ACS Publications. Most Trusted. Most Cited. Most Read
Coordinative Binding of Polymers to Metal–Organic Framework Nanoparticles for Control of Interactions at the Biointerface
My Activity
    Article

    Coordinative Binding of Polymers to Metal–Organic Framework Nanoparticles for Control of Interactions at the Biointerface
    Click to copy article linkArticle link copied!

    • Andreas Zimpel
      Andreas Zimpel
      Department of Chemistry and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 11, 81377 Munich, Germany
    • Nader Al Danaf
      Nader Al Danaf
      Department of Chemistry and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 11, 81377 Munich, Germany
    • Benjamin Steinborn
      Benjamin Steinborn
      Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 5-13, 81377 Munich, Germany
    • Jasmin Kuhn
      Jasmin Kuhn
      Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 5-13, 81377 Munich, Germany
      More by Jasmin Kuhn
    • Miriam Höhn
      Miriam Höhn
      Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 5-13, 81377 Munich, Germany
      More by Miriam Höhn
    • Tobias Bauer
      Tobias Bauer
      Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
      More by Tobias Bauer
    • Patrick Hirschle
      Patrick Hirschle
      Department of Chemistry and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 11, 81377 Munich, Germany
    • Waldemar Schrimpf
      Waldemar Schrimpf
      Department of Chemistry and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 11, 81377 Munich, Germany
    • Hanna Engelke
      Hanna Engelke
      Department of Chemistry and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 11, 81377 Munich, Germany
    • Ernst Wagner
      Ernst Wagner
      Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 5-13, 81377 Munich, Germany
      More by Ernst Wagner
    • Matthias Barz
      Matthias Barz
      Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
    • Don C. Lamb
      Don C. Lamb
      Department of Chemistry and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 11, 81377 Munich, Germany
      More by Don C. Lamb
    • Ulrich Lächelt*
      Ulrich Lächelt
      Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 5-13, 81377 Munich, Germany
      *E-mail: [email protected]
    • Stefan Wuttke*
      Stefan Wuttke
      Department of Chemistry and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 11, 81377 Munich, Germany
      School of Chemistry, College of Science, University of Lincoln, Brayford Way, Brayford Pool, Lincoln LN6 7TS, United Kingdom
      *E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    ACS Nano

    Cite this: ACS Nano 2019, 13, 4, 3884–3895
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.8b06287
    Published March 7, 2019
    Copyright © 2019 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Metal–organic framework nanoparticles (MOF NPs) are of growing interest in diagnostic and therapeutic applications, and due to their hybrid nature, they display enhanced properties compared to more established nanomaterials. The effective application of MOF NPs, however, is often hampered by limited control of their surface chemistry and understanding of their interactions at the biointerface. Using a surface coating approach, we found that coordinative polymer binding to Zr-fum NPs is a convenient way for peripheral surface functionalization. Different polymers with biomedical relevance were assessed for the ability to bind to the MOF surface. Carboxylic acid and amine containing polymers turned out to be potent surface coatings and a modulator replacement reaction was identified as the underlying mechanism. The strong binding of polycarboxylates was then used to shield the MOF surface with a double amphiphilic polyglutamate–polysarcosine block copolymer, which resulted in an exceptional high colloidal stability of the nanoparticles. The effect of polymer coating on interactions at the biointerface was tested with regard to cellular association and protein binding, which has, to the best of our knowledge, never been discussed in literature for functionalized MOF NPs. We conclude that the applied approach enables a high degree of chemical surface confinement, which could be used as a universal strategy for MOF NP functionalization. In this way, the physicochemical properties of MOF NPs could be tuned, which allows for control over their behavior in biological systems.

    Copyright © 2019 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.8b06287.

    • Additional materials and methods, characterization of MOF nanoparticles, supplementary figures and tables (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 87 publications.

    1. David Schwiertz, Jennifer Angelina, Heyang Zhang, Matthias Barz. Miktoarm Star-polypept(o)ide-Based Polyion Complex Micelles for the Delivery of Large Nucleic Acids. Biomacromolecules 2024, 25 (10) , 6539-6554. https://doi.org/10.1021/acs.biomac.4c00695
    2. Maria Timofeeva, Ksenia A. Mitusova, Darya R. Akhmetova, Polina A. Marukhnich, Vladimir K. Davydenko, Sviatoslav A. Povarov, Alexander S. Timin, Valentin A. Milichko, Sergei A. Shipilovskikh. Control Morphology and Biological Properties of HKUST-1 MOFs Using an Ultrasound-Assisted Approach. ACS Applied Bio Materials 2024, 7 (9) , 6201-6212. https://doi.org/10.1021/acsabm.4c00765
    3. Jun Yong Oh, Batakrishna Jana, Junmo Seong, Eun-Koung An, Eun Min Go, Seongeon Jin, Hae Won Ok, Min-Seok Seu, Jong-hoon Bae, Chaiheon Lee, Seonghwan Lee, Tae-Hyuk Kwon, Jeong Kon Seo, Eunshil Choi, Jun-O Jin, Sang Kyu Kwak, Myoung Soo Lah, Ja-Hyoung Ryu. Unveiling the Power of Cloaking Metal–Organic Framework Platforms via Supramolecular Antibody Conjugation. ACS Nano 2024, 18 (24) , 15790-15801. https://doi.org/10.1021/acsnano.4c02624
    4. Christopher DelRe, Hyukhun Hong, Malia B. Wenny, Daniel P. Erdosy, Joy Cho, Byeongdu Lee, Jarad A. Mason. Design Principles for Using Amphiphilic Polymers To Create Microporous Water. Journal of the American Chemical Society 2023, 145 (36) , 19982-19988. https://doi.org/10.1021/jacs.3c06627
    5. Abdollah Omrani, Zeynep Deliballi, Baris Kiskan, Kerem Kaya, Yusuf Yagci. Kinetic Modeling of Ring-Opening Polymerization of Benzoxazines Using MIL-53-Al as a Potent Catalyst. Industrial & Engineering Chemistry Research 2023, 62 (25) , 9673-9683. https://doi.org/10.1021/acs.iecr.3c01289
    6. D. Paul Mallory, Abegel Freedman, Megan J. Kaliszewski, Gladys Rocío Montenegro-Galindo, Coleen Pugh, Adam W. Smith. Direct Quantification of Serum Protein Interactions with PEGylated Micelle Nanocarriers. Biomacromolecules 2023, 24 (6) , 2479-2488. https://doi.org/10.1021/acs.biomac.2c01538
    7. Brijendra Kumar Kashyap, Virendra Vikram Singh, Manoj Kumar Solanki, Anil Kumar, Janne Ruokolainen, Kavindra Kumar Kesari. Smart Nanomaterials in Cancer Theranostics: Challenges and Opportunities. ACS Omega 2023, 8 (16) , 14290-14320. https://doi.org/10.1021/acsomega.2c07840
    8. Kim Shortall, Fernando Otero, Simon Bendl, Tewfik Soulimane, Edmond Magner. Enzyme Immobilization on Metal Organic Frameworks: the Effect of Buffer on the Stability of the Support. Langmuir 2022, 38 (44) , 13382-13391. https://doi.org/10.1021/acs.langmuir.2c01630
    9. Salma Begum, Farid Behboodi-Sadabad, Yohanes Pramudya, Christian Dolle, Mariana Kozlowska, Zahid Hassan, Cornelia Mattern, Saleh Gorji, Stefan Heißler, Alexander Welle, Meike Koenig, Wolfgang Wenzel, Yolita M. Eggeler, Stefan Bräse, Joerg Lahann, Manuel Tsotsalas. Solid and Hollow Poly(p-xylylene) Particles Synthesis via Metal–Organic Framework-Templated Chemical Vapor Polymerization. Chemistry of Materials 2022, 34 (14) , 6268-6278. https://doi.org/10.1021/acs.chemmater.2c00111
    10. Jiangfan Cao, Orysia T. Zaremba, Qi Lei, Evelyn Ploetz, Stefan Wuttke, Wei Zhu. Artificial Bioaugmentation of Biomacromolecules and Living Organisms for Biomedical Applications. ACS Nano 2021, 15 (3) , 3900-3926. https://doi.org/10.1021/acsnano.0c10144
    11. Weibin Liang, Peter Wied, Francesco Carraro, Christopher J. Sumby, Bernd Nidetzky, Chia-Kuang Tsung, Paolo Falcaro, Christian J. Doonan. Metal–Organic Framework-Based Enzyme Biocomposites. Chemical Reviews 2021, 121 (3) , 1077-1129. https://doi.org/10.1021/acs.chemrev.0c01029
