ACS Publications. Most Trusted. Most Cited. Most Read
Directed Flow of Micromotors through Alignment Interactions with Micropatterned Ratchets
My Activity
    Article

    Directed Flow of Micromotors through Alignment Interactions with Micropatterned Ratchets
    Click to copy article linkArticle link copied!

    • Jaideep Katuri
      Jaideep Katuri
      Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
      Max-Planck Institute for Intelligent Systems, Heisenbergstr. 3, D-70569 Stuttgart, Germany
    • David Caballero
      David Caballero
      Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
      Department of Electronics and Biomedical Engineering, University of Barcelona (UB), 08028 Barcelona, Spain
      Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
    • Raphael Voituriez
      Raphael Voituriez
      Laboratoire de Physique Théorique de la Matière Condensée, UMR 7600 CNRS/UPMC, 4 Place Jussieu, 75255 Cedex Paris, France
      Laboratoire Jean Perrin, UMR 8237 CNRS/UPMC, 4 Place Jussieu, 75255 Cedex Paris, France
    • Josep Samitier
      Josep Samitier
      Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
      Department of Electronics and Biomedical Engineering, University of Barcelona (UB), 08028 Barcelona, Spain
      Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
    • Samuel Sanchez*
      Samuel Sanchez
      Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
      Max-Planck Institute for Intelligent Systems, Heisenbergstr. 3, D-70569 Stuttgart, Germany
      Institució Catalana de Recerca i Estudis Avancats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
      *E-mail: [email protected]
    Other Access OptionsSupporting Information (4)

    ACS Nano

    Cite this: ACS Nano 2018, 12, 7, 7282–7291
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.8b03494
    Published June 27, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    To achieve control over naturally diffusive, out-of-equilibrium systems composed of self-propelled particles, such as cells or self-phoretic colloids, is a long-standing challenge in active matter physics. The inherently random motion of these active particles can be rectified in the presence of local and periodic asymmetric cues given that a nontrivial interaction exists between the self-propelled particle and the cues. Here, we exploit the phoretic and hydrodynamic interactions of synthetic micromotors with local topographical features to break the time-reversal symmetry of particle trajectories and to direct a macroscopic flow of micromotors. We show that the orientational alignment induced on the micromotors by the topographical features, together with their geometrical asymmetry, is crucial in generating directional particle flow. We also show that our system can be used to concentrate micromotors in confined spaces and identify the interactions leading to this effect. Finally, we develop a minimal model, which identifies the key parameters of the system responsible for the observed rectification. Overall, our system allows for robust control over both temporal and spatial distribution of synthetic micromotors.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.8b03494.

    • Movie S1 (AVI)

    • Movie S2 (AVI)

    • Movie S3 (AVI)

    • Additional experimental details and figures (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 61 publications.

