ACS Publications. Most Trusted. Most Cited. Most Read
Enhanced Multiple Exciton Generation in PbS|CdS Janus-like Heterostructured Nanocrystals
My Activity
    Article

    Enhanced Multiple Exciton Generation in PbS|CdS Janus-like Heterostructured Nanocrystals
    Click to copy article linkArticle link copied!

    • Daniel M. Kroupa
      Daniel M. Kroupa
      Chemistry & Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
      Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States
    • Gregory F. Pach
      Gregory F. Pach
      Chemistry & Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
    • Márton Vörös
      Márton Vörös
      Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
      Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
    • Federico Giberti
      Federico Giberti
      Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
    • Boris D. Chernomordik
      Boris D. Chernomordik
      Chemistry & Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
    • Ryan W. Crisp
      Ryan W. Crisp
      Chemistry & Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
      Department of Physics, Colorado School of Mines, Golden, Colorado 80401, United States
    • Arthur J. Nozik
      Arthur J. Nozik
      Chemistry & Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
      Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States
    • Justin C. Johnson
      Justin C. Johnson
      Chemistry & Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
    • Rohan Singh
      Rohan Singh
      Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
      More by Rohan Singh
    • Victor I. Klimov
      Victor I. Klimov
      Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
    • Giulia Galli
      Giulia Galli
      Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
      Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
      Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
      More by Giulia Galli
    • Matthew C. Beard*
      Matthew C. Beard
      Chemistry & Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
      *E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    ACS Nano

    Cite this: ACS Nano 2018, 12, 10, 10084–10094
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.8b04850
    Published September 14, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Generating multiple excitons by a single high-energy photon is a promising third-generation solar energy conversion strategy. We demonstrate that multiple exciton generation (MEG) in PbS|CdS Janus-like heteronanostructures is enhanced over that of single-component and core/shell nanocrystal architectures, with an onset close to two times the PbS band gap. We attribute the enhanced MEG to the asymmetric nature of the heteronanostructure that results in an increase in the effective Coulomb interaction that drives MEG and a reduction of the competing hot exciton cooling rate. Slowed cooling occurs through effective trapping of hot-holes by a manifold of valence band interfacial states having both PbS and CdS character, as evidenced by photoluminescence studies and ab initio calculations. Using transient photocurrent spectroscopy, we find that the MEG characteristics of the individual nanostructures are maintained in conductive arrays and demonstrate that these quasi-spherical PbS|CdS nanocrystals can be incorporated as the main absorber layer in functional solid-state solar cell architectures. Finally, based upon our analysis, we provide design rules for the next generation of engineered nanocrystals to further improve the MEG characteristics.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.8b04850.

    • Absorbance, PL, PLE, and XRD of Janus-like nanocrystals with varying Pb:Cd ratios, hyperspectral transient absorption surface plots and representative transient absorption data with MEG analysis, structural model and computational results detailing energy alignment, exciton quantum yield plotted for systems of differing MEG efficiency, computed MEG rates for Janus-like nanocrystals with and without interface states as well as a varying electric field, additional TRPL plots with time-integrated PL spectra, EQE from the device shown in Figure 7b (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 59 publications.

    1. Sarah K. O’Boyle, Abigail M. Fagan, Benjamin C. Steimle, Raymond E. Schaak. Expanded Tunability of Intraparticle Frameworks in Spherical Heterostructured Nanoparticles through Substoichiometric Partial Cation Exchange. ACS Materials Au 2022, 2 (6) , 690-698. https://doi.org/10.1021/acsmaterialsau.2c00038
    2. Zhiyuan Huang, Matthew C. Beard. Dye-Sensitized Multiple Exciton Generation in Lead Sulfide Quantum Dots. Journal of the American Chemical Society 2022, 144 (34) , 15855-15861. https://doi.org/10.1021/jacs.2c07109
    3. Victor Wen-zhe Yu, Marco Govoni. GPU Acceleration of Large-Scale Full-Frequency GW Calculations. Journal of Chemical Theory and Computation 2022, 18 (8) , 4690-4707. https://doi.org/10.1021/acs.jctc.2c00241
    4. Zhengjun Wang, Nils Lenngren, Edoardo Amarotti, Albin Hedse, Karel Žídek, Kaibo Zheng, Donatas Zigmantas, Tõnu Pullerits. Excited States and Their Dynamics in CdSe Quantum Dots Studied by Two-Color 2D Spectroscopy. The Journal of Physical Chemistry Letters 2022, 13 (5) , 1266-1271. https://doi.org/10.1021/acs.jpclett.1c04110
    5. Marissa S. Martinez, Arthur J. Nozik, Matthew C. Beard. Size-Dependent Janus-Ligand Shell Formation on PbS Quantum Dots. The Journal of Physical Chemistry C 2021, 125 (39) , 21729-21739. https://doi.org/10.1021/acs.jpcc.1c06713
    6. James Cassidy, Mingrui Yang, Dulanjan Harankahage, Dmitry Porotnikov, Pavel Moroz, Natalia Razgoniaeva, Cole Ellison, Jacob Bettinger, Shafqat Ehsan, John Sanchez, Jessica Madry, Dmitriy Khon, Mikhail Zamkov. Tuning the Dimensionality of Excitons in Colloidal Quantum Dot Molecules. Nano Letters 2021, 21 (17) , 7339-7346. https://doi.org/10.1021/acs.nanolett.1c02540
    7. Yucheng Yuan, Na Jin, Peter Saghy, Lacie Dube, Hua Zhu, Ou Chen. Quantum Dot Photocatalysts for Organic Transformations. The Journal of Physical Chemistry Letters 2021, 12 (30) , 7180-7193. https://doi.org/10.1021/acs.jpclett.1c01717
    8. Cherie R. Kagan, Lee C. Bassett, Christopher B. Murray, Sarah M. Thompson. Colloidal Quantum Dots as Platforms for Quantum Information Science. Chemical Reviews 2021, 121 (5) , 3186-3233. https://doi.org/10.1021/acs.chemrev.0c00831
    9. Christopher Melnychuk, Philippe Guyot-Sionnest. Multicarrier Dynamics in Quantum Dots. Chemical Reviews 2021, 121 (4) , 2325-2372. https://doi.org/10.1021/acs.chemrev.0c00931
    10. E. Ashley Gaulding, Xihan Chen, Ye Yang, Steven P. Harvey, Bobby To, Young-Hoon Kim, Matthew C. Beard, Peter C. Sercel, Joseph M. Luther. Embedding PbS Quantum Dots (QDs) in Pb-Halide Perovskite Matrices: QD Surface Chemistry and Antisolvent Effects on QD Dispersion and Confinement Properties. ACS Materials Letters 2020, 2 (11) , 1464-1472. https://doi.org/10.1021/acsmaterialslett.0c00302
    11. Tais Labrador, Gordana Dukovic. Simultaneous Determination of Spectral Signatures and Decay Kinetics of Excited State Species in Semiconductor Nanocrystals Probed by Transient Absorption Spectroscopy. The Journal of Physical Chemistry C 2020, 124 (15) , 8439-8447. https://doi.org/10.1021/acs.jpcc.0c01701
    12. Kai Chen, Si-Jing Ding, Song Ma, Wei Wang, Shan Liang, Li Zhou, Qu-Quan Wang. Enhancing Photocatalytic Activity of Au-Capped CdS–PbS Heterooctahedrons by Morphology Control. The Journal of Physical Chemistry C 2020, 124 (14) , 7938-7945. https://doi.org/10.1021/acs.jpcc.0c00349
    13. Retno Miranti, Daiki Shin, Ricky Dwi Septianto, Maria Ibáñez, Maksym V. Kovalenko, Nobuhiro Matsushita, Yoshihiro Iwasa, Satria Zulkarnaen Bisri. Exclusive Electron Transport in Core@Shell PbTe@PbS Colloidal Semiconductor Nanocrystal Assemblies. ACS Nano 2020, 14 (3) , 3242-3250. https://doi.org/10.1021/acsnano.9b08687
    14. Gianluca Grimaldi, Mark J. van den Brom, Indy du Fossé, Ryan W. Crisp, Nicholas Kirkwood, Solrun Gudjonsdottir, Jaco J. Geuchies, Sachin Kinge, Laurens D. A. Siebbeles, Arjan J. Houtepen. Engineering the Band Alignment in QD Heterojunction Films via Ligand Exchange. The Journal of Physical Chemistry C 2019, 123 (49) , 29599-29608. https://doi.org/10.1021/acs.jpcc.9b09470
    15. Haipeng Lu, Gerard M. Carroll, Nathan R. Neale, Matthew C. Beard. Infrared Quantum Dots: Progress, Challenges, and Opportunities. ACS Nano 2019, 13 (2) , 939-953. https://doi.org/10.1021/acsnano.8b09815
    16. Sourav Maiti, Nandan Ghorai, Jayanta Dana, Hirendra N. Ghosh. Disentangling the Electron and Hole Dynamics in Janus CdSe/PbSe Nanocrystals through Variable Pump Transient Absorption Spectroscopy. The Journal of Physical Chemistry C 2018, 122 (50) , 29075-29079. https://doi.org/10.1021/acs.jpcc.8b11113
    17. Ke Fang, Zhiwei Chen, Lin‐An Yang, Jin‐Ping Ao, Yuyu Bu. Multiple Exciton Generation on Doped Wide‐Band Semiconductor Photoanode with Hierarchical Quantum Structure. Small 2025, 1 https://doi.org/10.1002/smll.202500245
    18. Riyanka Karmakar, Pravrati Taank, Debjit Ghoshal, Pushpendra Yadav, Dipendranath Mandal, Megha Shrivastava, Amit Agarwal, Matthew C. Beard, Elisa M. Miller, K. V. Adarsh. Multiple Carrier Generation at an Exceptionally Low Energy Threshold. Physical Review Letters 2025, 134 (2) https://doi.org/10.1103/PhysRevLett.134.026903
    19. Vincent Mauritz, Ryan W. Crisp. Unravelling the intricacies of solvents and sulfur sources in colloidal synthesis of metal sulfide semiconductor nanocrystals. Journal of Materials Chemistry C 2024, 12 (30) , 11319-11334. https://doi.org/10.1039/D4TC01414F
    20. Xingfa Ma, Xintao Zhang, Mingjun Gao, You Wang, Guang Li. Polymer-Gel-Derived PbS/C Composite Nanosheets and Their Photoelectronic Response Properties Studies in the NIR. Coatings 2024, 14 (8) , 981. https://doi.org/10.3390/coatings14080981
    21. Yunzhi Xu, Haklae Lee, Nathanial Buettner, Ange-Therese Akono. Multiwalled carbon nanotubes as hard templates to yield advanced geopolymer-based self-assembled nanostructured ceramics. Mechanics Research Communications 2023, 134 , 104216. https://doi.org/10.1016/j.mechrescom.2023.104216
    22. Hadassah B. Griffin, Andrei B. Kryjevski, Dmitri S. Kilin. Ab initio calculations of through-space and through-bond charge-transfer properties of interacting Janus-like PbSe and CdSe quantum dot heterostructures. Molecular Physics 2023, 115 https://doi.org/10.1080/00268976.2023.2273415
    23. Ho Jin, Clément Livache, Whi Dong Kim, Benjamin T. Diroll, Richard D. Schaller, Victor I. Klimov. Spin-exchange carrier multiplication in manganese-doped colloidal quantum dots. Nature Materials 2023, 22 (8) , 1013-1021. https://doi.org/10.1038/s41563-023-01598-x
    24. Yun-Tao Ding, Bo-Yang Zhang, Chun-Lin Sun, Qiang Wang, Hao-Li Zhang. Optoelectronic materials utilizing hot excitons or hot carriers: from mechanism to applications. Journal of Materials Chemistry C 2023, 11 (24) , 7937-7956. https://doi.org/10.1039/D3TC00009E
    25. İrem Kolay, Demet Asil. PbSe nanorod-quantum dot bulk nano-heterojunction solar cells generating multiple excitons with record photo conversion efficiencies. Materials Today Communications 2023, 35 , 106064. https://doi.org/10.1016/j.mtcomm.2023.106064
    26. Youzi Zhang, YuKe Li, Xu Xin, Yijin Wang, Peng Guo, Ruiling Wang, Bilin Wang, Wenjing Huang, Ana Jorge Sobrido, Xuanhua Li. Internal quantum efficiency higher than 100% achieved by combining doping and quantum effects for photocatalytic overall water splitting. Nature Energy 2023, 8 (5) , 504-514. https://doi.org/10.1038/s41560-023-01242-7
    27. . Multiple exciton generation effect in photocatalytic overall water splitting. Nature Energy 2023, 433-434. https://doi.org/10.1038/s41560-023-01253-4
    28. Zamin Mamiyev, Narmina O. Balayeva. PbS nanostructures: A review of recent advances. Materials Today Sustainability 2023, 21 , 100305. https://doi.org/10.1016/j.mtsust.2022.100305
    29. G.P. Darshan, D.R. Lavanya, B. Daruka Prasad, S.C. Sharma, H. Nagabhushana. Quantum dots-based solar cells: Futuristic green technology to accomplish the energy crisis. 2023, 157-188. https://doi.org/10.1016/B978-0-323-85278-4.00004-0
    30. Zhixu Wu, Yingdong Ou, Mengqiang Cai, Yuhao Wang, Rongxin Tang, Yong Xia. Short‐Wave Infrared Photodetectors and Imaging Sensors Based on Lead Chalcogenide Colloidal Quantum Dots. Advanced Optical Materials 2023, 11 (1) https://doi.org/10.1002/adom.202201577
    31. Jongwon Lee, Chi-Hyung Ahn. Multiple Exciton Generation Solar Cells: Numerical Approaches of Quantum Yield Extraction and Its Limiting Efficiencies. Energies 2023, 16 (2) , 993. https://doi.org/10.3390/en16020993
    32. Atanu Jana, Chang Woo Myung, Vijaya Gopalan Sree, Kwang S. Kim. Upconversion and multiexciton generation in organic Mn( ii ) complex boost the quantum yield to > 100%. Materials Chemistry Frontiers 2022, 6 (20) , 3102-3114. https://doi.org/10.1039/D2QM00447J
    33. Jia-Wei Qiao, Zhi-Hao Chen, He-Yuan Liu, Xi-You Li, Jia-Jia Guo, Chao-Chao Qin, Xingzhu Wang, Yong-Jin Pu, Xiao-Tao Hao. Surface energetics mediated charge transfer and exciton transfer in cation-adsorbed rubrene/PbS nanocrystal hybrids. Journal of Physics: Energy 2022, 4 (4) , 044013. https://doi.org/10.1088/2515-7655/ac9807
    34. Shanshan Yuan, Jing Wang, Yi Xiang, Shanshan Zheng, Yihan Wu, Jinliang Liu, Xiaohui Zhu, Yong Zhang. Shedding Light on Luminescent Janus Nanoparticles: From Synthesis to Photoluminescence and Applications. Small 2022, 18 (24) https://doi.org/10.1002/smll.202200020
    35. Qiuyang Li, Wenxing Yang, Tianquan Lian. Exciton Transport and Interfacial Charge Transfer in Semiconductor Nanocrystals and Heterostructures. 2022, 985-1012. https://doi.org/10.1007/978-3-030-63713-2_33
