Enhanced Multiple Exciton Generation in PbS|CdS Janus-like Heterostructured NanocrystalsClick to copy article linkArticle link copied!
- Daniel M. KroupaDaniel M. KroupaChemistry & Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United StatesDepartment of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United StatesMore by Daniel M. Kroupa
- Gregory F. PachGregory F. PachChemistry & Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United StatesMore by Gregory F. Pach
- Márton VörösMárton VörösMaterials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United StatesInstitute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United StatesMore by Márton Vörös
- Federico GibertiFederico GibertiInstitute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United StatesMore by Federico Giberti
- Boris D. ChernomordikBoris D. ChernomordikChemistry & Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United StatesMore by Boris D. Chernomordik
- Ryan W. CrispRyan W. CrispChemistry & Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United StatesDepartment of Physics, Colorado School of Mines, Golden, Colorado 80401, United StatesMore by Ryan W. Crisp
- Arthur J. NozikArthur J. NozikChemistry & Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United StatesDepartment of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United StatesMore by Arthur J. Nozik
- Justin C. JohnsonJustin C. JohnsonChemistry & Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United StatesMore by Justin C. Johnson
- Rohan SinghRohan SinghChemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United StatesMore by Rohan Singh
- Victor I. KlimovVictor I. KlimovChemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United StatesMore by Victor I. Klimov
- Giulia GalliGiulia GalliMaterials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United StatesInstitute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United StatesDepartment of Chemistry, University of Chicago, Chicago, Illinois 60637, United StatesMore by Giulia Galli
- Matthew C. Beard*Matthew C. Beard*E-mail: [email protected]Chemistry & Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United StatesMore by Matthew C. Beard
Abstract
Generating multiple excitons by a single high-energy photon is a promising third-generation solar energy conversion strategy. We demonstrate that multiple exciton generation (MEG) in PbS|CdS Janus-like heteronanostructures is enhanced over that of single-component and core/shell nanocrystal architectures, with an onset close to two times the PbS band gap. We attribute the enhanced MEG to the asymmetric nature of the heteronanostructure that results in an increase in the effective Coulomb interaction that drives MEG and a reduction of the competing hot exciton cooling rate. Slowed cooling occurs through effective trapping of hot-holes by a manifold of valence band interfacial states having both PbS and CdS character, as evidenced by photoluminescence studies and ab initio calculations. Using transient photocurrent spectroscopy, we find that the MEG characteristics of the individual nanostructures are maintained in conductive arrays and demonstrate that these quasi-spherical PbS|CdS nanocrystals can be incorporated as the main absorber layer in functional solid-state solar cell architectures. Finally, based upon our analysis, we provide design rules for the next generation of engineered nanocrystals to further improve the MEG characteristics.
Cited By
This article is cited by 59 publications.
- Sarah K. O’Boyle, Abigail M. Fagan, Benjamin C. Steimle, Raymond E. Schaak. Expanded Tunability of Intraparticle Frameworks in Spherical Heterostructured Nanoparticles through Substoichiometric Partial Cation Exchange. ACS Materials Au 2022, 2
(6)
, 690-698. https://doi.org/10.1021/acsmaterialsau.2c00038
- Zhiyuan Huang, Matthew C. Beard. Dye-Sensitized Multiple Exciton Generation in Lead Sulfide Quantum Dots. Journal of the American Chemical Society 2022, 144
(34)
, 15855-15861. https://doi.org/10.1021/jacs.2c07109
- Victor Wen-zhe Yu, Marco Govoni. GPU Acceleration of Large-Scale Full-Frequency GW Calculations. Journal of Chemical Theory and Computation 2022, 18
(8)
, 4690-4707. https://doi.org/10.1021/acs.jctc.2c00241
- Zhengjun Wang, Nils Lenngren, Edoardo Amarotti, Albin Hedse, Karel Žídek, Kaibo Zheng, Donatas Zigmantas, Tõnu Pullerits. Excited States and Their Dynamics in CdSe Quantum Dots Studied by Two-Color 2D Spectroscopy. The Journal of Physical Chemistry Letters 2022, 13
(5)
, 1266-1271. https://doi.org/10.1021/acs.jpclett.1c04110
- Marissa S. Martinez, Arthur J. Nozik, Matthew C. Beard. Size-Dependent Janus-Ligand Shell Formation on PbS Quantum Dots. The Journal of Physical Chemistry C 2021, 125
(39)
, 21729-21739. https://doi.org/10.1021/acs.jpcc.1c06713
- James Cassidy, Mingrui Yang, Dulanjan Harankahage, Dmitry Porotnikov, Pavel Moroz, Natalia Razgoniaeva, Cole Ellison, Jacob Bettinger, Shafqat Ehsan, John Sanchez, Jessica Madry, Dmitriy Khon, Mikhail Zamkov. Tuning the Dimensionality of Excitons in Colloidal Quantum Dot Molecules. Nano Letters 2021, 21
(17)
, 7339-7346. https://doi.org/10.1021/acs.nanolett.1c02540
- Yucheng Yuan, Na Jin, Peter Saghy, Lacie Dube, Hua Zhu, Ou Chen. Quantum Dot Photocatalysts for Organic Transformations. The Journal of Physical Chemistry Letters 2021, 12
(30)
, 7180-7193. https://doi.org/10.1021/acs.jpclett.1c01717
- Cherie R. Kagan, Lee C. Bassett, Christopher B. Murray, Sarah M. Thompson. Colloidal Quantum Dots as Platforms for Quantum Information Science. Chemical Reviews 2021, 121
(5)
, 3186-3233. https://doi.org/10.1021/acs.chemrev.0c00831
- Christopher Melnychuk, Philippe Guyot-Sionnest. Multicarrier Dynamics in Quantum Dots. Chemical Reviews 2021, 121
(4)
, 2325-2372. https://doi.org/10.1021/acs.chemrev.0c00931
- E. Ashley Gaulding, Xihan Chen, Ye Yang, Steven P. Harvey, Bobby To, Young-Hoon Kim, Matthew C. Beard, Peter C. Sercel, Joseph M. Luther. Embedding PbS Quantum Dots (QDs) in Pb-Halide Perovskite Matrices: QD Surface Chemistry and Antisolvent Effects on QD Dispersion and Confinement Properties. ACS Materials Letters 2020, 2
(11)
, 1464-1472. https://doi.org/10.1021/acsmaterialslett.0c00302
- Tais Labrador, Gordana Dukovic. Simultaneous Determination of Spectral Signatures and Decay Kinetics of Excited State Species in Semiconductor Nanocrystals Probed by Transient Absorption Spectroscopy. The Journal of Physical Chemistry C 2020, 124
(15)
, 8439-8447. https://doi.org/10.1021/acs.jpcc.0c01701
- Kai Chen, Si-Jing Ding, Song Ma, Wei Wang, Shan Liang, Li Zhou, Qu-Quan Wang. Enhancing Photocatalytic Activity of Au-Capped CdS–PbS Heterooctahedrons by Morphology Control. The Journal of Physical Chemistry C 2020, 124
(14)
, 7938-7945. https://doi.org/10.1021/acs.jpcc.0c00349
- Retno Miranti, Daiki Shin, Ricky Dwi Septianto, Maria Ibáñez, Maksym V. Kovalenko, Nobuhiro Matsushita, Yoshihiro Iwasa, Satria Zulkarnaen Bisri. Exclusive Electron Transport in Core@Shell PbTe@PbS Colloidal Semiconductor Nanocrystal Assemblies. ACS Nano 2020, 14
(3)
, 3242-3250. https://doi.org/10.1021/acsnano.9b08687
- Gianluca Grimaldi, Mark J. van den Brom, Indy du Fossé, Ryan W. Crisp, Nicholas Kirkwood, Solrun Gudjonsdottir, Jaco J. Geuchies, Sachin Kinge, Laurens D. A. Siebbeles, Arjan J. Houtepen. Engineering the Band Alignment in QD Heterojunction Films via Ligand Exchange. The Journal of Physical Chemistry C 2019, 123
(49)
, 29599-29608. https://doi.org/10.1021/acs.jpcc.9b09470