    1. Jeffrey M. McNeill, Thomas E. Mallouk. Acoustically Powered Nano- and Microswimmers: From Individual to Collective Behavior. ACS Nanoscience Au 2023, 3 (6) , 424-440. https://doi.org/10.1021/acsnanoscienceau.3c00038
    2. Junhui Law, Jiangfan Yu, Wentian Tang, Zheyuan Gong, Xian Wang, Yu Sun. Micro/Nanorobotic Swarms: From Fundamentals to Functionalities. ACS Nano 2023, 17 (14) , 12971-12999. https://doi.org/10.1021/acsnano.2c11733
    3. Xi Chen, Xiaowen Chen, Mohamed Elsayed, Harrison Edwards, Jiayu Liu, Yixin Peng, H. P. Zhang, Shuailong Zhang, Wei Wang, Aaron R. Wheeler. Steering Micromotors via Reprogrammable Optoelectronic Paths. ACS Nano 2023, 17 (6) , 5894-5904. https://doi.org/10.1021/acsnano.2c12811
    4. Le Zhou, Yi Wei, Hongwen Zhang, Qian Zhao, Zhipeng Zhao, Yujing Guo, Shuyi Zhu, Hao Fu, Weiping Cai. Pt-TiO2 Bilayered Hemispherical Nanoshells with Tunable Pt Distribution for Chemically Self-Propelled Colloidal Motors. ACS Applied Nano Materials 2022, 5 (12) , 18469-18478. https://doi.org/10.1021/acsanm.2c04298
    5. Poulami Bag, Shubhadip Nayak, Tanwi Debnath, Pulak K. Ghosh. Directed Autonomous Motion and Chiral Separation of Self-Propelled Janus Particles in Convection Roll Arrays. The Journal of Physical Chemistry Letters 2022, 13 (49) , 11413-11418. https://doi.org/10.1021/acs.jpclett.2c03193
    6. Fernando Soto, Emil Karshalev, Fangyu Zhang, Berta Esteban Fernandez de Avila, Amir Nourhani, Joseph Wang. Smart Materials for Microrobots. Chemical Reviews 2022, 122 (5) , 5365-5403. https://doi.org/10.1021/acs.chemrev.0c00999
    7. Paula Díez, Elena Lucena-Sánchez, Andrea Escudero, Antoni Llopis-Lorente, Reynaldo Villalonga, Ramón Martínez-Máñez. Ultrafast Directional Janus Pt–Mesoporous Silica Nanomotors for Smart Drug Delivery. ACS Nano 2021, 15 (3) , 4467-4480. https://doi.org/10.1021/acsnano.0c08404
    8. Sayan Das, Zohreh Jalilvand, Mihail N. Popescu, William E. Uspal, Siegfried Dietrich, Ilona Kretzschmar. Floor- or Ceiling-Sliding for Chemically Active, Gyrotactic, Sedimenting Janus Particles. Langmuir 2020, 36 (25) , 7133-7147. https://doi.org/10.1021/acs.langmuir.9b03696
    9. Mihail N. Popescu. Chemically Active Particles: From One to Few on the Way to Many. Langmuir 2020, 36 (25) , 6861-6870. https://doi.org/10.1021/acs.langmuir.9b03973
    10. Zuyao Xiao, Mengshi Wei, Wei Wang. A Review of Micromotors in Confinements: Pores, Channels, Grooves, Steps, Interfaces, Chains, and Swimming in the Bulk. ACS Applied Materials & Interfaces 2019, 11 (7) , 6667-6684. https://doi.org/10.1021/acsami.8b13103
    11. Zohreh Jalilvand, Amar B. Pawar, Ilona Kretzschmar. Experimental Study of the Motion of Patchy Particle Swimmers Near a Wall. Langmuir 2018, 34 (50) , 15593-15599. https://doi.org/10.1021/acs.langmuir.8b03220
    12. Yisong Yao, Zihui Zhao, He Li, Yongfeng Zhao, H. P. Zhang, Masaki Sano. Active Nematics Reinforce the Ratchet Flow in Dense Environments Without Jamming. Advanced Science 2025, 13 https://doi.org/10.1002/advs.202412750
    13. Stefania Ketzetzi, Juliane Simmchen, Lucio Isa. Active Colloids in Complex Environments. 2024, 504-537. https://doi.org/10.1039/9781837674589-00504
    14. Shuqin Chen, Xander Peetroons, Anna C. Bakenecker, Florencia Lezcano, Igor S. Aranson, Samuel Sánchez. Collective buoyancy-driven dynamics in swarming enzymatic nanomotors. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-53664-w
    15. Yankai Xu, Chang Liu, Jiayu Liu, Pengzhao Xu, Zuyao Xiao, Wei Wang, H. P. Zhang. Measuring Attractive Interaction between a Self-Electrophoretic Micromotor and a Wall. Physical Review Letters 2024, 133 (25) https://doi.org/10.1103/PhysRevLett.133.258304
    16. Yan Wen, Jiayu Liu, Wei Wang, Pik-Yin Lai, Penger Tong. Enhanced gravitational trapping of bottom-heavy Janus particles over parallel microgrooves. Soft Matter 2024, 20 (46) , 9208-9218. https://doi.org/10.1039/D4SM00989D