    36. Irfan Ahmed, Lei Shi, Hannu Pasanen, Paola Vivo, Partha Maity, Mohammad Hatamvand, Yiqiang Zhan. There is plenty of room at the top: generation of hot charge carriers and their applications in perovskite and other semiconductor-based optoelectronic devices. Light: Science & Applications 2021, 10 (1) https://doi.org/10.1038/s41377-021-00609-3
    37. Qiushi Hu, Xuemeng Yu, Shaokuan Gong, Xihan Chen. Nanomaterial catalysts for organic photoredox catalysis-mechanistic perspective. Nanoscale 2021, 13 (43) , 18044-18053. https://doi.org/10.1039/D1NR05474K
    38. Li Cheng, Yao Cheng, Ju Xu, Hang Lin, Yuansheng Wang. Near-infrared two-photon absorption upconversion of PbS/CdS quantum dots prepared by cation exchange method. Materials Research Bulletin 2021, 140 , 111298. https://doi.org/10.1016/j.materresbull.2021.111298
    39. Ivan Marri, Stefano Ossicini. Multiple exciton generation in isolated and interacting silicon nanocrystals. Nanoscale 2021, 13 (28) , 12119-12142. https://doi.org/10.1039/D1NR01747K
    40. Wen-Bo Chen, Lin-Yu Hu, Fang Meng, Ling Tang, Shan Liang, Jian-Bo Li. Dual-plasmon-induced photocatalytic performance enhancement in Au-PbS-CdS nanodumbbells with double Au caps on the ends. Optical Materials 2021, 117 , 111210. https://doi.org/10.1016/j.optmat.2021.111210
    41. Arthur J. Nozik. Quantization effects in semiconductor nanostructures and singlet fission in molecular chromophores for photovoltaics and solar fuels. Chemical Physics Reviews 2021, 2 (2) https://doi.org/10.1063/5.0028982
    42. U Banin, N Waiskopf, L Hammarström, G Boschloo, M Freitag, E M J Johansson, J Sá, H Tian, M B Johnston, L M Herz, R L Milot, M G Kanatzidis, W Ke, I Spanopoulos, K L Kohlstedt, G C Schatz, N Lewis, T Meyer, A J Nozik, M C Beard, F Armstrong, C F Megarity, C A Schmuttenmaer, V S Batista, G W Brudvig. Nanotechnology for catalysis and solar energy conversion. Nanotechnology 2021, 32 (4) , 042003. https://doi.org/10.1088/1361-6528/abbce8
    43. Sourav Maiti, Marco van der Laan, Deepika Poonia, Peter Schall, Sachin Kinge, Laurens D. A. Siebbeles. Emergence of new materials for exploiting highly efficient carrier multiplication in photovoltaics. Chemical Physics Reviews 2020, 1 (1) https://doi.org/10.1063/5.0025748
    44. Akeel M. Kadim. Hybrid white light emitting devices (HWLEDs) from organic polymer and PbS nanocrystals by multiple excitons. Materials Science-Poland 2020, 38 (4) , 693-698. https://doi.org/10.2478/msp-2020-0066
    45. Retno Miranti, Ricky Dwi Septianto, Maria Ibáñez, Maksym V. Kovalenko, Nobuhiro Matsushita, Yoshihiro Iwasa, Satria Zulkarnaen Bisri. Electron transport in iodide-capped core@shell PbTe@PbS colloidal nanocrystal solids. Applied Physics Letters 2020, 117 (17) https://doi.org/10.1063/5.0025965
    46. Jianyu Yuan, Abhijit Hazarika, Qian Zhao, Xufeng Ling, Taylor Moot, Wanli Ma, Joseph M. Luther. Metal Halide Perovskites in Quantum Dot Solar Cells: Progress and Prospects. Joule 2020, 4 (6) , 1160-1185. https://doi.org/10.1016/j.joule.2020.04.006
    47. Haipeng Lu, Zhiyuan Huang, Marissa S. Martinez, Justin C. Johnson, Joseph M. Luther, Matthew C. Beard. Transforming energy using quantum dots. Energy & Environmental Science 2020, 13 (5) , 1347-1376. https://doi.org/10.1039/C9EE03930A