- Haipeng Lu, Gerard M. Carroll, Nathan R. Neale, Matthew C. Beard. Infrared Quantum Dots: Progress, Challenges, and Opportunities. ACS Nano 2019, 13
(2)
, 939-953. https://doi.org/10.1021/acsnano.8b09815
- Sourav Maiti, Nandan Ghorai, Jayanta Dana, Hirendra N. Ghosh. Disentangling the Electron and Hole Dynamics in Janus CdSe/PbSe Nanocrystals through Variable Pump Transient Absorption Spectroscopy. The Journal of Physical Chemistry C 2018, 122
(50)
, 29075-29079. https://doi.org/10.1021/acs.jpcc.8b11113
- Ke Fang, Zhiwei Chen, Lin‐An Yang, Jin‐Ping Ao, Yuyu Bu. Multiple Exciton Generation on Doped Wide‐Band Semiconductor Photoanode with Hierarchical Quantum Structure. Small 2025, 1 https://doi.org/10.1002/smll.202500245
- Riyanka Karmakar, Pravrati Taank, Debjit Ghoshal, Pushpendra Yadav, Dipendranath Mandal, Megha Shrivastava, Amit Agarwal, Matthew C. Beard, Elisa M. Miller, K. V. Adarsh. Multiple Carrier Generation at an Exceptionally Low Energy Threshold. Physical Review Letters 2025, 134
(2)
https://doi.org/10.1103/PhysRevLett.134.026903
- Vincent Mauritz, Ryan W. Crisp. Unravelling the intricacies of solvents and sulfur sources in colloidal synthesis of metal sulfide semiconductor nanocrystals. Journal of Materials Chemistry C 2024, 12
(30)
, 11319-11334. https://doi.org/10.1039/D4TC01414F
- Xingfa Ma, Xintao Zhang, Mingjun Gao, You Wang, Guang Li. Polymer-Gel-Derived PbS/C Composite Nanosheets and Their Photoelectronic Response Properties Studies in the NIR. Coatings 2024, 14
(8)
, 981. https://doi.org/10.3390/coatings14080981
- Yunzhi Xu, Haklae Lee, Nathanial Buettner, Ange-Therese Akono. Multiwalled carbon nanotubes as hard templates to yield advanced geopolymer-based self-assembled nanostructured ceramics. Mechanics Research Communications 2023, 134 , 104216. https://doi.org/10.1016/j.mechrescom.2023.104216
- Hadassah B. Griffin, Andrei B. Kryjevski, Dmitri S. Kilin. Ab initio
calculations of through-space and through-bond charge-transfer properties of interacting Janus-like PbSe and CdSe quantum dot heterostructures. Molecular Physics 2023, 115 https://doi.org/10.1080/00268976.2023.2273415
- Ho Jin, Clément Livache, Whi Dong Kim, Benjamin T. Diroll, Richard D. Schaller, Victor I. Klimov. Spin-exchange carrier multiplication in manganese-doped colloidal quantum dots. Nature Materials 2023, 22
(8)
, 1013-1021. https://doi.org/10.1038/s41563-023-01598-x
- Yun-Tao Ding, Bo-Yang Zhang, Chun-Lin Sun, Qiang Wang, Hao-Li Zhang. Optoelectronic materials utilizing hot excitons or hot carriers: from mechanism to applications. Journal of Materials Chemistry C 2023, 11
(24)
, 7937-7956. https://doi.org/10.1039/D3TC00009E
- İrem Kolay, Demet Asil. PbSe nanorod-quantum dot bulk nano-heterojunction solar cells generating multiple excitons with record photo conversion efficiencies. Materials Today Communications 2023, 35 , 106064. https://doi.org/10.1016/j.mtcomm.2023.106064
- Youzi Zhang, YuKe Li, Xu Xin, Yijin Wang, Peng Guo, Ruiling Wang, Bilin Wang, Wenjing Huang, Ana Jorge Sobrido, Xuanhua Li. Internal quantum efficiency higher than 100% achieved by combining doping and quantum effects for photocatalytic overall water splitting. Nature Energy 2023, 8
(5)
, 504-514. https://doi.org/10.1038/s41560-023-01242-7
- . Multiple exciton generation effect in photocatalytic overall water splitting. Nature Energy 2023, 433-434. https://doi.org/10.1038/s41560-023-01253-4
- Zamin Mamiyev, Narmina O. Balayeva. PbS nanostructures: A review of recent advances. Materials Today Sustainability 2023, 21 , 100305. https://doi.org/10.1016/j.mtsust.2022.100305
- G.P. Darshan, D.R. Lavanya, B. Daruka Prasad, S.C. Sharma, H. Nagabhushana. Quantum dots-based solar cells: Futuristic green technology to accomplish the energy crisis. 2023, 157-188. https://doi.org/10.1016/B978-0-323-85278-4.00004-0