    17. Alvaro Domíguez, Mihail N. Popescu. Self-chemophoresis in the thin diffuse interface approximation. Molecular Physics 2024, 122 (21-22) https://doi.org/10.1080/00268976.2024.2396545
    18. Irene San Sebastián-Jaraba, María José Fernández-Gómez, Rafael Blázquez-Serra, Sandra Sanz-Andrea, Luis Miguel Blanco-Colio, Nerea Méndez-Barbero. In vitro 3D co-culture model of human endothelial and smooth muscle cells to study pathological vascular remodeling. Clínica e Investigación en Arteriosclerosis (English Edition) 2024, 36 (6) , 356-363. https://doi.org/10.1016/j.artere.2024.11.004
    19. Irene San Sebastián-Jaraba, María José Fernández-Gómez, Rafael Blázquez-Serra, Sandra Sanz-Andrea, Luis Miguel Blanco-Colio, Nerea Méndez-Barbero. Modelo de cocultivo 3D in vitro de células endoteliales y vasculares de músculo liso humanas para el estudio del remodelado vascular patológico. Clínica e Investigación en Arteriosclerosis 2024, 36 (6) , 356-363. https://doi.org/10.1016/j.arteri.2024.03.007
    20. Zhengjia Wang, Junhua Hao. Controlling the transport of the mixture involving active and passive rods in confined channel. Soft Matter 2023, 19 (33) , 6368-6375. https://doi.org/10.1039/D3SM00523B
    21. Jean-François Derivaux, Robert L Jack, Michael E Cates. Active–passive mixtures with bulk loading: a minimal active engine in one dimension. Journal of Statistical Mechanics: Theory and Experiment 2023, 2023 (8) , 083212. https://doi.org/10.1088/1742-5468/acecfa
    22. Kyle J.M. Bishop, Sibani Lisa Biswal, Bhuvnesh Bharti. Active Colloids as Models, Materials, and Machines. Annual Review of Chemical and Biomolecular Engineering 2023, 14 (1) , 1-30. https://doi.org/10.1146/annurev-chembioeng-101121-084939
    23. Bao-quan Ai, Jian Ma, Chun-hua Zeng, Ya-feng He. Emergence of macroscopic directional motion of deformable active cells in confined structures. Physical Review E 2023, 107 (2) https://doi.org/10.1103/PhysRevE.107.024406
    24. Alexander D. Fusi, Yudong Li, A. Llopis‐Lorente, Tania Patiño, Jan C. M. van Hest, Loai K. E. A. Abdelmohsen. Achieving Control in Micro‐/Nanomotor Mobility. Angewandte Chemie 2023, 135 (5) https://doi.org/10.1002/ange.202214754
    25. Alexander D. Fusi, Yudong Li, A. Llopis‐Lorente, Tania Patiño, Jan C. M. van Hest, Loai K. E. A. Abdelmohsen. Achieving Control in Micro‐/Nanomotor Mobility. Angewandte Chemie International Edition 2023, 62 (5) https://doi.org/10.1002/anie.202214754
    26. Tianyi Liu, Lei Xie, Cameron-Alexander Hurd Price, Jian Liu, Qiang He, Biao Kong. Controlled propulsion of micro/nanomotors: operational mechanisms, motion manipulation and potential biomedical applications. Chemical Society Reviews 2022, 51 (24) , 10083-10119. https://doi.org/10.1039/D2CS00432A
    27. Boris Kichatov, Alexey Korshunov, Vladimir Sudakov, Vladimir Gubernov, Alexandr Golubkov, Alexey Kiverin. Gas generation due to photocatalysis as a method to reduce the resistance force in the process of motors motion at the air–liquid interface. Journal of Colloid and Interface Science 2022, 627 , 774-782. https://doi.org/10.1016/j.jcis.2022.07.073
    28. Stefania Ketzetzi, Melissa Rinaldin, Pim Dröge, Joost de Graaf, Daniela J. Kraft. Activity-induced interactions and cooperation of artificial microswimmers in one-dimensional environments. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-29430-1
    29. Miku Hatatani, Yasunao Okamoto, Daigo Yamamoto, Akihisa Shioi. Reversed spin of a ratchet motor on a vibrating water bed. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-18423-1
    30. Tao Huang, Vyacheslav Misko, Anja Caspari, Alla Synytska, Bergoi Ibarlucea, Franco Nori, Jürgen Fassbender, Gianaurelio Cuniberti, Denys Makarov, Larysa Baraban. Electrokinetic Janus micromotors moving on topographically flat chemical patterns. Communications Materials 2022, 3 (1) https://doi.org/10.1038/s43246-022-00282-y
    31. Lucas S. Palacios, Andrea Scagliarini, Ignacio Pagonabarraga. A lattice Boltzmann model for self-diffusiophoretic particles near and at liquid–liquid interfaces. The Journal of Chemical Physics 2022, 156 (22) https://doi.org/10.1063/5.0087203
    32. Chao Gao, Ye Feng, Daniela A. Wilson, Yingfeng Tu, Fei Peng. Micro‐Nano Motors with Taxis Behavior: Principles, Designs, and Biomedical Applications. Small 2022, 18 (15) https://doi.org/10.1002/smll.202106263
    33. Le Zhou, Yi Wei, Hongwen Zhang, Zhulin Huang, Shuyi Zhu, Zhipeng Zhao, Yujing Guo, Hao Fu, Qian Zhao, Weiping Cai. Surface Roughening of Pt-Polystyrene Spherical Janus Micromotors for Enhanced Motion Speed. Micromachines 2022, 13 (4) , 555. https://doi.org/10.3390/mi13040555
    34. Bharti Verma, Sarang P. Gumfekar, Manigandan Sabapathy. A critical review on micro‐ and nanomotors: Application towards wastewater treatment. The Canadian Journal of Chemical Engineering 2022, 100 (3) , 540-558. https://doi.org/10.1002/cjce.24184
    35. David Caballero, Catarina M. Abreu, Ana C. Lima, Nuno M. Neves, Rui L. Reis, Subhas C. Kundu. Precision biomaterials in cancer theranostics and modelling. Biomaterials 2022, 280 , 121299. https://doi.org/10.1016/j.biomaterials.2021.121299
    36. Lucas S. Palacios, Serguei Tchoumakov, Maria Guix, Ignacio Pagonabarraga, Samuel Sánchez, Adolfo G. Grushin. Guided accumulation of active particles by topological design of a second-order skin effect. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-24948-2
    37. Zhengjia Wang, Junhua Hao, Xiaojing Wang, Jihua Xu, Bin Yang. Enhancing directed collective motion of self-propelled particles in confined channel. Journal of Physics: Condensed Matter 2021, 33 (41) , 415101. https://doi.org/10.1088/1361-648X/ac117c
    38. Xionggui Tang, Yi Shen, Yanhua Xu. Experimental demonstration of optical Brownian ratchet by controllable phase profile of light. Optics and Lasers in Engineering 2021, 145 , 106671. https://doi.org/10.1016/j.optlaseng.2021.106671
    39. Kristian Thijssen, Dimitrius A. Khaladj, S. Ali Aghvami, Mohamed Amine Gharbi, Seth Fraden, Julia M. Yeomans, Linda S. Hirst, Tyler N. Shendruk. Submersed micropatterned structures control active nematic flow, topology, and concentration. Proceedings of the National Academy of Sciences 2021, 118 (38) https://doi.org/10.1073/pnas.2106038118
    40. Rafael Mestre, Tania Patiño, Samuel Sánchez. Biohybrid robotics: From the nanoscale to the macroscale. WIREs Nanomedicine and Nanobiotechnology 2021, 13 (5) https://doi.org/10.1002/wnan.1703
    41. Priyanka Sharan, Audrey Nsamela, Sasha Cai Lesher‐Pérez, Juliane Simmchen. Microfluidics for Microswimmers: Engineering Novel Swimmers and Constructing Swimming Lanes on the Microscale, a Tutorial Review. Small 2021, 17 (26) https://doi.org/10.1002/smll.202007403
    42. Jaideep Katuri, William E. Uspal, Mihail N. Popescu, Samuel Sánchez. Inferring non-equilibrium interactions from tracer response near confined active Janus particles. Science Advances 2021, 7 (18) https://doi.org/10.1126/sciadv.abd0719
    43. Kentaro Hoeger, Tristan Ursell. Steric scattering of rod-like swimmers in low Reynolds number environments. Soft Matter 2021, 17 (9) , 2479-2489. https://doi.org/10.1039/D0SM01551B
    44. Koohee Han, Alexey Snezhko. Programmable chiral states in flocks of active magnetic rollers. Lab on a Chip 2021, 21 (1) , 215-222. https://doi.org/10.1039/D0LC00892C
    45. Qingliang Yang, Ying Gao, Lei Xu, Weiyong Hong, Yuanbin She, Gensheng Yang. Enzyme-driven micro/nanomotors: Recent advances and biomedical applications. International Journal of Biological Macromolecules 2021, 167 , 457-469. https://doi.org/10.1016/j.ijbiomac.2020.11.215
    46. Jie Wang, Rajib Ahmed, Yitian Zeng, Kaiyu Fu, Fernando Soto, Bob Sinclair, Hyongsok Tom Soh, Utkan Demirci. Engineering the Interaction Dynamics between Nano‐Topographical Immunocyte‐Templated Micromotors across Scales from Ions to Cells. Small 2020, 16 (49) https://doi.org/10.1002/smll.202005185
    47. Xiaolei Peng, Zhihan Chen, Pavana Siddhartha Kollipara, Yaoran Liu, Jie Fang, Linhan Lin, Yuebing Zheng. Opto-thermoelectric microswimmers. Light: Science & Applications 2020, 9 (1) https://doi.org/10.1038/s41377-020-00378-5
    48. Qingliang Yang, Lei Xu, Weizhen Zhong, Qinying Yan, Ying Gao, Weiyong Hong, Yuanbin She, Gensheng Yang. Recent Advances in Motion Control of Micro/Nanomotors. Advanced Intelligent Systems 2020, 2 (8) https://doi.org/10.1002/aisy.202000049
    49. Masayuki Hayakawa, Yusuke Kishino, Masahiro Takinoue. Collective Ratchet Transport Generated by Particle Crowding under Asymmetric Sawtooth‐Shaped Static Potential. Advanced Intelligent Systems 2020, 2 (7) https://doi.org/10.1002/aisy.202000031
    50. Hong Wang, Martin Pumera. Coordinated behaviors of artificial micro/nanomachines: from mutual interactions to interactions with the environment. Chemical Society Reviews 2020, 49 (10) , 3211-3230. https://doi.org/10.1039/C9CS00877B
    51. Wei Wang, Xianglong Lv, Jeffrey L. Moran, Shifang Duan, Chao Zhou. A practical guide to active colloids: choosing synthetic model systems for soft matter physics research. Soft Matter 2020, 16 (16) , 3846-3868. https://doi.org/10.1039/D0SM00222D
    52. Konark Bisht, Rahul Marathe. Rectification of twitching bacteria through narrow channels: A numerical simulations study. Physical Review E 2020, 101 (4) https://doi.org/10.1103/PhysRevE.101.042409
    53. Koen Schakenraad, Linda Ravazzano, Niladri Sarkar, Joeri A. J. Wondergem, Roeland M. H. Merks, Luca Giomi. Topotaxis of active Brownian particles. Physical Review E 2020, 101 (3) https://doi.org/10.1103/PhysRevE.101.032602
    54. H. D. Vuijk, J. U. Sommer, H. Merlitz, J. M. Brader, A. Sharma. Lorentz forces induce inhomogeneity and flux in active systems. Physical Review Research 2020, 2 (1) https://doi.org/10.1103/PhysRevResearch.2.013320
    55. Xavier Arqué, Xavier Andrés, Rafael Mestre, Bernard Ciraulo, Jaime Ortega Arroyo, Romain Quidant, Tania Patiño, Samuel Sánchez. Ionic Species Affect the Self-Propulsion of Urease-Powered Micromotors. Research 2020, 2020 https://doi.org/10.34133/2020/2424972
    56. Yong Wang, Wendi Duan, Chao Zhou, Qing Liu, Jiahui Gu, Heng Ye, Mingyu Li, Wei Wang, Xing Ma. Phoretic Liquid Metal Micro/Nanomotors as Intelligent Filler for Targeted Microwelding. Advanced Materials 2019, 31 (51) https://doi.org/10.1002/adma.201905067
    57. Lucas S. Palacios, Jaideep Katuri, Ignacio Pagonabarraga, Samuel Sánchez. Guidance of active particles at liquid–liquid interfaces near surfaces. Soft Matter 2019, 15 (32) , 6581-6588. https://doi.org/10.1039/C9SM01016E
    58. Yicheng Ye, Jiabin Luan, Ming Wang, Yongming Chen, Daniela A. Wilson, Fei Peng, Yingfeng Tu. Fabrication of Self‐Propelled Micro‐ and Nanomotors Based on Janus Structures. Chemistry – A European Journal 2019, 25 (37) , 8663-8680. https://doi.org/10.1002/chem.201900840
    59. Hong Zhang, Yi-Wu Zong, Ming-Cheng Yang, Kun Zhao, , , . The dynamics of self-propelled Janus microspheres near obstacles with different geometries. Acta Physica Sinica 2019, 68 (13) , 134702. https://doi.org/10.7498/aps.68.20190711
    60. Antoine Aubret, Jérémie Palacci. Diffusiophoretic design of self-spinning microgears from colloidal microswimmers. Soft Matter 2018, 14 (47) , 9577-9588. https://doi.org/10.1039/C8SM01760C
    61. Jia Liu, Tiantian Xu, Chenyang Huang, Xinyu Wu. Automatic Manipulation of Magnetically Actuated Helical Microswimmers in Static Environments. Micromachines 2018, 9 (10) , 524. https://doi.org/10.3390/mi9100524

    ACS Nano

    Cite this: ACS Nano 2018, 12, 7, 7282–7291
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.8b03494
    Published June 27, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    1834

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.