    48. James Cassidy, Mikhail Zamkov. Nanoshell quantum dots: Quantum confinement beyond the exciton Bohr radius. The Journal of Chemical Physics 2020, 152 (11) https://doi.org/10.1063/1.5126423
    49. Guobao Li, Qian Yang, Lenore Kubie, Joshua T. Stecher, Zbigniew Galazka, Reinhard Uecker, Bruce A. Parkinson. Sensitization of SnO 2 Single Crystals with Multidentate‐Ligand‐Capped PbS Colloid Quantum Dots to Enhance the Photocurrent Stability. ChemNanoMat 2020, 6 (3) , 461-469. https://doi.org/10.1002/cnma.201900679
    50. Ryan W. Crisp, Fatemeh S. M. Hashemi, Jordi Alkemade, Nicholas Kirkwood, Gianluca Grimaldi, Sachin Kinge, Laurens D. A. Siebbeles, J. Ruud van Ommen, Arjan J. Houtepen. Atomic Layer Deposition of ZnO on InP Quantum Dot Films for Charge Separation, Stabilization, and Solar Cell Formation. Advanced Materials Interfaces 2020, 7 (4) https://doi.org/10.1002/admi.201901600
    51. Yaohong Zhang, Guohua Wu, Feng Liu, Chao Ding, Zhigang Zou, Qing Shen. Photoexcited carrier dynamics in colloidal quantum dot solar cells: insights into individual quantum dots, quantum dot solid films and devices. Chemical Society Reviews 2020, 49 (1) , 49-84. https://doi.org/10.1039/C9CS00560A
    52. Emilio Scalise. Tailoring the electronic properties of semiconducting nanocrystal-solids. Semiconductor Science and Technology 2020, 35 (1) , 013001. https://doi.org/10.1088/1361-6641/ab52e0
    53. Woo Seok Lee, Sanghyun Jeon, Soong Ju Oh. Wearable sensors based on colloidal nanocrystals. Nano Convergence 2019, 6 (1) https://doi.org/10.1186/s40580-019-0180-7
    54. Rohan Singh, Wenyong Liu, Jaehoon Lim, István Robel, Victor I. Klimov. Hot-electron dynamics in quantum dots manipulated by spin-exchange Auger interactions. Nature Nanotechnology 2019, 14 (11) , 1035-1041. https://doi.org/10.1038/s41565-019-0548-1
    55. Marissa S. Martinez, Arthur J. Nozik, Matthew C. Beard. Theoretical limits of multiple exciton generation and singlet fission tandem devices for solar water splitting. The Journal of Chemical Physics 2019, 151 (11) https://doi.org/10.1063/1.5102095
    56. Huiying Fu. Colloidal metal halide perovskite nanocrystals: a promising juggernaut in photovoltaic applications. Journal of Materials Chemistry A 2019, 7 (24) , 14357-14379. https://doi.org/10.1039/C8TA12509K
    57. Lenore Kubie, Bruce A. Parkinson. Photosensitization of Single-Crystal Oxide Substrates with Quantum Confined Semiconductors. Langmuir 2019, 35 (18) , 5997-6004. https://doi.org/10.1021/acs.langmuir.8b00720
    58. Chao-Chao Qin, Ming-Huan Cui, Di-Di Song, Wei He, . Ultrafast multiexciton Auger recombination of CdSeS. Acta Physica Sinica 2019, 68 (10) , 107801. https://doi.org/10.7498/aps.68.20190291
    59. Abiseka Ganesan, Arjan Houtepen, Ryan Crisp. Quantum Dot Solar Cells: Small Beginnings Have Large Impacts. Applied Sciences 2018, 8 (10) , 1867. https://doi.org/10.3390/app8101867

    ACS Nano

    Cite this: ACS Nano 2018, 12, 10, 10084–10094
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.8b04850
    Published September 14, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    3501

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.