ACS Publications. Most Trusted. Most Cited. Most Read
Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials
My Activity
    Article

    Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials
    Click to copy article linkArticle link copied!

    • Wei Ma
      Wei Ma
      Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
      More by Wei Ma
    • Feng Cheng
      Feng Cheng
      Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, United States
      More by Feng Cheng
    • Yongmin Liu*
      Yongmin Liu
      Department of Mechanical and Industrial Engineering  and  Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, United States
      *E-mail: [email protected]
      More by Yongmin Liu
    Other Access OptionsSupporting Information (1)

    ACS Nano

    Cite this: ACS Nano 2018, 12, 6, 6326–6334
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.8b03569
    Published June 1, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Deep-learning framework has significantly impelled the development of modern machine learning technology by continuously pushing the limit of traditional recognition and processing of images, speech, and videos. In the meantime, it starts to penetrate other disciplines, such as biology, genetics, materials science, and physics. Here, we report a deep-learning-based model, comprising two bidirectional neural networks assembled by a partial stacking strategy, to automatically design and optimize three-dimensional chiral metamaterials with strong chiroptical responses at predesignated wavelengths. The model can help to discover the intricate, nonintuitive relationship between a metamaterial structure and its optical responses from a number of training examples, which circumvents the time-consuming, case-by-case numerical simulations in conventional metamaterial designs. This approach not only realizes the forward prediction of optical performance much more accurately and efficiently but also enables one to inversely retrieve designs from given requirements. Our results demonstrate that such a data-driven model can be applied as a very powerful tool in studying complicated light–matter interactions and accelerating the on-demand design of nanophotonic devices, systems, and architectures for real world applications.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.8b03569.

    • Details about the structure and training of the deep-learning model; modeling of strong chiral metamaterial with slight breaking in symmetry (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 680 publications.

    1. Kaiyuan Xiang, Mengjie Liu, Jun Chen, Yingshuo Bao, Zhuo Wang, Kun Xiao, Chuanxin Teng, Nikolai Ushakov, Santosh Kumar, Xiaoli Li, Rui Min. AI-Assisted Insole Sensing System for Multifunctional Plantar-Healthcare Applications. ACS Applied Materials & Interfaces 2024, 16 (25) , 32662-32678. https://doi.org/10.1021/acsami.4c04467
    2. Gyeong Min Seo, Chang-Ki Baek, Byoung Don Kong. Enhancing Radio Frequency Performance of Graphene Field-Effect Transistors through Machine-Learning-Based Physical Prediction and Optimization. ACS Applied Electronic Materials 2024, 6 (6) , 4138-4148. https://doi.org/10.1021/acsaelm.4c00236
    3. Wenwen Li, Yucong Zhou, Chao Ye, Dukang Yan, Bo Xiong, Han Gao, Tao Chu, Wei Ma. Multifunctional Metasurface for Simultaneous Light Manipulation under Both Guided-Wave and Free-Space Incidence. ACS Photonics 2024, 11 (4) , 1724-1733. https://doi.org/10.1021/acsphotonics.4c00042
    4. Byunggi Kim, Félix Barbier-Chebbah, Yohei Ogawara, Laurent Jalabert, Ryoto Yanagisawa, Roman Anufriev, Masahiro Nomura. Anisotropy Reversal of Thermal Conductivity in Silicon Nanowire Networks Driven by Quasi-Ballistic Phonon Transport. ACS Nano 2024, 18 (15) , 10557-10565. https://doi.org/10.1021/acsnano.3c12767
    5. Changliang Zhu, Emmanuel Anuoluwa Bamidele, Xiangying Shen, Guimei Zhu, Baowen Li. Machine Learning Aided Design and Optimization of Thermal Metamaterials. Chemical Reviews 2024, 124 (7) , 4258-4331. https://doi.org/10.1021/acs.chemrev.3c00708
    6. Junghyeon Hwang, Hongrae Joh, Chaeheon Kim, Jinho Ahn, Sanghun Jeon. Monolithically Integrated Complementary Ferroelectric FET XNOR Synapse for the Binary Neural Network. ACS Applied Materials & Interfaces 2024, 16 (2) , 2467-2476. https://doi.org/10.1021/acsami.3c13945
    7. Dmytro Gryb, Fedja J. Wendisch, Andreas Aigner, Thorsten Gölz, Andreas Tittl, Leonardo de S. Menezes, Stefan A. Maier. Two-Dimensional Chiral Metasurfaces Obtained by Geometrically Simple Meta-atom Rotations. Nano Letters 2023, 23 (19) , 8891-8897. https://doi.org/10.1021/acs.nanolett.3c02168
    8. Seongmin Kim, Shiwen Wu, Ruda Jian, Guoping Xiong, Tengfei Luo. Design of a High-Performance Titanium Nitride Metastructure-Based Solar Absorber Using Quantum Computing-Assisted Optimization. ACS Applied Materials & Interfaces 2023, 15 (34) , 40606-40613. https://doi.org/10.1021/acsami.3c08214
    9. M. R. Mahani, Yasmin Rahimof, Sten Wenzel, Igor Nechepurenko, Andreas Wicht. Data-Efficient Machine Learning Algorithms for the Design of Surface Bragg Gratings. ACS Applied Optical Materials 2023, 1 (8) , 1474-1484. https://doi.org/10.1021/acsaom.3c00198
    10. Lulu Fu, Ranran Wang, Qiang Zhu, Yuming Gu, Lifeng Zheng, Yuan Chen, Juli Jiang, Jing Ma. Planar Chirality for Acid/Base Responsive Macrocyclic Pillararenes Induced by Amino Acid Derivatives: Molecular Dynamics Simulations and Machine Learning. Journal of Chemical Theory and Computation 2023, 19 (14) , 4364-4376. https://doi.org/10.1021/acs.jctc.2c01265
    11. Erfan Khoram, Zhicheng Wu, Yurui Qu, Ming Zhou, Zongfu Yu. Graph Neural Networks for Metasurface Modeling. ACS Photonics 2023, 10 (4) , 892-899. https://doi.org/10.1021/acsphotonics.2c01019
    12. Qiangshun Guan, Aikifa Raza, Samuel S. Mao, Lourdes F. Vega, TieJun Zhang. Machine Learning-Enabled Inverse Design of Radiative Cooling Film with On-Demand Transmissive Color. ACS Photonics 2023, 10 (3) , 715-726. https://doi.org/10.1021/acsphotonics.2c01857
    13. Jeong Hyun Han, Yae-Chan Lim, Ryeong Myeong Kim, Jiawei Lv, Nam Heon Cho, Hyeohn Kim, Seok Daniel Namgung, Sang Won Im, Ki Tae Nam. Neural-Network-Enabled Design of a Chiral Plasmonic Nanodimer for Target-Specific Chirality Sensing. ACS Nano 2023, 17 (3) , 2306-2317. https://doi.org/10.1021/acsnano.2c08867
    14. Jun Guan, Jeong-Eun Park, Shikai Deng, Max J. H. Tan, Jingtian Hu, Teri W. Odom. Light–Matter Interactions in Hybrid Material Metasurfaces. Chemical Reviews 2022, 122 (19) , 15177-15203. https://doi.org/10.1021/acs.chemrev.2c00011
    15. Mu Ku Chen, Xiaoyuan Liu, Yanni Sun, Din Ping Tsai. Artificial Intelligence in Meta-optics. Chemical Reviews 2022, 122 (19) , 15356-15413. https://doi.org/10.1021/acs.chemrev.2c00012
    16. Yong Xiang Leong, Emily Xi Tan, Shi Xuan Leong, Charlynn Sher Lin Koh, Lam Bang Thanh Nguyen, Jaslyn Ru Ting Chen, Kelin Xia, Xing Yi Ling. Where Nanosensors Meet Machine Learning: Prospects and Challenges in Detecting Disease X. ACS Nano 2022, 16 (9) , 13279-13293. https://doi.org/10.1021/acsnano.2c05731
    17. Mingkun Chen, Jiaqi Jiang, Jonathan A. Fan. Algorithm-Driven Paradigms for Freeform Optical Engineering. ACS Photonics 2022, 9 (9) , 2860-2871. https://doi.org/10.1021/acsphotonics.2c00612
    18. Mingkun Chen, Robert Lupoiu, Chenkai Mao, Der-Han Huang, Jiaqi Jiang, Philippe Lalanne, Jonathan A. Fan. High Speed Simulation and Freeform Optimization of Nanophotonic Devices with Physics-Augmented Deep Learning. ACS Photonics 2022, 9 (9) , 3110-3123. https://doi.org/10.1021/acsphotonics.2c00876
    19. Didulani Acharige, Eric Johlin. Machine Learning in Interpolation and Extrapolation for Nanophotonic Inverse Design. ACS Omega 2022, 7 (37) , 33537-33547. https://doi.org/10.1021/acsomega.2c04526
    20. Zhaoyi Li, Raphaël Pestourie, Zin Lin, Steven G. Johnson, Federico Capasso. Empowering Metasurfaces with Inverse Design: Principles and Applications. ACS Photonics 2022, 9 (7) , 2178-2192. https://doi.org/10.1021/acsphotonics.1c01850
    21. Boqun Liang, Da Xu, Ning Yu, Yaodong Xu, Xuezhi Ma, Qiushi Liu, M. Salman Asif, Ruoxue Yan, Ming Liu. Physics-Guided Neural-Network-Based Inverse Design of a Photonic–Plasmonic Nanodevice for Superfocusing. ACS Applied Materials & Interfaces 2022, 14 (23) , 27397-27404. https://doi.org/10.1021/acsami.2c05083
    22. Yurui Qu, Ming Zhou, Erfan Khoram, Nanfang Yu, Zongfu Yu. Resonance for Analog Recurrent Neural Network. ACS Photonics 2022, 9 (5) , 1647-1654. https://doi.org/10.1021/acsphotonics.1c02016
    23. Mohammadreza Zandehshahvar, Yashar Kiarashinejad, Muliang Zhu, Hossein Maleki, Tyler Brown, Ali Adibi. Manifold Learning for Knowledge Discovery and Intelligent Inverse Design of Photonic Nanostructures: Breaking the Geometric Complexity. ACS Photonics 2022, 9 (2) , 714-721. https://doi.org/10.1021/acsphotonics.1c01888
    24. Andrew Lininger, Michael Hinczewski, Giuseppe Strangi. General Inverse Design of Layered Thin-Film Materials with Convolutional Neural Networks. ACS Photonics 2021, 8 (12) , 3641-3650. https://doi.org/10.1021/acsphotonics.1c01498
    25. Meghna Srivastava, John M. Howard, Tao Gong, Mariama Rebello Sousa Dias, Marina S. Leite. Machine Learning Roadmap for Perovskite Photovoltaics. The Journal of Physical Chemistry Letters 2021, 12 (32) , 7866-7877. https://doi.org/10.1021/acs.jpclett.1c01961
    26. Chia-Hsiang Lin, Yu-Sheng Chen, Jhao-Ting Lin, Hao Chung Wu, Hsuan-Ting Kuo, Chen-Fu Lin, Peter Chen, Pin Chieh Wu. Automatic Inverse Design of High-Performance Beam-Steering Metasurfaces via Genetic-type Tree Optimization. Nano Letters 2021, 21 (12) , 4981-4989. https://doi.org/10.1021/acs.nanolett.1c00720
    27. Jingang Li, Yuebing Zheng. Optothermally Assembled Nanostructures. Accounts of Materials Research 2021, 2 (5) , 352-363. https://doi.org/10.1021/accountsmr.1c00033
    28. Yuying Jia, Xuan Hou, Zhongwei Wang, Xiangang Hu. Machine Learning Boosts the Design and Discovery of Nanomaterials. ACS Sustainable Chemistry & Engineering 2021, 9 (18) , 6130-6147. https://doi.org/10.1021/acssuschemeng.1c00483
    29. Wenbin Zhang, Boxiang Wang, Changying Zhao. Selective Thermophotovoltaic Emitter with Aperiodic Multilayer Structures Designed by Machine Learning. ACS Applied Energy Materials 2021, 4 (2) , 2004-2013. https://doi.org/10.1021/acsaem.0c03201
    30. Maksym V. Zhelyeznyakov, Steve Brunton, Arka Majumdar. Deep Learning to Accelerate Scatterer-to-Field Mapping for Inverse Design of Dielectric Metasurfaces. ACS Photonics 2021, 8 (2) , 481-488. https://doi.org/10.1021/acsphotonics.0c01468
    31. Jiajun Meng, Jasper J. Cadusch, Kenneth B. Crozier. Plasmonic Mid-Infrared Filter Array-Detector Array Chemical Classifier Based on Machine Learning. ACS Photonics 2021, 8 (2) , 648-657. https://doi.org/10.1021/acsphotonics.0c01786
    32. Zhaxylyk A. Kudyshev, Vladimir M. Shalaev, Alexandra Boltasseva. Machine Learning for Integrated Quantum Photonics. ACS Photonics 2021, 8 (1) , 34-46. https://doi.org/10.1021/acsphotonics.0c00960
    33. Deniz Mengu, Yair Rivenson, Aydogan Ozcan. Scale-, Shift-, and Rotation-Invariant Diffractive Optical Networks. ACS Photonics 2021, 8 (1) , 324-334. https://doi.org/10.1021/acsphotonics.0c01583
    34. Kathryn Sarullo, Matthew K. Matlock, S. Joshua Swamidass. Site-Level Bioactivity of Small-Molecules from Deep-Learned Representations of Quantum Chemistry. The Journal of Physical Chemistry A 2020, 124 (44) , 9194-9202. https://doi.org/10.1021/acs.jpca.0c06231
    35. Rohit Unni, Kan Yao, Yuebing Zheng. Deep Convolutional Mixture Density Network for Inverse Design of Layered Photonic Structures. ACS Photonics 2020, 7 (10) , 2703-2712. https://doi.org/10.1021/acsphotonics.0c00630
    36. Ibrahim Tanriover, Wisnu Hadibrata, Koray Aydin. Physics-Based Approach for a Neural Networks Enabled Design of All-Dielectric Metasurfaces. ACS Photonics 2020, 7 (8) , 1957-1964. https://doi.org/10.1021/acsphotonics.0c00663
    37. Changxu Liu, Stefan A. Maier, Guixin Li. Genetic-Algorithm-Aided Meta-Atom Multiplication for Improved Absorption and Coloration in Nanophotonics. ACS Photonics 2020, 7 (7) , 1716-1722. https://doi.org/10.1021/acsphotonics.0c00266
    38. Maha Alafeef, Indrajit Srivastava, Dipanjan Pan. Machine Learning for Precision Breast Cancer Diagnosis and Prediction of the Nanoparticle Cellular Internalization. ACS Sensors 2020, 5 (6) , 1689-1698. https://doi.org/10.1021/acssensors.0c00329
    39. Balaranjan Selvaratnam, Ranjit T. Koodali, Pere Miró. Application of Symmetry Functions to Large Chemical Spaces Using a Convolutional Neural Network. Journal of Chemical Information and Modeling 2020, 60 (4) , 1928-1935. https://doi.org/10.1021/acs.jcim.9b00835
    40. Keith A. Brown, Sarah Brittman, Nicolò Maccaferri, Deep Jariwala, Umberto Celano. Machine Learning in Nanoscience: Big Data at Small Scales. Nano Letters 2020, 20 (1) , 2-10. https://doi.org/10.1021/acs.nanolett.9b04090
    41. Sensong An, Clayton Fowler, Bowen Zheng, Mikhail Y. Shalaginov, Hong Tang, Hang Li, Li Zhou, Jun Ding, Anuradha Murthy Agarwal, Clara Rivero-Baleine, Kathleen A. Richardson, Tian Gu, Juejun Hu, Hualiang Zhang. A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design. ACS Photonics 2019, 6 (12) , 3196-3207. https://doi.org/10.1021/acsphotonics.9b00966
    42. Jiaqi Jiang, David Sell, Stephan Hoyer, Jason Hickey, Jianji Yang, Jonathan A. Fan. Free-Form Diffractive Metagrating Design Based on Generative Adversarial Networks. ACS Nano 2019, 13 (8) , 8872-8878. https://doi.org/10.1021/acsnano.9b02371
    43. Jiaqi Jiang, Jonathan A. Fan. Global Optimization of Dielectric Metasurfaces Using a Physics-Driven Neural Network. Nano Letters 2019, 19 (8) , 5366-5372. https://doi.org/10.1021/acs.nanolett.9b01857
    44. Gwiyeong Moon, Taehwang Son, Hongki Lee, Donghyun Kim. Deep Learning Approach for Enhanced Detection of Surface Plasmon Scattering. Analytical Chemistry 2019, 91 (15) , 9538-9545. https://doi.org/10.1021/acs.analchem.9b00683
    45. Sunae So, Jungho Mun, Junsuk Rho. Simultaneous Inverse Design of Materials and Structures via Deep Learning: Demonstration of Dipole Resonance Engineering Using Core–Shell Nanoparticles. ACS Applied Materials & Interfaces 2019, 11 (27) , 24264-24268. https://doi.org/10.1021/acsami.9b05857
    46. Adam C. Mater, Michelle L. Coote. Deep Learning in Chemistry. Journal of Chemical Information and Modeling 2019, 59 (6) , 2545-2559. https://doi.org/10.1021/acs.jcim.9b00266
    47. Yurui Qu, Li Jing, Yichen Shen, Min Qiu, Marin Soljačić. Migrating Knowledge between Physical Scenarios Based on Artificial Neural Networks. ACS Photonics 2019, 6 (5) , 1168-1174. https://doi.org/10.1021/acsphotonics.8b01526
    48. Kan Yao, Yuebing Zheng. Near-Ultraviolet Dielectric Metasurfaces: from Surface-Enhanced Circular Dichroism Spectroscopy to Polarization-Preserving Mirrors. The Journal of Physical Chemistry C 2019, 123 (18) , 11814-11822. https://doi.org/10.1021/acs.jpcc.8b11245
    49. Xixia Wu, Hua Yan, Yaqi Zhou, Peilei Zhang, Qinghua Lu, Haichuan Shi. Review of additive manufactured metallic metamaterials: Design, fabrication, property and application. Optics & Laser Technology 2025, 182 , 112066. https://doi.org/10.1016/j.optlastec.2024.112066
    50. Huakun Xia, Shu-Lin Chen, Yuxin Wang, Yijia Zhao, Heping Jia, Rongcao Yang, Y. Jay Guo. Deep-learning-assisted intelligent design of terahertz hybrid-functional metasurfaces with freeform patterns. Optics & Laser Technology 2025, 181 , 112041. https://doi.org/10.1016/j.optlastec.2024.112041
    51. Ying Chen, Changhui Mao, Mengxi Li, Weiqiang Li, Moqing Shi, Qinghui Wang. Prediction of spectral response of all-dielectric trimer metasurface based on deep learning. Optics Communications 2025, 574 , 131218. https://doi.org/10.1016/j.optcom.2024.131218
    52. Warda Fella Belaid, Azeddine Dekhira, Philippe Lesot, Ouassila Ferroukhi. Development of deep learning software to improve HPLC and GC predictions using a new crown-ether based mesogenic stationary phase and beyond. Journal of Chromatography A 2025, 1739 , 465476. https://doi.org/10.1016/j.chroma.2024.465476
    53. Syed Muhammad Anas Ibrahim, Zhang Fang, Jungyul Park. Phononic crystal-based pH sensing and its classification with machine learning. Sensors and Actuators A: Physical 2025, 381 , 116064. https://doi.org/10.1016/j.sna.2024.116064
    54. Yan Wang, Zeyu Wu, Wenming Yu, Zhengqi Liu. Recent progresses and applications on chiroptical metamaterials: a review. Journal of Physics D: Applied Physics 2024, 57 (49) , 493004. https://doi.org/10.1088/1361-6463/ad6f20
    55. Sameh Kaziz, Fraj Echouchene, Mohamed Hichem Gazzah. Optimizing PCF-SPR sensor design through Taguchi approach, machine learning, and genetic algorithms. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-55817-9
    56. Zi-Dong Wang, Yan-Long Meng, Yi Li, Han Gao, Tao Zhang, Gui-Ming Pan, Juan Kang, Chun-Lian Zhan. Inverse design of ultranarrow and high-efficiency color filters based on tandem convolutional neural networks. Optics Communications 2024, 573 , 130995. https://doi.org/10.1016/j.optcom.2024.130995
    57. Zhancheng Li, Wenwei Liu, Yuebian Zhang, Hua Cheng, Shuang Zhang, Shuqi Chen. Optical polarization manipulations with anisotropic nanostructures. PhotoniX 2024, 5 (1) https://doi.org/10.1186/s43074-024-00143-6
    58. Georgiana Dima, Christopher John Stevens. Spatial localisation and sensing in two dimensions via metasurfaces. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-75218-2
    59. Riaz Ali, Wei Su, Zhipeng Ding, Muhammad Ali, Hina Ismail, Zainab Saif, Jawad Ali, Hongbing Yao. Design of ultra-broadband long-wave to ultra-long-wave infrared absorber based on machine learning. Physica Scripta 2024, 99 (12) , 126001. https://doi.org/10.1088/1402-4896/ad897e
    60. Pengfei Cao, Ning Duan, Zhikai Zhao, Mengqiang Yu, Congcong Li, Mingrui Yuan, Lin Cheng, Ge Yan. Enhancing computational efficiency in topology-optimized mode converters via dynamic update rate strategies. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-76691-5