    12. Sara S. Nogueira, Anne Schlegel, Konrad Maxeiner, Benjamin Weber, Matthias Barz, Martin A. Schroer, Clement E. Blanchet, Dmitri I. Svergun, Srinivas Ramishetti, Dan Peer, Peter Langguth, Ugur Sahin, Heinrich Haas. Polysarcosine-Functionalized Lipid Nanoparticles for Therapeutic mRNA Delivery. ACS Applied Nano Materials 2020, 3 (11) , 10634-10645. https://doi.org/10.1021/acsanm.0c01834
    13. Xiaoli Tian, Fu Li, Zhenyuan Tang, Song Wang, Kangkang Weng, Dan Liu, Shaoyong Lu, Wangyu Liu, Zhong Fu, Wenjun Li, Hengwei Qiu, Min Tu, Hao Zhang, Jinghong Li. Crosslinking-induced patterning of MOFs by direct photo- and electron-beam lithography. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-47293-6
    14. Tobias Alexander Bauer, Leon Simić, Joachim F.R. Van Guyse, Aroa Duro-Castaño, Vicent J. Nebot, Matthias Barz. Polypept(o)ides – Origins, synthesis, applications and future directions. Progress in Polymer Science 2024, 158 , 101889. https://doi.org/10.1016/j.progpolymsci.2024.101889
    15. Guimei Zhang, Yanxin Shen, Joshua Phipps, Li Sun, Shengqian Ma. Metal-organic frameworks for the diagnosis and treatment of Alzheimer’s disease: Current status and perspectives. Coordination Chemistry Reviews 2024, 518 , 216059. https://doi.org/10.1016/j.ccr.2024.216059
    16. Alec Wang, Madeline Walden, Romy Ettlinger, Fabian Kiessling, Jeremiah J. Gassensmith, Twan Lammers, Stefan Wuttke, Quim Peña. Biomedical Metal–Organic Framework Materials: Perspectives and Challenges. Advanced Functional Materials 2024, 34 (43) https://doi.org/10.1002/adfm.202308589
    17. Shabnum Saleem, Kirtanjot Kaur, Vaneet Kumar, Azmat Ali Khan, Abdul Malik. An overview of Metal–Organic Frameworks as potential platform: Sensing for detection environmental pollutants and drug delivery applications. Journal of Molecular Structure 2024, 1312 , 138389. https://doi.org/10.1016/j.molstruc.2024.138389
    18. Jun Yong Oh, Min-Seok Seu, Ayan Kumar Barui, Hae Won Ok, Dohyun Kim, Eunshil Choi, Junmo Seong, Myoung Soo Lah, Ja-Hyoung Ryu. A multifunctional protein pre-coated metal–organic framework for targeted delivery with deep tissue penetration. Nanoscale 2024, 16 (31) , 14748-14756. https://doi.org/10.1039/D4NR02345E
    19. Rida Younas, Farhat Jubeen, Nargis Bano, Silvana Andreescu, Hongxia Zhang, Akhtar Hayat. Covalent organic frameworks (COFs) as carrier for improved drug delivery and biosensing applications. Biotechnology and Bioengineering 2024, 121 (7) , 2017-2049. https://doi.org/10.1002/bit.28718
    20. Leon Capelôa, Rafael Miravet Martí, Aroa Duro‐Castaño, Vicent J. Nebot, Matthias Barz. Utility of Triethyloxonium Tetrafluoroborate for Chloride Removal during Sarcosine N ‐Carboxyanhydride Synthesis: Improving NCA Purity. Chemistry – A European Journal 2024, 30 (31) https://doi.org/10.1002/chem.202304375
    21. Qian Chen, Ying Tang, Yang-Min Ding, Hong-Ya Jiang, Zi-Bo Zhang, Wei-Xing Li, Mei-Ling Liu, Shi-Peng Sun. Synergistic Construction of Sub-Nanometer Channel Membranes through MOF–Polymer Composites: Strategies and Nanofiltration Applications. Polymers 2024, 16 (12) , 1653. https://doi.org/10.3390/polym16121653
    22. Jun Yong Oh, Youjung Sim, Gyeongseok Yang, Myoung-Hwan Park, Kibeom Kim, Ja-Hyoung Ryu. Surface functionalization of metal–organic framework nanoparticle for overcoming biological barrier in cancer therapy. Inorganic Chemistry Frontiers 2024, 11 (11) , 3119-3135. https://doi.org/10.1039/D4QI00523F
    23. Na Gan, Yilin Li, Peiran Liu, Jingtao Pang, Lijuan Chen, Fang Geng, Hui Li, Di Wu. Experimental and computational investigations of zirconium-based metal-organic frameworks for bilirubin adsorption. Microporous and Mesoporous Materials 2024, 369 , 113054. https://doi.org/10.1016/j.micromeso.2024.113054
    24. Yue Song, Xinran Xu, Zheng Wang, Yanjun Zhao. Metal‐Organic Framework‐Based Nanomedicines for Ferroptotic Cancer Therapy. Advanced Healthcare Materials 2024, 13 (11) https://doi.org/10.1002/adhm.202303533
    25. Mohamed Fawzi Kabil, Hassan Mohamed El-Said Azzazy, Maha Nasr. Recent progress on polySarcosine as an alternative to PEGylation: Synthesis and biomedical applications. International Journal of Pharmaceutics 2024, 653 , 123871. https://doi.org/10.1016/j.ijpharm.2024.123871
    26. Beixu Li, Milad Ashrafizadeh, Taiwei Jiao. Biomedical application of metal-organic frameworks (MOFs) in cancer therapy: Stimuli-responsive and biomimetic nanocomposites in targeted delivery, phototherapy and diagnosis. International Journal of Biological Macromolecules 2024, 260 , 129391. https://doi.org/10.1016/j.ijbiomac.2024.129391
    27. Xu Chen, Sergio Mercado Argandona, Francesca Melle, Nakul Rampal, David Fairen-Jimenez. Advances in surface functionalization of next-generation metal-organic frameworks for biomedical applications: Design, strategies, and prospects. Chem 2024, 10 (2) , 504-543. https://doi.org/10.1016/j.chempr.2023.09.016
    28. K. Vijayasri, Sandeep Kumar, Anjali Verma, Alka Tiwari. Toxicity of Metal-Organic Frameworks (MOFs) in living system. 2024, 499-513. https://doi.org/10.1016/B978-0-443-15259-7.00002-4
    29. Jinghan Cai, Yan Xu, Fei Liao. Advances in multifunctional metal-organic framework (MOF)-based nanoplatforms for cancer starvation therapy. Expert Reviews in Molecular Medicine 2024, 26 https://doi.org/10.1017/erm.2024.28
    30. Gyeongseok Yang, Sangpil Kim, Jun Yong Oh, Dohyun Kim, Seongeon Jin, Eunshil Choi, Ja-Hyoung Ryu. Surface protein-retractive and redox-degradable mesoporous organosilica nanoparticles for enhanced cancer therapy. Journal of Colloid and Interface Science 2023, 649 , 1014-1022. https://doi.org/10.1016/j.jcis.2023.06.173
    31. Zhi-Zhou Chen, Sha Si, Zhi-Hao Cai, Wen-Jie Jiang, Ya-Nan Liu, Dan Zhao. Application of metal-organic skeletons and cellulose composites in nanomedicine. Cellulose 2023, 30 (16) , 9955-9972. https://doi.org/10.1007/s10570-023-05523-y
    32. Mohammad Aghajani-Hashjin, Seyed Morteza Naghib. Nanoscale MOF-Based Composites for Cancer Treatment. Multidisciplinary Cancer Investigation 2023, 7 (4) , 25-39. https://doi.org/10.61186/mci.7.4.25
    33. Wojciech Drożdż, Artur Ciesielski, Artur R. Stefankiewicz. Dynamic Cages—Towards Nanostructured Smart Materials. Angewandte Chemie 2023, 135 (43) https://doi.org/10.1002/ange.202307552
    34. Wojciech Drożdż, Artur Ciesielski, Artur R. Stefankiewicz. Dynamic Cages—Towards Nanostructured Smart Materials. Angewandte Chemie International Edition 2023, 62 (43) https://doi.org/10.1002/anie.202307552
    35. Anivind Kaur Bindra, Dongdong Wang, Yanli Zhao. Metal–Organic Frameworks Meet Polymers: From Synthesis Strategies to Healthcare Applications. Advanced Materials 2023, 35 (40) https://doi.org/10.1002/adma.202300700
    36. Ilona Wagner, Simon Spiegel, Julian Brückel, Matthias Schwotzer, Alexander Welle, Martina H. Stenzel, Stefan Bräse, Salma Begum, Manuel Tsotsalas. Biofunctionalization of Metal–Organic Framework Nanoparticles via Combined Nitroxide‐Mediated Polymerization and Nitroxide Exchange Reaction. Macromolecular Materials and Engineering 2023, 308 (9) https://doi.org/10.1002/mame.202300048
    37. Paulina Wiśniewska, Józef Haponiuk, Mohammad Reza Saeb, Navid Rabiee, Sidi A. Bencherif. Mitigating metal-organic framework (MOF) toxicity for biomedical applications. Chemical Engineering Journal 2023, 471 , 144400. https://doi.org/10.1016/j.cej.2023.144400
    38. Xuefeng Tang, Ying Zhang, Xiaojun Han. Ionizable Lipid Nanoparticles for mRNA Delivery. Advanced NanoBiomed Research 2023, 3 (8) https://doi.org/10.1002/anbr.202300006
    39. Ying Shu, Weibin Liang, Jun Huang. Heterogeneity in enzyme/metal–organic framework composites for CO 2 transformation reactions. Green Chemistry 2023, 25 (11) , 4196-4221. https://doi.org/10.1039/D2GC04682B
    40. Jun Yong Oh, Eunshil Choi, Batakrishna Jana, Eun Min Go, Eunji Jin, Seongeon Jin, Jinhyu Lee, Jong‐hoon Bae, Gyeongseok Yang, Sang Kyu Kwak, Wonyoung Choe, Ja‐Hyoung Ryu. Protein‐Precoated Surface of Metal‐Organic Framework Nanoparticles for Targeted Delivery. Small 2023, 19 (22) https://doi.org/10.1002/smll.202300218
    41. Xiaoyu Wang, Bin Gao, Shihai Xia, Wencheng Zhang, Xumin Chen, Zequn Li, Xiangyan Meng, Yakai Feng. Surface-functionalized Zinc MOFs delivering zinc ion and hydrogen sulfide as tailored anti-hindlimb ischemic nanomedicine. Applied Materials Today 2023, 32 , 101843. https://doi.org/10.1016/j.apmt.2023.101843
    42. Zhicheng Li, Zhongbin Pan, Xu Fan, Hao Wang, Yu Cheng, Xiangping Ding, Songhan Shi, Peng Li, Jinjun Liu, Jiwei Zhai. Suppressing charge injection and preventing the extension of electrical trees of polymer-based composites through two-dimensional metal–organic frameworks nanosheets. Chemical Engineering Journal 2023, 466 , 143328. https://doi.org/10.1016/j.cej.2023.143328
    43. Muhammad Saeed, Aswa Firdous, Muhammad Saleh Zaman, Fatima Izhar, Mubeshar Riaz, Sabah Haider, Muzamil Majeed, Shahzaib Tariq. MOFs for desulfurization of fuel oil: Recent advances and future insights. Journal of the Chinese Chemical Society 2023, 70 (4) , 789-824. https://doi.org/10.1002/jccs.202200546
    44. Mohammad Mehdi Sabzehmeidani, Mahmood Kazemzad. Recent advances in surface-mounted metal–organic framework thin film coatings for biomaterials and medical applications: a review. Biomaterials Research 2023, 27 (1) https://doi.org/10.1186/s40824-023-00454-y
    45. Angela Casini, Roland A. Fischer, Guillermo Moreno-Alcántar. Supramolecular metal-based molecules and materials for biomedical applications. 2023, 714-743. https://doi.org/10.1016/B978-0-12-823144-9.00047-9
    46. Ziya Zeng, Bingchen Zhao, Ruzhu Wang. Water based adsorption thermal battery: Sorption mechanisms and applications. Energy Storage Materials 2023, 54 , 794-821. https://doi.org/10.1016/j.ensm.2022.11.024
    47. José A. Carmona, Pablo Ramírez, Nuria Calero, José Muñoz. Effect of the Welan Gum Concentration on the Rheological and Structural Behaviour of Biocomposite Hydrogels with Sepiolite as Filler. Polymers 2023, 15 (1) , 33. https://doi.org/10.3390/polym15010033
    48. Emily Linnane, Salame Haddad, Francesca Melle, Zihan Mei, David Fairen-Jimenez. The uptake of metal–organic frameworks: a journey into the cell. Chemical Society Reviews 2022, 51 (14) , 6065-6086. https://doi.org/10.1039/D0CS01414A
