org/10.3390/ma13092185
    100. Xueli Zhao, Shuang-Quan Zang, Xiaoyuan Chen. Stereospecific interactions between chiral inorganic nanomaterials and biological systems. Chemical Society Reviews 2020, 49 (8) , 2481-2503. https://doi.org/10.1039/D0CS00093K
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect