Coordinative Binding of Polymers to Metal–Organic Framework Nanoparticles for Control of Interactions at the BiointerfaceClick to copy article linkArticle link copied!
- Andreas ZimpelAndreas ZimpelDepartment of Chemistry and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 11, 81377 Munich, GermanyMore by Andreas Zimpel
- Nader Al DanafNader Al DanafDepartment of Chemistry and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 11, 81377 Munich, GermanyMore by Nader Al Danaf
- Benjamin SteinbornBenjamin SteinbornDepartment of Pharmacy and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 5-13, 81377 Munich, GermanyMore by Benjamin Steinborn
- Jasmin KuhnJasmin KuhnDepartment of Pharmacy and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 5-13, 81377 Munich, GermanyMore by Jasmin Kuhn
- Miriam HöhnMiriam HöhnDepartment of Pharmacy and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 5-13, 81377 Munich, GermanyMore by Miriam Höhn
- Tobias BauerTobias BauerInstitute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz, GermanyMore by Tobias Bauer
- Patrick HirschlePatrick HirschleDepartment of Chemistry and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 11, 81377 Munich, GermanyMore by Patrick Hirschle
- Waldemar SchrimpfWaldemar SchrimpfDepartment of Chemistry and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 11, 81377 Munich, GermanyMore by Waldemar Schrimpf
- Hanna EngelkeHanna EngelkeDepartment of Chemistry and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 11, 81377 Munich, GermanyMore by Hanna Engelke
- Ernst WagnerErnst WagnerDepartment of Pharmacy and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 5-13, 81377 Munich, GermanyMore by Ernst Wagner
- Matthias BarzMatthias BarzInstitute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz, GermanyMore by Matthias Barz
- Don C. LambDon C. LambDepartment of Chemistry and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 11, 81377 Munich, GermanyMore by Don C. Lamb
- Ulrich Lächelt*Ulrich Lächelt*E-mail: [email protected]Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 5-13, 81377 Munich, GermanyMore by Ulrich Lächelt
- Stefan Wuttke*Stefan Wuttke*E-mail: [email protected]Department of Chemistry and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 11, 81377 Munich, GermanySchool of Chemistry, College of Science, University of Lincoln, Brayford Way, Brayford Pool, Lincoln LN6 7TS, United KingdomMore by Stefan Wuttke
Abstract
Metal–organic framework nanoparticles (MOF NPs) are of growing interest in diagnostic and therapeutic applications, and due to their hybrid nature, they display enhanced properties compared to more established nanomaterials. The effective application of MOF NPs, however, is often hampered by limited control of their surface chemistry and understanding of their interactions at the biointerface. Using a surface coating approach, we found that coordinative polymer binding to Zr-fum NPs is a convenient way for peripheral surface functionalization. Different polymers with biomedical relevance were assessed for the ability to bind to the MOF surface. Carboxylic acid and amine containing polymers turned out to be potent surface coatings and a modulator replacement reaction was identified as the underlying mechanism. The strong binding of polycarboxylates was then used to shield the MOF surface with a double amphiphilic polyglutamate–polysarcosine block copolymer, which resulted in an exceptional high colloidal stability of the nanoparticles. The effect of polymer coating on interactions at the biointerface was tested with regard to cellular association and protein binding, which has, to the best of our knowledge, never been discussed in literature for functionalized MOF NPs. We conclude that the applied approach enables a high degree of chemical surface confinement, which could be used as a universal strategy for MOF NP functionalization. In this way, the physicochemical properties of MOF NPs could be tuned, which allows for control over their behavior in biological systems.
Cited By
This article is cited by 87 publications.