    49. Subhajit Bhunia, Pranay Saha, Parikshit Moitra, Matthew A. Addicoat, Santanu Bhattacharya. Efficacious and sustained release of an anticancer drug mitoxantrone from new covalent organic frameworks using protein corona. Chemical Science 2022, 13 (26) , 7920-7932. https://doi.org/10.1039/D2SC00260D
    50. Yang Lu, Chaozheng Liu, Changtong Mei, Jinsheng Sun, Juhyeon Lee, Qinglin Wu, Martin A. Hubbe, Mei-Chun Li. Recent advances in metal organic framework and cellulose nanomaterial composites. Coordination Chemistry Reviews 2022, 461 , 214496. https://doi.org/10.1016/j.ccr.2022.214496
    51. Eleanor Ostroff, Kavita Parekh, Aleksander Prominski, Bozhi Tian. Biocompatible and Nanoenabled Technologies for Biological Modulation. Advanced Materials Technologies 2022, 7 (2) https://doi.org/10.1002/admt.202100216
    52. Romy Ettlinger, Ulrich Lächelt, Ruxandra Gref, Patricia Horcajada, Twan Lammers, Christian Serre, Patrick Couvreur, Russell E. Morris, Stefan Wuttke. Toxicity of metal–organic framework nanoparticles: from essential analyses to potential applications. Chemical Society Reviews 2022, 51 (2) , 464-484. https://doi.org/10.1039/D1CS00918D
    53. Ming-Ming Xu, Lin-Hua Xie, Jian-Rong Li. Metal–Organic Framework/Polymer Hybrid Materials. 2021, 72-97. https://doi.org/10.1039/9781839163456-00072
    54. Ziru Niu, Hao Liu, Pietro Rassu, Lu Wang, Xiaojie Ma, Yuanyuan Zhang, Bo Wang. Applications of Metal–Organic Framework/Polymer Hybrid Materials. 2021, 142-225. https://doi.org/10.1039/9781839163456-00142
    55. Zhe Ji, Ralph Freund, Christian S. Diercks, Patrick Hirschle, Omar M. Yaghi, Stefan Wuttke. From Molecules to Frameworks to Superframework Crystals. Advanced Materials 2021, 33 (42) https://doi.org/10.1002/adma.202103808
    56. Michael Peller, Arianna Lanza, Stefan Wuttke. MRI‐Active Metal‐Organic Frameworks: Concepts for the Translation from Lab to Clinic. Advanced Therapeutics 2021, 4 (9) https://doi.org/10.1002/adtp.202100067
    57. Bin‐Cheng Wang, Zhi‐Ying Feng, Biao‐Biao Hao, Chen‐Xi Zhang, Qing‐Lun Wang. Promotion of Proton Conductivity by Encapsulation of Metal‐Organic Polyhedra in Metal‐Organic Frameworks. Chemistry – A European Journal 2021, 27 (47) , 12137-12143. https://doi.org/10.1002/chem.202101213
    58. Peng Gao, Yuanyuan Chen, Wei Pan, Na Li, Zhuang Liu, Bo Tang. Antitumor Agents Based on Metal–Organic Frameworks. Angewandte Chemie 2021, 133 (31) , 16901-16914. https://doi.org/10.1002/ange.202102574
    59. Peng Gao, Yuanyuan Chen, Wei Pan, Na Li, Zhuang Liu, Bo Tang. Antitumor Agents Based on Metal–Organic Frameworks. Angewandte Chemie International Edition 2021, 60 (31) , 16763-16776. https://doi.org/10.1002/anie.202102574
    60. Girgis Obaid, Kimberley Samkoe, Kenneth Tichauer, Shazia Bano, Yeonjae Park, Zachary Silber, Sassan Hodge, Susan Callaghan, Mina Guirguis, Srivalleesha Mallidi, Brian Pogue, Tayyaba Hasan. Is tumor cell specificity distinct from tumor selectivity in vivo? A quantitative NIR molecular imaging analysis of nanoliposome targeting. Nano Research 2021, 14 (5) , 1344-1354. https://doi.org/10.1007/s12274-020-3178-x
    61. Aleksander Ejsmont, Jacopo Andreo, Arianna Lanza, Aleksandra Galarda, Lauren Macreadie, Stefan Wuttke, Stefano Canossa, Evelyn Ploetz, Joanna Goscianska. Applications of reticular diversity in metal–organic frameworks: An ever-evolving state of the art. Coordination Chemistry Reviews 2021, 430 , 213655. https://doi.org/10.1016/j.ccr.2020.213655