    61. Zhihao Xu, Wenjie Shang, Seongmin Kim, Alexandria Bobbitt, Eungkyu Lee, Tengfei Luo. Quantum-inspired genetic algorithm for designing planar multilayer photonic structure. npj Computational Materials 2024, 10 (1) https://doi.org/10.1038/s41524-024-01438-9
    62. Kaifa Ding, Yang Yang. Reverse design of load-bearing broadband metamaterial absorber assisted by deep learning. Smart Materials and Structures 2024, 33 (12) , 125029. https://doi.org/10.1088/1361-665X/ad939c
    63. Xuetao Min, Xiaoyuan Hao, Yupeng Chen, Mai Liu, Xiaomeng Cheng, Wei Huang, Yanfeng Li, Quan Xu, Xueqian Zhang, Miao Ye, Jiaguang Han. Deep learning-enhanced prediction of terahertz response of metasurfaces. Optics & Laser Technology 2024, 179 , 111321. https://doi.org/10.1016/j.optlastec.2024.111321
    64. Jinsheng Hu, Zihua Liang, Peng Zhou, Lu Liu, Gen Hu, Mao Ye. Integrated optical probing scheme enabled by localized-interference metasurface for chip-scale atomic magnetometer. Nanophotonics 2024, 13 (23) , 4231-4242. https://doi.org/10.1515/nanoph-2024-0296
    65. Jia Shi, Yueping Luo, Shaona Wang, Xianguo Li, Cuijuan Guo, Pingjuan Niu, Xiang Yang, Jianquan Yao. Artificial Intelligence-Assisted Accurate Spectrum Prediction in Design of Terahertz Fiber Operating in 6G Communication Window. IEEE Journal of Selected Topics in Quantum Electronics 2024, 30 (6: Advances and Applications of) , 1-8. https://doi.org/10.1109/JSTQE.2023.3309692
    66. Shuo Liu, Xu Han, Yueyu Wang, Fengxiao Liu, Saili Zhao, Jiaqi Lv, Qi Li. Analysis of rogue wave in the mid-infrared supercontinuum under femtosecond weak seed pulse conditions based on deep learning. Chaos, Solitons & Fractals 2024, 188 , 115575. https://doi.org/10.1016/j.chaos.2024.115575
    67. Yuan Gao, Wei Chen, Fajun Li, Mingyong Zhuang, Yiming Yan, Jun Wang, Xiang Wang, Zhaogang Dong, Wei Ma, Jinfeng Zhu. Meta‐Attention Deep Learning for Smart Development of Metasurface Sensors. Advanced Science 2024, 11 (42) https://doi.org/10.1002/advs.202405750
    68. Nan Zhang, Feng Gao, Ride Wang, Zhonglei Shen, Donghai Han, Yuqing Cui, Liuyang Zhang, Chao Chang, Cheng‐wei Qiu, Xuefeng Chen. Deep‐Learning Empowered Customized Chiral Metasurface for Calibration‐Free Biosensing. Advanced Materials 2024, 5 https://doi.org/10.1002/adma.202411490
    69. Yanming Feng, Song Yue, Ran Wang, Yu Hou, Shunshuo Cai, Zihuang Wang, Mei Xue, Kunpeng Zhang, Zichen Zhang. Multi-color long-wave infrared perfect absorber based on a heavily doped semiconductor that is inverse-designed via machine learning. Optics Express 2024, 32 (22) , 39053. https://doi.org/10.1364/OE.538949
    70. Beicheng Lin, Fucong Lu, Chuanbiao Zhang, Tinghui Wei, Weijia Li, Yilin Zhu. Machine learning-accelerated inverse design of programmable bi-functional metamaterials. Composite Structures 2024, 346 , 118445. https://doi.org/10.1016/j.compstruct.2024.118445
    71. Seongmin Kim, Jiaxin Xu, Wenjie Shang, Zhihao Xu, Eungkyu Lee, Tengfei Luo. A review on machine learning-guided design of energy materials. Progress in Energy 2024, 6 (4) , 042005. https://doi.org/10.1088/2516-1083/ad7220
    72. Yihui Wang, Wei Sha, Mi Xiao, Liang Gao. Thermal Metamaterials with Configurable Mechanical Properties. Advanced Science 2024, 11 (40) https://doi.org/10.1002/advs.202406116
    73. Marco Rossi, Lei Zhang, Xiao Qing Chen, Che Liu, Giuseppe Castaldi, Tie Jun Cui, Vincenzo Galdi. Machine‐Learning‐Enabled Multi‐Frequency Synthesis of Space‐Time‐Coding Digital Metasurfaces. Advanced Functional Materials 2024, 34 (40) https://doi.org/10.1002/adfm.202403577
    74. Pan Liu, Yongqiang Zhao, Kai Feng, Seong G. Kong. Physics-Driven Multispectral Filter Array Pattern Optimization and Hyperspectral Image Reconstruction. IEEE Transactions on Circuits and Systems for Video Technology 2024, 34 (10) , 9528-9539. https://doi.org/10.1109/TCSVT.2024.3399821
    75. Tasnia Jahan, Tomoshree Dash, Shifat E. Arman, Reefat Inum, Sharnali Islam, Lafifa Jamal, Ahmet Ali Yanik, Ahsan Habib. Deep learning-driven forward and inverse design of nanophotonic nanohole arrays: streamlining design for tailored optical functionalities and enhancing accessibility. Nanoscale 2024, 16 (35) , 16641-16651. https://doi.org/10.1039/D4NR03081H
    76. Dongyong Wang, Xiao Li, Jack Ng. Ultra-Fast and Accurate Force Spectrum Prediction and Inverse Design of Light-Driven Microstructure by Deep Learning. Optics Express 2024, https://doi.org/10.1364/OE.537005
    77. Barak Hadad, Omry Oren, Alon Bahabad. On the benefit of attention in inverse design of thin films filters. Machine Learning: Science and Technology 2024, 5 (3) , 035034. https://doi.org/10.1088/2632-2153/ad6832
    78. Jinyang Sun, Xi Chen, Xiumei Wang, Dandan Zhu, Xingping Zhou. Photonic modes prediction via multi-modal diffusion model. Machine Learning: Science and Technology 2024, 5 (3) , 035069. https://doi.org/10.1088/2632-2153/ad743f
    79. Incheol Jung, Zhen Peng, Yahya Rahmat-Samii. Recent Advances in Reconfigurable Electromagnetic Surfaces: Engineering Design, Full-Wave Analysis, and Large-Scale Optimization. Electromagnetic Science 2024, 2 (3) , 1-25. https://doi.org/10.23919/emsci.2024.0020
    80. Xiaoyue Zhu, Chao Qian, Erping Li, Hongsheng Chen. Negative Conductivity Induced Reconfigurable Gain Metasurfaces and Their Nonlinearity. Physical Review Letters 2024, 133 (11) https://doi.org/10.1103/PhysRevLett.133.113801
    81. Linda Shao, Weiren Zhu. Recent advances in electromagnetic metamaterials and metasurfaces for polarization manipulation. Journal of Physics D: Applied Physics 2024, 57 (34) , 343001. https://doi.org/10.1088/1361-6463/ad4cfa
    82. Seungjun Yu, Haneol Lee, Changyoung Ju, Haewook Han, . Enhanced DBR mirror design via D3QN: A reinforcement learning approach. PLOS ONE 2024, 19 (8) , e0307211. https://doi.org/10.1371/journal.pone.0307211
    83. Shuqin Wang, Qiongxiong Ma, Ruihuan Wu, Wen Ding, Jianping Guo. Transfer‐Learning‐Enabled 3D reconfigurable broadband solar metamaterial absorbers design. Optics Communications 2024, 564 , 130644. https://doi.org/10.1016/j.optcom.2024.130644
    84. Ksenia Yadav, Serge Bidnyk, Ashok Balakrishnan. Artificial intelligence and machine learning in optics: tutorial. Journal of the Optical Society of America B 2024, 41 (8) , 1739. https://doi.org/10.1364/JOSAB.525182
    85. Lu Zhu, Wei Hua, Cong Lv, Yuanyuan Liu. Rapid Inverse Design of High Degree of Freedom Meta-Atoms Based on the Image-Parameter Diffusion Model. Journal of Lightwave Technology 2024, 42 (15) , 5269-5278. https://doi.org/10.1109/JLT.2024.3391924
    86. Pu Peng, Zheyu Fang. Pushing the limits of multifunctional metasurface by deep learning. Current Opinion in Solid State and Materials Science 2024, 31 , 101163. https://doi.org/10.1016/j.cossms.2024.101163
    87. Zhangyu Wu, Hao Pan, Peng Huang, Jinhui Tang, Wei She. Biomimetic Mechanical Robust Cement‐Resin Composites with Machine Learning‐Assisted Gradient Hierarchical Structures. Advanced Materials 2024, 36 (35) https://doi.org/10.1002/adma.202405183