- David Schwiertz, Jennifer Angelina, Heyang Zhang, Matthias Barz. Miktoarm Star-polypept(o)ide-Based Polyion Complex Micelles for the Delivery of Large Nucleic Acids. Biomacromolecules 2024, 25
(10)
, 6539-6554. https://doi.org/10.1021/acs.biomac.4c00695
- Maria Timofeeva, Ksenia A. Mitusova, Darya R. Akhmetova, Polina A. Marukhnich, Vladimir K. Davydenko, Sviatoslav A. Povarov, Alexander S. Timin, Valentin A. Milichko, Sergei A. Shipilovskikh. Control Morphology and Biological Properties of HKUST-1 MOFs Using an Ultrasound-Assisted Approach. ACS Applied Bio Materials 2024, 7
(9)
, 6201-6212. https://doi.org/10.1021/acsabm.4c00765
- Jun Yong Oh, Batakrishna Jana, Junmo Seong, Eun-Koung An, Eun Min Go, Seongeon Jin, Hae Won Ok, Min-Seok Seu, Jong-hoon Bae, Chaiheon Lee, Seonghwan Lee, Tae-Hyuk Kwon, Jeong Kon Seo, Eunshil Choi, Jun-O Jin, Sang Kyu Kwak, Myoung Soo Lah, Ja-Hyoung Ryu. Unveiling the Power of Cloaking Metal–Organic Framework Platforms via Supramolecular Antibody Conjugation. ACS Nano 2024, 18
(24)
, 15790-15801. https://doi.org/10.1021/acsnano.4c02624
- Christopher DelRe, Hyukhun Hong, Malia B. Wenny, Daniel P. Erdosy, Joy Cho, Byeongdu Lee, Jarad A. Mason. Design Principles for Using Amphiphilic Polymers To Create Microporous Water. Journal of the American Chemical Society 2023, 145
(36)
, 19982-19988. https://doi.org/10.1021/jacs.3c06627
- Abdollah Omrani, Zeynep Deliballi, Baris Kiskan, Kerem Kaya, Yusuf Yagci. Kinetic Modeling of Ring-Opening Polymerization of Benzoxazines Using MIL-53-Al as a Potent Catalyst. Industrial & Engineering Chemistry Research 2023, 62
(25)
, 9673-9683. https://doi.org/10.1021/acs.iecr.3c01289
- D. Paul Mallory, Abegel Freedman, Megan J. Kaliszewski, Gladys Rocío Montenegro-Galindo, Coleen Pugh, Adam W. Smith. Direct Quantification of Serum Protein Interactions with PEGylated Micelle Nanocarriers. Biomacromolecules 2023, 24
(6)
, 2479-2488. https://doi.org/10.1021/acs.biomac.2c01538
- Brijendra Kumar Kashyap, Virendra Vikram Singh, Manoj Kumar Solanki, Anil Kumar, Janne Ruokolainen, Kavindra Kumar Kesari. Smart Nanomaterials in Cancer Theranostics: Challenges and Opportunities. ACS Omega 2023, 8
(16)
, 14290-14320. https://doi.org/10.1021/acsomega.2c07840
- Kim Shortall, Fernando Otero, Simon Bendl, Tewfik Soulimane, Edmond Magner. Enzyme Immobilization on Metal Organic Frameworks: the Effect of Buffer on the Stability of the Support. Langmuir 2022, 38
(44)
, 13382-13391. https://doi.org/10.1021/acs.langmuir.2c01630
- Salma Begum, Farid Behboodi-Sadabad, Yohanes Pramudya, Christian Dolle, Mariana Kozlowska, Zahid Hassan, Cornelia Mattern, Saleh Gorji, Stefan Heißler, Alexander Welle, Meike Koenig, Wolfgang Wenzel, Yolita M. Eggeler, Stefan Bräse, Joerg Lahann, Manuel Tsotsalas. Solid and Hollow Poly(p-xylylene) Particles Synthesis via Metal–Organic Framework-Templated Chemical Vapor Polymerization. Chemistry of Materials 2022, 34
(14)
, 6268-6278. https://doi.org/10.1021/acs.chemmater.2c00111
- Jiangfan Cao, Orysia T. Zaremba, Qi Lei, Evelyn Ploetz, Stefan Wuttke, Wei Zhu. Artificial Bioaugmentation of Biomacromolecules and Living Organisms for Biomedical Applications. ACS Nano 2021, 15
(3)
, 3900-3926. https://doi.org/10.1021/acsnano.0c10144
- Weibin Liang, Peter Wied, Francesco Carraro, Christopher J. Sumby, Bernd Nidetzky, Chia-Kuang Tsung, Paolo Falcaro, Christian J. Doonan. Metal–Organic Framework-Based Enzyme Biocomposites. Chemical Reviews 2021, 121