- Zhixu Wu, Yingdong Ou, Mengqiang Cai, Yuhao Wang, Rongxin Tang, Yong Xia. Short‐Wave Infrared Photodetectors and Imaging Sensors Based on Lead Chalcogenide Colloidal Quantum Dots. Advanced Optical Materials 2023, 11
(1)
https://doi.org/10.1002/adom.202201577
- Jongwon Lee, Chi-Hyung Ahn. Multiple Exciton Generation Solar Cells: Numerical Approaches of Quantum Yield Extraction and Its Limiting Efficiencies. Energies 2023, 16
(2)
, 993. https://doi.org/10.3390/en16020993
- Atanu Jana, Chang Woo Myung, Vijaya Gopalan Sree, Kwang S. Kim. Upconversion and multiexciton generation in organic Mn(
ii
) complex boost the quantum yield to > 100%. Materials Chemistry Frontiers 2022, 6
(20)
, 3102-3114. https://doi.org/10.1039/D2QM00447J
- Jia-Wei Qiao, Zhi-Hao Chen, He-Yuan Liu, Xi-You Li, Jia-Jia Guo, Chao-Chao Qin, Xingzhu Wang, Yong-Jin Pu, Xiao-Tao Hao. Surface energetics mediated charge transfer and exciton transfer in cation-adsorbed rubrene/PbS nanocrystal hybrids. Journal of Physics: Energy 2022, 4
(4)
, 044013. https://doi.org/10.1088/2515-7655/ac9807
- Shanshan Yuan, Jing Wang, Yi Xiang, Shanshan Zheng, Yihan Wu, Jinliang Liu, Xiaohui Zhu, Yong Zhang. Shedding Light on Luminescent Janus Nanoparticles: From Synthesis to Photoluminescence and Applications. Small 2022, 18
(24)
https://doi.org/10.1002/smll.202200020
- Qiuyang Li, Wenxing Yang, Tianquan Lian. Exciton Transport and Interfacial Charge Transfer in Semiconductor Nanocrystals and Heterostructures. 2022, 985-1012. https://doi.org/10.1007/978-3-030-63713-2_33
- Irfan Ahmed, Lei Shi, Hannu Pasanen, Paola Vivo, Partha Maity, Mohammad Hatamvand, Yiqiang Zhan. There is plenty of room at the top: generation of hot charge carriers and their applications in perovskite and other semiconductor-based optoelectronic devices. Light: Science & Applications 2021, 10
(1)
https://doi.org/10.1038/s41377-021-00609-3
- Qiushi Hu, Xuemeng Yu, Shaokuan Gong, Xihan Chen. Nanomaterial catalysts for organic photoredox catalysis-mechanistic perspective. Nanoscale 2021, 13
(43)
, 18044-18053. https://doi.org/10.1039/D1NR05474K
- Li Cheng, Yao Cheng, Ju Xu, Hang Lin, Yuansheng Wang. Near-infrared two-photon absorption upconversion of PbS/CdS quantum dots prepared by cation exchange method. Materials Research Bulletin 2021, 140 , 111298. https://doi.org/10.1016/j.materresbull.2021.111298
- Ivan Marri, Stefano Ossicini. Multiple exciton generation in isolated and interacting silicon nanocrystals. Nanoscale 2021, 13
(28)
, 12119-12142. https://doi.org/10.1039/D1NR01747K
- Wen-Bo Chen, Lin-Yu Hu, Fang Meng, Ling Tang, Shan Liang, Jian-Bo Li. Dual-plasmon-induced photocatalytic performance enhancement in Au-PbS-CdS nanodumbbells with double Au caps on the ends. Optical Materials 2021, 117 , 111210. https://doi.org/10.1016/j.optmat.2021.111210
- Arthur J. Nozik. Quantization effects in semiconductor nanostructures and singlet fission in molecular chromophores for photovoltaics and solar fuels. Chemical Physics Reviews 2021, 2
(2)
https://doi.org/10.1063/5.0028982
- U Banin, N Waiskopf, L Hammarström, G Boschloo, M Freitag, E M J Johansson, J Sá, H Tian, M B Johnston, L M Herz, R L Milot, M G Kanatzidis, W Ke, I Spanopoulos, K L Kohlstedt, G C Schatz, N Lewis, T Meyer, A J Nozik, M C Beard, F Armstrong, C F Megarity, C A Schmuttenmaer, V S Batista, G W Brudvig. Nanotechnology for catalysis and solar energy conversion. Nanotechnology 2021, 32
(4)
, 042003. https://doi.org/10.1088/1361-6528/abbce8
- Sourav Maiti, Marco van der Laan, Deepika Poonia, Peter Schall, Sachin Kinge, Laurens D. A. Siebbeles. Emergence of new materials for exploiting highly efficient carrier multiplication in photovoltaics. Chemical Physics Reviews 2020, 1
(1)
https://doi.org/10.1063/5.0025748
- Akeel M. Kadim. Hybrid white light emitting devices (HWLEDs) from organic polymer and PbS nanocrystals by multiple excitons. Materials Science-Poland 2020, 38