    62. Jahid M. M. Islam, Pushpamalar Janarthanan. Drug Delivery Towards Cancer. 2021, 225-240. https://doi.org/10.1007/978-3-030-61021-0_12
    63. Shuliang Yang, Vikram V. Karve, Anita Justin, Ilia Kochetygov, Jordi Espín, Mehrdad Asgari, Olga Trukhina, Daniel T. Sun, Li Peng, Wendy L. Queen. Enhancing MOF performance through the introduction of polymer guests. Coordination Chemistry Reviews 2021, 427 , 213525. https://doi.org/10.1016/j.ccr.2020.213525
    64. Frederik Haase, Patrick Hirschle, Ralph Freund, Shuhei Furukawa, Zhe Ji, Stefan Wuttke. Mehr als nur ein Netzwerk: Strukturierung retikulärer Materialien im Nano‐, Meso‐ und Volumenbereich. Angewandte Chemie 2020, 132 (50) , 22534-22556. https://doi.org/10.1002/ange.201914461
    65. Frederik Haase, Patrick Hirschle, Ralph Freund, Shuhei Furukawa, Zhe Ji, Stefan Wuttke. Beyond Frameworks: Structuring Reticular Materials across Nano‐, Meso‐, and Bulk Regimes. Angewandte Chemie International Edition 2020, 59 (50) , 22350-22370. https://doi.org/10.1002/anie.201914461
    66. Botuo Zheng, Tianwen Bai, Jun Ling, Jihong Sun. Direct N-substituted N-thiocarboxyanhydride polymerization towards polypeptoids bearing unprotected carboxyl groups. Communications Chemistry 2020, 3 (1) https://doi.org/10.1038/s42004-020-00393-y
    67. Taher Shahryari, Fateme Vahidipour, Narendra Pal Singh Chauhan, Ghasem Sargazi. Synthesis of a novel Zn‐MOF / PVA nanofibrous composite as bioorganic material: Design, systematic study and an efficient arsenic removal. Polymer Engineering & Science 2020, 60 (11) , 2793-2803. https://doi.org/10.1002/pen.25510
    68. Qun Guan, Le‐Le Zhou, Fan‐Hong Lv, Wen‐Yan Li, Yan‐An Li, Yu‐Bin Dong. A Glycosylated Covalent Organic Framework Equipped with BODIPY and CaCO 3 for Synergistic Tumor Therapy. Angewandte Chemie International Edition 2020, 59 (41) , 18042-18047. https://doi.org/10.1002/anie.202008055
    69. Qun Guan, Le‐Le Zhou, Fan‐Hong Lv, Wen‐Yan Li, Yan‐An Li, Yu‐Bin Dong. A Glycosylated Covalent Organic Framework Equipped with BODIPY and CaCO 3 for Synergistic Tumor Therapy. Angewandte Chemie 2020, 132 (41) , 18198-18203. https://doi.org/10.1002/ange.202008055
    70. Evelyn Ploetz, Hanna Engelke, Ulrich Lächelt, Stefan Wuttke. The Chemistry of Reticular Framework Nanoparticles: MOF, ZIF, and COF Materials. Advanced Functional Materials 2020, 30 (41) https://doi.org/10.1002/adfm.201909062
    71. Juan A. Allegretto, Agustín Iborra, Juan M. Giussi, Catalina von Bilderling, Marcelo Ceolín, Sergio Moya, Omar Azzaroni, Matias Rafti. Growth of ZIF‐8 MOF Films with Tunable Porosity by using Poly (1‐vinylimidazole) Brushes as 3D Primers. Chemistry – A European Journal 2020, 26 (54) , 12388-12396. https://doi.org/10.1002/chem.202002493
    72. Kerstin Johann, Dennis Svatunek, Christine Seidl, Silvia Rizzelli, Tobias A. Bauer, Lydia Braun, Kaloian Koynov, Hannes Mikula, Matthias Barz. Tetrazine- and trans -cyclooctene-functionalised polypept(o)ides for fast bioorthogonal tetrazine ligation. Polymer Chemistry 2020, 11 (27) , 4396-4407. https://doi.org/10.1039/D0PY00375A
    73. Jongkook Hwang, Aleksander Ejsmont, Ralph Freund, Joanna Goscianska, Bernhard V. K. J. Schmidt, Stefan Wuttke. Controlling the morphology of metal–organic frameworks and porous carbon materials: metal oxides as primary architecture-directing agents. Chemical Society Reviews 2020, 49 (11) , 3348-3422. https://doi.org/10.1039/C9CS00871C