(3)
, 1077-1129. https://doi.org/10.1021/acs.chemrev.0c01029
- Sara S. Nogueira, Anne Schlegel, Konrad Maxeiner, Benjamin Weber, Matthias Barz, Martin A. Schroer, Clement E. Blanchet, Dmitri I. Svergun, Srinivas Ramishetti, Dan Peer, Peter Langguth, Ugur Sahin, Heinrich Haas. Polysarcosine-Functionalized Lipid Nanoparticles for Therapeutic mRNA Delivery. ACS Applied Nano Materials 2020, 3
(11)
, 10634-10645. https://doi.org/10.1021/acsanm.0c01834
- Xiaoli Tian, Fu Li, Zhenyuan Tang, Song Wang, Kangkang Weng, Dan Liu, Shaoyong Lu, Wangyu Liu, Zhong Fu, Wenjun Li, Hengwei Qiu, Min Tu, Hao Zhang, Jinghong Li. Crosslinking-induced patterning of MOFs by direct photo- and electron-beam lithography. Nature Communications 2024, 15
(1)
https://doi.org/10.1038/s41467-024-47293-6
- Tobias Alexander Bauer, Leon Simić, Joachim F.R. Van Guyse, Aroa Duro-Castaño, Vicent J. Nebot, Matthias Barz. Polypept(o)ides – Origins, synthesis, applications and future directions. Progress in Polymer Science 2024, 158 , 101889. https://doi.org/10.1016/j.progpolymsci.2024.101889
- Guimei Zhang, Yanxin Shen, Joshua Phipps, Li Sun, Shengqian Ma. Metal-organic frameworks for the diagnosis and treatment of Alzheimer’s disease: Current status and perspectives. Coordination Chemistry Reviews 2024, 518 , 216059. https://doi.org/10.1016/j.ccr.2024.216059
- Alec Wang, Madeline Walden, Romy Ettlinger, Fabian Kiessling, Jeremiah J. Gassensmith, Twan Lammers, Stefan Wuttke, Quim Peña. Biomedical Metal–Organic Framework Materials: Perspectives and Challenges. Advanced Functional Materials 2024, 34
(43)
https://doi.org/10.1002/adfm.202308589
- Shabnum Saleem, Kirtanjot Kaur, Vaneet Kumar, Azmat Ali Khan, Abdul Malik. An overview of Metal–Organic Frameworks as potential platform: Sensing for detection environmental pollutants and drug delivery applications. Journal of Molecular Structure 2024, 1312 , 138389. https://doi.org/10.1016/j.molstruc.2024.138389
- Jun Yong Oh, Min-Seok Seu, Ayan Kumar Barui, Hae Won Ok, Dohyun Kim, Eunshil Choi, Junmo Seong, Myoung Soo Lah, Ja-Hyoung Ryu. A multifunctional protein pre-coated metal–organic framework for targeted delivery with deep tissue penetration. Nanoscale 2024, 16
(31)
, 14748-14756. https://doi.org/10.1039/D4NR02345E
- Rida Younas, Farhat Jubeen, Nargis Bano, Silvana Andreescu, Hongxia Zhang, Akhtar Hayat. Covalent organic frameworks (COFs) as carrier for improved drug delivery and biosensing applications. Biotechnology and Bioengineering 2024, 121
(7)
, 2017-2049. https://doi.org/10.1002/bit.28718
- Leon Capelôa, Rafael Miravet Martí, Aroa Duro‐Castaño, Vicent J. Nebot, Matthias Barz. Utility of Triethyloxonium Tetrafluoroborate for Chloride Removal during Sarcosine
N
‐Carboxyanhydride Synthesis: Improving NCA Purity. Chemistry – A European Journal 2024, 30
(31)
https://doi.org/10.1002/chem.202304375
- Qian Chen, Ying Tang, Yang-Min Ding, Hong-Ya Jiang, Zi-Bo Zhang, Wei-Xing Li, Mei-Ling Liu, Shi-Peng Sun. Synergistic Construction of Sub-Nanometer Channel Membranes through MOF–Polymer Composites: Strategies and Nanofiltration Applications. Polymers 2024, 16
(12)
, 1653. https://doi.org/10.3390/polym16121653
- Jun Yong Oh, Youjung Sim, Gyeongseok Yang, Myoung-Hwan Park, Kibeom Kim, Ja-Hyoung Ryu. Surface functionalization of metal–organic framework nanoparticle for overcoming biological barrier in cancer therapy. Inorganic Chemistry Frontiers 2024, 11
(11)
, 3119-3135. https://doi.org/10.1039/D4QI00523F
- Na Gan, Yilin Li, Peiran Liu, Jingtao Pang, Lijuan Chen, Fang Geng, Hui Li, Di Wu. Experimental and computational investigations of zirconium-based metal-organic frameworks for bilirubin adsorption. Microporous and Mesoporous Materials 2024, 369 , 113054. https://doi.org/10.1016/j.micromeso.2024.113054
- Yue Song, Xinran Xu, Zheng Wang, Yanjun Zhao. Metal‐Organic Framework‐Based Nanomedicines for Ferroptotic Cancer Therapy. Advanced Healthcare Materials 2024, 13
(11)
https://doi.org/10.1002/adhm.202303533
- Mohamed Fawzi Kabil, Hassan Mohamed El-Said Azzazy, Maha Nasr. Recent progress on polySarcosine as an alternative to PEGylation: Synthesis and biomedical applications. International Journal of Pharmaceutics 2024, 653 , 123871. https://doi.org/10.1016/j.ijpharm.2024.123871
- Beixu Li, Milad Ashrafizadeh, Taiwei Jiao. Biomedical application of metal-organic frameworks (MOFs) in cancer therapy: Stimuli-responsive and biomimetic nanocomposites in targeted delivery, phototherapy and diagnosis. International Journal of Biological Macromolecules 2024, 260 , 129391. https://doi.org/10.1016/j.ijbiomac.2024.129391
- Xu Chen, Sergio Mercado Argandona, Francesca Melle, Nakul Rampal, David Fairen-Jimenez. Advances in surface functionalization of next-generation metal-organic frameworks for biomedical applications: Design, strategies, and prospects. Chem 2024, 10
(2)
, 504-543. https://doi.org/10.1016/j.chempr.2023.09.016
- K. Vijayasri, Sandeep Kumar, Anjali Verma, Alka Tiwari. Toxicity of Metal-Organic Frameworks (MOFs) in living system. 2024, 499-513. https://doi.org/10.1016/B978-0-443-15259-7.00002-4
- Jinghan Cai, Yan Xu, Fei Liao. Advances in multifunctional metal-organic framework (MOF)-based nanoplatforms for cancer starvation therapy. Expert Reviews in Molecular Medicine 2024, 26 https://doi.org/10.1017/erm.2024.28
- Gyeongseok Yang, Sangpil Kim, Jun Yong Oh, Dohyun Kim, Seongeon Jin, Eunshil Choi, Ja-Hyoung Ryu. Surface protein-retractive and redox-degradable mesoporous organosilica nanoparticles for enhanced cancer therapy. Journal of Colloid and Interface Science 2023, 649 , 1014-1022. https://doi.org/10.1016/j.jcis.2023.06.173
- Zhi-Zhou Chen, Sha Si, Zhi-Hao Cai, Wen-Jie Jiang, Ya-Nan Liu, Dan Zhao. Application of metal-organic skeletons and cellulose composites in nanomedicine. Cellulose 2023, 30
(16)
, 9955-9972. https://doi.org/10.1007/s10570-023-05523-y
- Mohammad Aghajani-Hashjin, Seyed Morteza Naghib. Nanoscale MOF-Based Composites for Cancer Treatment. Multidisciplinary Cancer Investigation 2023, 7
(4)
, 25-39. https://doi.org/10.61186/mci.7.4.25
- Wojciech Drożdż, Artur Ciesielski, Artur R. Stefankiewicz. Dynamic Cages—Towards Nanostructured Smart Materials. Angewandte Chemie 2023, 135
(43)
https://doi.org/10.1002/ange.202307552
- Wojciech Drożdż, Artur Ciesielski, Artur R. Stefankiewicz. Dynamic Cages—Towards Nanostructured Smart Materials. Angewandte Chemie International Edition 2023, 62
(43)
https://doi.org/10.1002/anie.202307552
- Anivind Kaur Bindra, Dongdong Wang, Yanli Zhao. Metal–Organic Frameworks Meet Polymers: From Synthesis Strategies to Healthcare Applications. Advanced Materials 2023, 35
(40)
https://doi.org/10.1002/adma.202300700
- Ilona Wagner, Simon Spiegel, Julian Brückel, Matthias Schwotzer, Alexander Welle, Martina H. Stenzel, Stefan Bräse, Salma Begum, Manuel Tsotsalas. Biofunctionalization of Metal–Organic Framework Nanoparticles via Combined Nitroxide‐Mediated Polymerization and Nitroxide Exchange Reaction. Macromolecular Materials and Engineering 2023, 308
(9)
https://doi.org/10.1002/mame.202300048
- Paulina Wiśniewska, Józef Haponiuk, Mohammad Reza Saeb, Navid Rabiee, Sidi A. Bencherif. Mitigating metal-organic framework (MOF) toxicity for biomedical applications. Chemical Engineering Journal 2023, 471 , 144400. https://doi.org/10.1016/j.cej.2023.144400
- Xuefeng Tang, Ying Zhang, Xiaojun Han. Ionizable Lipid Nanoparticles for mRNA Delivery. Advanced NanoBiomed Research 2023, 3
(8)
https://doi.org/10.1002/anbr.202300006
- Ying Shu, Weibin Liang, Jun Huang. Heterogeneity in enzyme/metal–organic framework composites for CO
2
transformation reactions. Green Chemistry 2023, 25
(11)
, 4196-4221. https://doi.org/10.1039/D2GC04682B
- Jun Yong Oh, Eunshil Choi, Batakrishna Jana, Eun Min Go, Eunji Jin, Seongeon Jin, Jinhyu Lee, Jong‐hoon Bae, Gyeongseok Yang, Sang Kyu Kwak, Wonyoung Choe, Ja‐Hyoung Ryu. Protein‐Precoated Surface of Metal‐Organic Framework Nanoparticles for Targeted Delivery. Small 2023, 19
(22)
https://doi.org/10.1002/smll.202300218
- Xiaoyu Wang, Bin Gao, Shihai Xia, Wencheng Zhang, Xumin Chen, Zequn Li, Xiangyan Meng, Yakai Feng. Surface-functionalized Zinc MOFs delivering zinc ion and hydrogen sulfide as tailored anti-hindlimb ischemic nanomedicine. Applied Materials Today 2023, 32 , 101843. https://doi.org/10.1016/j.apmt.2023.101843
- Zhicheng Li, Zhongbin Pan, Xu Fan, Hao Wang, Yu Cheng, Xiangping Ding, Songhan Shi, Peng Li, Jinjun Liu, Jiwei Zhai. Suppressing charge injection and preventing the extension of electrical trees of polymer-based composites through two-dimensional metal–organic frameworks nanosheets. Chemical Engineering Journal 2023, 466 , 143328. https://doi.org/10.1016/j.cej.2023.143328
- Muhammad Saeed, Aswa Firdous, Muhammad Saleh Zaman, Fatima Izhar, Mubeshar Riaz, Sabah Haider, Muzamil Majeed, Shahzaib Tariq. MOFs
for desulfurization of fuel oil: Recent advances and future insights. Journal of the Chinese Chemical Society 2023, 70
(4)
, 789-824. https://doi.org/10.1002/jccs.202200546
- Mohammad Mehdi Sabzehmeidani, Mahmood Kazemzad. Recent advances in surface-mounted metal–organic framework thin film coatings for biomaterials and medical applications: a review. Biomaterials Research 2023, 27
(1)
https://doi.org/10.1186/s40824-023-00454-y
- Angela Casini, Roland A. Fischer, Guillermo Moreno-Alcántar. Supramolecular metal-based molecules and materials for biomedical applications. 2023, 714-743. https://doi.org/10.1016/B978-0-12-823144-9.00047-9
- Ziya Zeng, Bingchen Zhao, Ruzhu Wang. Water based adsorption thermal battery: Sorption mechanisms and applications. Energy Storage Materials 2023, 54 , 794-821. https://doi.org/10.1016/j.ensm.2022.11.024
- José A. Carmona, Pablo Ramírez, Nuria Calero, José Muñoz. Effect of the Welan Gum Concentration on the Rheological and Structural Behaviour of Biocomposite Hydrogels with Sepiolite as Filler. Polymers 2023, 15
(1)
, 33. https://doi.org/10.3390/polym15010033