(4)
, 693-698. https://doi.org/10.2478/msp-2020-0066
- Retno Miranti, Ricky Dwi Septianto, Maria Ibáñez, Maksym V. Kovalenko, Nobuhiro Matsushita, Yoshihiro Iwasa, Satria Zulkarnaen Bisri. Electron transport in iodide-capped core@shell PbTe@PbS colloidal nanocrystal solids. Applied Physics Letters 2020, 117
(17)
https://doi.org/10.1063/5.0025965
- Jianyu Yuan, Abhijit Hazarika, Qian Zhao, Xufeng Ling, Taylor Moot, Wanli Ma, Joseph M. Luther. Metal Halide Perovskites in Quantum Dot Solar Cells: Progress and Prospects. Joule 2020, 4
(6)
, 1160-1185. https://doi.org/10.1016/j.joule.2020.04.006
- Haipeng Lu, Zhiyuan Huang, Marissa S. Martinez, Justin C. Johnson, Joseph M. Luther, Matthew C. Beard. Transforming energy using quantum dots. Energy & Environmental Science 2020, 13
(5)
, 1347-1376. https://doi.org/10.1039/C9EE03930A
- James Cassidy, Mikhail Zamkov. Nanoshell quantum dots: Quantum confinement beyond the exciton Bohr radius. The Journal of Chemical Physics 2020, 152
(11)
https://doi.org/10.1063/1.5126423
- Guobao Li, Qian Yang, Lenore Kubie, Joshua T. Stecher, Zbigniew Galazka, Reinhard Uecker, Bruce A. Parkinson. Sensitization of SnO
2
Single Crystals with Multidentate‐Ligand‐Capped PbS Colloid Quantum Dots to Enhance the Photocurrent Stability. ChemNanoMat 2020, 6
(3)
, 461-469. https://doi.org/10.1002/cnma.201900679
- Ryan W. Crisp, Fatemeh S. M. Hashemi, Jordi Alkemade, Nicholas Kirkwood, Gianluca Grimaldi, Sachin Kinge, Laurens D. A. Siebbeles, J. Ruud van Ommen, Arjan J. Houtepen. Atomic Layer Deposition of ZnO on InP Quantum Dot Films for Charge Separation, Stabilization, and Solar Cell Formation. Advanced Materials Interfaces 2020, 7
(4)
https://doi.org/10.1002/admi.201901600
- Yaohong Zhang, Guohua Wu, Feng Liu, Chao Ding, Zhigang Zou, Qing Shen. Photoexcited carrier dynamics in colloidal quantum dot solar cells: insights into individual quantum dots, quantum dot solid films and devices. Chemical Society Reviews 2020, 49
(1)
, 49-84. https://doi.org/10.1039/C9CS00560A
- Emilio Scalise. Tailoring the electronic properties of semiconducting nanocrystal-solids. Semiconductor Science and Technology 2020, 35
(1)
, 013001. https://doi.org/10.1088/1361-6641/ab52e0
- Woo Seok Lee, Sanghyun Jeon, Soong Ju Oh. Wearable sensors based on colloidal nanocrystals. Nano Convergence 2019, 6
(1)
https://doi.org/10.1186/s40580-019-0180-7
- Rohan Singh, Wenyong Liu, Jaehoon Lim, István Robel, Victor I. Klimov. Hot-electron dynamics in quantum dots manipulated by spin-exchange Auger interactions. Nature Nanotechnology 2019, 14
(11)
, 1035-1041. https://doi.org/10.1038/s41565-019-0548-1
- Marissa S. Martinez, Arthur J. Nozik, Matthew C. Beard. Theoretical limits of multiple exciton generation and singlet fission tandem devices for solar water splitting. The Journal of Chemical Physics 2019, 151
(11)
https://doi.org/10.1063/1.5102095
- Huiying Fu. Colloidal metal halide perovskite nanocrystals: a promising juggernaut in photovoltaic applications. Journal of Materials Chemistry A 2019, 7
(24)
, 14357-14379. https://doi.org/10.1039/C8TA12509K
- Lenore Kubie, Bruce A. Parkinson. Photosensitization of Single-Crystal Oxide Substrates with Quantum Confined Semiconductors. Langmuir 2019, 35
(18)
, 5997-6004. https://doi.org/10.1021/acs.langmuir.8b00720
- Chao-Chao Qin, Ming-Huan Cui, Di-Di Song, Wei He, . Ultrafast multiexciton Auger recombination of CdSeS. Acta Physica Sinica 2019, 68
(10)
, 107801. https://doi.org/10.7498/aps.68.20190291
- Abiseka Ganesan, Arjan Houtepen, Ryan Crisp. Quantum Dot Solar Cells: Small Beginnings Have Large Impacts. Applied Sciences 2018, 8
(10)
, 1867. https://doi.org/10.3390/app8101867
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.