    74. Jie Yang, Ying‐Wei Yang. Metal‐organic framework‐based cancer theranostic nanoplatforms. VIEW 2020, 1 (2) https://doi.org/10.1002/viw2.20
    75. Yi Li, Jian Li, Raul Bahamonde Soria, Alexander Volodine, Bart Van der Bruggen. Aramid nanofiber and modified ZIF-8 constructed porous nanocomposite membrane for organic solvent nanofiltration. Journal of Membrane Science 2020, 603 , 118002. https://doi.org/10.1016/j.memsci.2020.118002
    76. Tahir Rasheed, Komal Rizwan, Muhammad Bilal, Hafiz M. N. Iqbal. Metal-Organic Framework-Based Engineered Materials—Fundamentals and Applications. Molecules 2020, 25 (7) , 1598. https://doi.org/10.3390/molecules25071598
    77. Shimei Li, Longfei Tan, Xianwei Meng. Nanoscale Metal‐Organic Frameworks: Synthesis, Biocompatibility, Imaging Applications, and Thermal and Dynamic Therapy of Tumors. Advanced Functional Materials 2020, 30 (13) https://doi.org/10.1002/adfm.201908924
    78. Jie Yang, Ying‐Wei Yang. Metal–Organic Frameworks for Biomedical Applications. Small 2020, 16 (10) https://doi.org/10.1002/smll.201906846
    79. Bernhard V. K. J. Schmidt. Metal‐Organic Frameworks in Polymer Science: Polymerization Catalysis, Polymerization Environment, and Hybrid Materials. Macromolecular Rapid Communications 2020, 41 (1) https://doi.org/10.1002/marc.201900333
    80. Nithin Chandran, Sarathchandran C, Sabu Thomas. Rheology of polymer-clay nanocomposites. 2020, 97-122. https://doi.org/10.1016/B978-0-12-816957-5.00006-9
    81. Alexander Schoedel. Secondary building units of MOFs. 2020, 11-44. https://doi.org/10.1016/B978-0-12-816984-1.00003-2
    82. Baoting Sun, Muhammad Bilal, Shiru Jia, Yunhong Jiang, Jiandong Cui. Design and bio-applications of biological metal-organic frameworks. Korean Journal of Chemical Engineering 2019, 36 (12) , 1949-1964. https://doi.org/10.1007/s11814-019-0394-8
    83. Benjamin Steinborn, Patrick Hirschle, Miriam Höhn, Tobias Bauer, Matthias Barz, Stefan Wuttke, Ernst Wagner, Ulrich Lächelt. Core‐Shell Functionalized Zirconium‐Pemetrexed Coordination Nanoparticles as Carriers with a High Drug Content. Advanced Therapeutics 2019, 2 (11) https://doi.org/10.1002/adtp.201900120
    84. Na Gan, Qiaomei Sun, Ludan Zhao, Peixiao Tang, Zili Suo, Shuangshuang Zhang, Yongkui Zhang, Man Zhang, Wenjing Wang, Hui Li. Protein corona of metal-organic framework nanoparticals: Study on the adsorption behavior of protein and cell interaction. International Journal of Biological Macromolecules 2019, 140 , 709-718. https://doi.org/10.1016/j.ijbiomac.2019.08.183
    85. Jun Zhong, Ranjith Kumar Kankala, Shi-Bin Wang, Ai-Zheng Chen. Recent Advances in Polymeric Nanocomposites of Metal-Organic Frameworks (MOFs). Polymers 2019, 11 (10) , 1627. https://doi.org/10.3390/polym11101627
    86. Mario M. Modena, Bastian Rühle, Thomas P. Burg, Stefan Wuttke. Nanoparticle Characterization: What to Measure?. Advanced Materials 2019, 31 (32) https://doi.org/10.1002/adma.201901556
    87. Ruairí P. Brannigan, Scott D. Kimmins, Elena Bobbi, Séamus Caulfield, Andreas Heise. Synthesis of Novel bis ‐Triazolinedione Crosslinked Amphiphilic Polypept(o)ide Nanostructures. Macromolecular Chemistry and Physics 2019, 220 (11) https://doi.org/10.1002/macp.201900067

    ACS Nano

    Cite this: ACS Nano 2019, 13, 4, 3884–3895
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.8b06287
    Published March 7, 2019
    Copyright © 2019 American Chemical Society

    Article Views

    5056

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.