- Emily Linnane, Salame Haddad, Francesca Melle, Zihan Mei, David Fairen-Jimenez. The uptake of metal–organic frameworks: a journey into the cell. Chemical Society Reviews 2022, 51
(14)
, 6065-6086. https://doi.org/10.1039/D0CS01414A
- Subhajit Bhunia, Pranay Saha, Parikshit Moitra, Matthew A. Addicoat, Santanu Bhattacharya. Efficacious and sustained release of an anticancer drug mitoxantrone from new covalent organic frameworks using protein corona. Chemical Science 2022, 13
(26)
, 7920-7932. https://doi.org/10.1039/D2SC00260D
- Yang Lu, Chaozheng Liu, Changtong Mei, Jinsheng Sun, Juhyeon Lee, Qinglin Wu, Martin A. Hubbe, Mei-Chun Li. Recent advances in metal organic framework and cellulose nanomaterial composites. Coordination Chemistry Reviews 2022, 461 , 214496. https://doi.org/10.1016/j.ccr.2022.214496
- Eleanor Ostroff, Kavita Parekh, Aleksander Prominski, Bozhi Tian. Biocompatible and Nanoenabled Technologies for Biological Modulation. Advanced Materials Technologies 2022, 7
(2)
https://doi.org/10.1002/admt.202100216
- Romy Ettlinger, Ulrich Lächelt, Ruxandra Gref, Patricia Horcajada, Twan Lammers, Christian Serre, Patrick Couvreur, Russell E. Morris, Stefan Wuttke. Toxicity of metal–organic framework nanoparticles: from essential analyses to potential applications. Chemical Society Reviews 2022, 51
(2)
, 464-484. https://doi.org/10.1039/D1CS00918D
- Ming-Ming Xu, Lin-Hua Xie, Jian-Rong Li. Metal–Organic Framework/Polymer Hybrid Materials. 2021, 72-97. https://doi.org/10.1039/9781839163456-00072
- Ziru Niu, Hao Liu, Pietro Rassu, Lu Wang, Xiaojie Ma, Yuanyuan Zhang, Bo Wang. Applications of Metal–Organic Framework/Polymer Hybrid Materials. 2021, 142-225. https://doi.org/10.1039/9781839163456-00142
- Zhe Ji, Ralph Freund, Christian S. Diercks, Patrick Hirschle, Omar M. Yaghi, Stefan Wuttke. From Molecules to Frameworks to Superframework Crystals. Advanced Materials 2021, 33
(42)
https://doi.org/10.1002/adma.202103808
- Michael Peller, Arianna Lanza, Stefan Wuttke. MRI‐Active Metal‐Organic Frameworks: Concepts for the Translation from Lab to Clinic. Advanced Therapeutics 2021, 4
(9)
https://doi.org/10.1002/adtp.202100067
- Bin‐Cheng Wang, Zhi‐Ying Feng, Biao‐Biao Hao, Chen‐Xi Zhang, Qing‐Lun Wang. Promotion of Proton Conductivity by Encapsulation of Metal‐Organic Polyhedra in Metal‐Organic Frameworks. Chemistry – A European Journal 2021, 27
(47)
, 12137-12143. https://doi.org/10.1002/chem.202101213
- Peng Gao, Yuanyuan Chen, Wei Pan, Na Li, Zhuang Liu, Bo Tang. Antitumor Agents Based on Metal–Organic Frameworks. Angewandte Chemie 2021, 133
(31)
, 16901-16914. https://doi.org/10.1002/ange.202102574
- Peng Gao, Yuanyuan Chen, Wei Pan, Na Li, Zhuang Liu, Bo Tang. Antitumor Agents Based on Metal–Organic Frameworks. Angewandte Chemie International Edition 2021, 60
(31)
, 16763-16776. https://doi.org/10.1002/anie.202102574
- Girgis Obaid, Kimberley Samkoe, Kenneth Tichauer, Shazia Bano, Yeonjae Park, Zachary Silber, Sassan Hodge, Susan Callaghan, Mina Guirguis, Srivalleesha Mallidi, Brian Pogue, Tayyaba Hasan. Is tumor cell specificity distinct from tumor selectivity in vivo? A quantitative NIR molecular imaging analysis of nanoliposome targeting. Nano Research 2021, 14
(5)
, 1344-1354. https://doi.org/10.1007/s12274-020-3178-x