    88. Fan He, Zhiming Zhang, Zheng Ye, Yun He. Design of Electromagnetic Transmission/Absorption Structures Based on Machine Learning. 2024, 1389-1391. https://doi.org/10.1109/ICEICT61637.2024.10671128
    89. Tae Young Kang, Kyujung Kim. Specific wavelength peak emulation with amorphous metastructures. Optics Letters 2024, 49 (14) , 3922. https://doi.org/10.1364/OL.527384
    90. Parvathy Chittur Subramanianprasad, Yang Hao. Machine Learning as Applied to EM - Trends, Advances, and Applications. 2024, 249-250. https://doi.org/10.1109/AP-S/INC-USNC-URSI52054.2024.10686165
    91. Shuqin Wang, Qiongxiong Ma, Yue Chen, Wen Ding, Jianping Guo. Inverse design of polymorphic reconfigurable metamaterial absorbers based on a dual-input neural network. Journal of Physics D: Applied Physics 2024, 57 (27) , 275106. https://doi.org/10.1088/1361-6463/ad3bbf
    92. José G. B. A. Lima, Anderson S. L. Gomes, Adiel T. de Almeida-Filho. Intelligent Materials Improvement Through Artificial Intelligence Approaches: A Systematic Literature Review. Archives of Computational Methods in Engineering 2024, 521 https://doi.org/10.1007/s11831-024-10163-x
    93. Cheng Liu, Wei Wang, Zhixia Wang, Bei Ding, Zhiqiang Wu, Jingjing Feng. Data-driven modeling and fast adjustment for digital coded metasurfaces database: Application in adaptive electromagnetic energy harvesting. Applied Energy 2024, 365 , 123303. https://doi.org/10.1016/j.apenergy.2024.123303
    94. Jian Lin Su, Jian Wei You, Long Chen, Xin Yi Yu, Qing Chun Yin, Guo Hang Yuan, Si Qi Huang, Qian Ma, Jia Nan Zhang, Tie Jun Cui. MetaPhyNet: intelligent design of large-scale metasurfaces based on physics-driven neural network. Journal of Physics: Photonics 2024, 6 (3) , 035010. https://doi.org/10.1088/2515-7647/ad4cc8
    95. Maciej Napiorkowski, Rafal Kasztelanic, Ryszard Buczynski. Optimization of spatial mode separation in few-mode nanostructured fibers with generative inverse design networks. Engineering Applications of Artificial Intelligence 2024, 133 , 107955. https://doi.org/10.1016/j.engappai.2024.107955
    96. Albin J. Svärdsby, Philippe Tassin. Adaptive meshing strategies for nanophotonics using a posteriori error estimation. Optics Express 2024, 32 (14) , 24592. https://doi.org/10.1364/OE.523907
    97. Xinggang Shang, Ning Wang, Chengyao Li, Wei Yan, Yitong Gu, Ruwen Peng, Nanjia Zhou, Min Qiu. Observation of Wide Bandwidth and Giant Chiroptical Response Empowered by Core–Shell Micro‐Helixes. Advanced Photonics Research 2024, 5 (7) https://doi.org/10.1002/adpr.202300298
    98. Chenqian Wang, Xiguo Cheng, Rui Wang, Xin Hu, Chinhua Wang. Flexibly Designable 2D Chiral Metasurfaces with Pixelated Topological Structure Based on Machine Learning. Laser & Photonics Reviews 2024, 18 (7) https://doi.org/10.1002/lpor.202300958
    99. Yun Chen, Jiangbo Hu, Shan Yin, Wentao Zhang, Wei Huang. Bimodal Absorber Frequencies Shift Induced by the Coupling of Bright and Dark Modes. Materials 2024, 17 (13) , 3379. https://doi.org/10.3390/ma17133379
    100. Minok Park, Luka Grbčić, Parham Motameni, Spencer Song, Alok Singh, Dante Malagrino, Mahmoud Elzouka, Puya H. Vahabi, Alberto Todeschini, Wibe Albert de Jong, Ravi Prasher, Vassilia Zorba, Sean D. Lubner. Inverse Design of Photonic Surfaces via High throughput Femtosecond Laser Processing and Tandem Neural Networks. Advanced Science 2024, 11 (26) https://doi.org/10.1002/advs.202401951
    Load more citations

    ACS Nano

    Cite this: ACS Nano 2018, 12, 6, 6326–6334
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.8b03569
    Published June 1, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    15k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.