- Aleksander Ejsmont, Jacopo Andreo, Arianna Lanza, Aleksandra Galarda, Lauren Macreadie, Stefan Wuttke, Stefano Canossa, Evelyn Ploetz, Joanna Goscianska. Applications of reticular diversity in metal–organic frameworks: An ever-evolving state of the art. Coordination Chemistry Reviews 2021, 430 , 213655. https://doi.org/10.1016/j.ccr.2020.213655
- Jahid M. M. Islam, Pushpamalar Janarthanan. Drug Delivery Towards Cancer. 2021, 225-240. https://doi.org/10.1007/978-3-030-61021-0_12
- Shuliang Yang, Vikram V. Karve, Anita Justin, Ilia Kochetygov, Jordi Espín, Mehrdad Asgari, Olga Trukhina, Daniel T. Sun, Li Peng, Wendy L. Queen. Enhancing MOF performance through the introduction of polymer guests. Coordination Chemistry Reviews 2021, 427 , 213525. https://doi.org/10.1016/j.ccr.2020.213525
- Frederik Haase, Patrick Hirschle, Ralph Freund, Shuhei Furukawa, Zhe Ji, Stefan Wuttke. Mehr als nur ein Netzwerk: Strukturierung retikulärer Materialien im Nano‐, Meso‐ und Volumenbereich. Angewandte Chemie 2020, 132
(50)
, 22534-22556. https://doi.org/10.1002/ange.201914461
- Frederik Haase, Patrick Hirschle, Ralph Freund, Shuhei Furukawa, Zhe Ji, Stefan Wuttke. Beyond Frameworks: Structuring Reticular Materials across Nano‐, Meso‐, and Bulk Regimes. Angewandte Chemie International Edition 2020, 59
(50)
, 22350-22370. https://doi.org/10.1002/anie.201914461
- Botuo Zheng, Tianwen Bai, Jun Ling, Jihong Sun. Direct N-substituted N-thiocarboxyanhydride polymerization towards polypeptoids bearing unprotected carboxyl groups. Communications Chemistry 2020, 3
(1)
https://doi.org/10.1038/s42004-020-00393-y
- Taher Shahryari, Fateme Vahidipour, Narendra Pal Singh Chauhan, Ghasem Sargazi. Synthesis of a novel
Zn‐MOF
/
PVA
nanofibrous composite as bioorganic material: Design, systematic study and an efficient arsenic removal. Polymer Engineering & Science 2020, 60
(11)
, 2793-2803. https://doi.org/10.1002/pen.25510
- Qun Guan, Le‐Le Zhou, Fan‐Hong Lv, Wen‐Yan Li, Yan‐An Li, Yu‐Bin Dong. A Glycosylated Covalent Organic Framework Equipped with BODIPY and CaCO
3
for Synergistic Tumor Therapy. Angewandte Chemie International Edition 2020, 59
(41)
, 18042-18047. https://doi.org/10.1002/anie.202008055
- Qun Guan, Le‐Le Zhou, Fan‐Hong Lv, Wen‐Yan Li, Yan‐An Li, Yu‐Bin Dong. A Glycosylated Covalent Organic Framework Equipped with BODIPY and CaCO
3
for Synergistic Tumor Therapy. Angewandte Chemie 2020, 132
(41)
, 18198-18203. https://doi.org/10.1002/ange.202008055
- Evelyn Ploetz, Hanna Engelke, Ulrich Lächelt, Stefan Wuttke. The Chemistry of Reticular Framework Nanoparticles: MOF, ZIF, and COF Materials. Advanced Functional Materials 2020, 30
(41)
https://doi.org/10.1002/adfm.201909062
- Juan A. Allegretto, Agustín Iborra, Juan M. Giussi, Catalina von Bilderling, Marcelo Ceolín, Sergio Moya, Omar Azzaroni, Matias Rafti. Growth of ZIF‐8 MOF Films with Tunable Porosity by using Poly (1‐vinylimidazole) Brushes as 3D Primers. Chemistry – A European Journal 2020, 26
(54)
, 12388-12396. https://doi.org/10.1002/chem.202002493
- Kerstin Johann, Dennis Svatunek, Christine Seidl, Silvia Rizzelli, Tobias A. Bauer, Lydia Braun, Kaloian Koynov, Hannes Mikula, Matthias Barz. Tetrazine- and
trans
-cyclooctene-functionalised polypept(o)ides for fast bioorthogonal tetrazine ligation. Polymer Chemistry 2020, 11
(27)
, 4396-4407. https://doi.org/10.1039/D0PY00375A
- Jongkook Hwang, Aleksander Ejsmont, Ralph Freund, Joanna Goscianska, Bernhard V. K. J. Schmidt, Stefan Wuttke. Controlling the morphology of metal–organic frameworks and porous carbon materials: metal oxides as primary architecture-directing agents. Chemical Society Reviews 2020, 49
(11)
, 3348-3422. https://doi.org/10.1039/C9CS00871C
- Jie Yang, Ying‐Wei Yang. Metal‐organic framework‐based cancer theranostic nanoplatforms. VIEW 2020, 1
(2)
https://doi.org/10.1002/viw2.20
- Yi Li, Jian Li, Raul Bahamonde Soria, Alexander Volodine, Bart Van der Bruggen. Aramid nanofiber and modified ZIF-8 constructed porous nanocomposite membrane for organic solvent nanofiltration. Journal of Membrane Science 2020, 603 , 118002. https://doi.org/10.1016/j.memsci.2020.118002
- Tahir Rasheed, Komal Rizwan, Muhammad Bilal, Hafiz M. N. Iqbal. Metal-Organic Framework-Based Engineered Materials—Fundamentals and Applications. Molecules 2020, 25
(7)
, 1598. https://doi.org/10.3390/molecules25071598
- Shimei Li, Longfei Tan, Xianwei Meng. Nanoscale Metal‐Organic Frameworks: Synthesis, Biocompatibility, Imaging Applications, and Thermal and Dynamic Therapy of Tumors. Advanced Functional Materials 2020, 30
(13)
https://doi.org/10.1002/adfm.201908924
- Jie Yang, Ying‐Wei Yang. Metal–Organic Frameworks for Biomedical Applications. Small 2020, 16
(10)
https://doi.org/10.1002/smll.201906846
- Bernhard V. K. J. Schmidt. Metal‐Organic Frameworks in Polymer Science: Polymerization Catalysis, Polymerization Environment, and Hybrid Materials. Macromolecular Rapid Communications 2020, 41
(1)
https://doi.org/10.1002/marc.201900333
- Nithin Chandran, Sarathchandran C, Sabu Thomas. Rheology of polymer-clay nanocomposites. 2020, 97-122. https://doi.org/10.1016/B978-0-12-816957-5.00006-9
- Alexander Schoedel. Secondary building units of MOFs. 2020, 11-44. https://doi.org/10.1016/B978-0-12-816984-1.00003-2
- Baoting Sun, Muhammad Bilal, Shiru Jia, Yunhong Jiang, Jiandong Cui. Design and bio-applications of biological metal-organic frameworks. Korean Journal of Chemical Engineering 2019, 36
(12)
, 1949-1964. https://doi.org/10.1007/s11814-019-0394-8
- Benjamin Steinborn, Patrick Hirschle, Miriam Höhn, Tobias Bauer, Matthias Barz, Stefan Wuttke, Ernst Wagner, Ulrich Lächelt. Core‐Shell Functionalized Zirconium‐Pemetrexed Coordination Nanoparticles as Carriers with a High Drug Content. Advanced Therapeutics 2019, 2
(11)
https://doi.org/10.1002/adtp.201900120
- Na Gan, Qiaomei Sun, Ludan Zhao, Peixiao Tang, Zili Suo, Shuangshuang Zhang, Yongkui Zhang, Man Zhang, Wenjing Wang, Hui Li. Protein corona of metal-organic framework nanoparticals: Study on the adsorption behavior of protein and cell interaction. International Journal of Biological Macromolecules 2019, 140 , 709-718. https://doi.org/10.1016/j.ijbiomac.2019.08.183
- Jun Zhong, Ranjith Kumar Kankala, Shi-Bin Wang, Ai-Zheng Chen. Recent Advances in Polymeric Nanocomposites of Metal-Organic Frameworks (MOFs). Polymers 2019, 11
(10)
, 1627. https://doi.org/10.3390/polym11101627
- Mario M. Modena, Bastian Rühle, Thomas P. Burg, Stefan Wuttke. Nanoparticle Characterization: What to Measure?. Advanced Materials 2019, 31
(32)
https://doi.org/10.1002/adma.201901556
- Ruairí P. Brannigan, Scott D. Kimmins, Elena Bobbi, Séamus Caulfield, Andreas Heise. Synthesis of Novel
bis
‐Triazolinedione Crosslinked Amphiphilic Polypept(o)ide Nanostructures. Macromolecular Chemistry and Physics 2019, 220
(11)
https://doi.org/10.1002/macp.201900067
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.