ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Graphite and Graphene Fairy Circles: A Bottom-Up Approach for the Formation of Nanocorrals

  • Thanh Hai Phan*
    Thanh Hai Phan
    Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
    Department of Physics, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Vietnam
    *E-mail: [email protected]
  • Hans Van Gorp
    Hans Van Gorp
    Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
  • Zhi Li
    Zhi Li
    Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
    More by Zhi Li
  • Thi Mien Trung Huynh
    Thi Mien Trung Huynh
    Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
    Department of Chemistry, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Vietnam
  • Yasuhiko Fujita
    Yasuhiko Fujita
    Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
  • Lander Verstraete
    Lander Verstraete
    Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
  • Samuel Eyley
    Samuel Eyley
    Department of Chemical Engineering, Renewable Materials and Nanotechnology Group, Campus Kortrijk, KU Leuven, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
    More by Samuel Eyley
  • Wim Thielemans
    Wim Thielemans
    Department of Chemical Engineering, Renewable Materials and Nanotechnology Group, Campus Kortrijk, KU Leuven, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
  • Hiroshi Uji-i
    Hiroshi Uji-i
    Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
  • Brandon E. Hirsch
    Brandon E. Hirsch
    Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
  • Stijn F. L. Mertens
    Stijn F. L. Mertens
    Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
    Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
  • John Greenwood
    John Greenwood
    Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
  • Oleksandr Ivasenko*
    Oleksandr Ivasenko
    Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
    *E-mail: [email protected]
  • , and 
  • Steven De Feyter*
    Steven De Feyter
    Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
    *E-mail: [email protected]
Cite this: ACS Nano 2019, 13, 5, 5559–5571
Publication Date (Web):April 23, 2019
https://doi.org/10.1021/acsnano.9b00439
Copyright © 2019 American Chemical Society

    Article Views

    2279

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    A convenient covalent functionalization approach and nanopatterning method of graphite and graphene is developed. In contrast to expectations, electrochemically activated dediazotization of a mixture of two aryl diazonium compounds in aqueous media leads to a spatially inhomogeneous functionalization of graphitic surfaces, creating covalently modified surfaces with quasi-uniform spaced islands of pristine graphite or graphene, coined nanocorrals. Cyclic voltammetry and chronoamperometry approaches are compared. The average diameter (45–130 nm) and surface density (20–125 corrals/μm2) of these nanocorrals are tunable. These chemically modified nanostructured graphitic (CMNG) surfaces are characterized by atomic force microscopy, scanning tunneling microscopy, Raman spectroscopy and microscopy, and X-ray photoelectron spectroscopy. Mechanisms leading to the formation of these CMNG surfaces are discussed. The potential of these surfaces to investigate supramolecular self-assembly and on-surface reactions under nanoconfinement conditions is demonstrated.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.9b00439.

    • Experimental details, corral analysis under different experimental conditions, additional AFM images, optical data, EC-STM data, XPS analyses (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 29 publications.

    1. Sota Aoi, Shingo Hirose, Wakana Soeda, Hiromasa Kaneko, Kunal S. Mali, Steven De Feyter, Kazukuni Tahara. Spatially Controlled Aryl Radical Grafting of Graphite Surfaces Guided by Self-Assembled Molecular Networks of Linear Alkane Derivatives: The Importance of Conformational Dynamics. Langmuir 2023, 39 (17) , 5986-5994. https://doi.org/10.1021/acs.langmuir.2c03434
    2. Thi Mien Trung Huynh, Thanh Hai Phan, Steven De Feyter. Surface Engineering of Graphite and Graphene by Viologen Self-Assembling: From Global to Local Architectures. The Journal of Physical Chemistry C 2022, 126 (14) , 6413-6419. https://doi.org/10.1021/acs.jpcc.1c10940
    3. Roelof Steeno, Hans Van Gorp, Peter Walke, Kunal S. Mali, Steven De Feyter. AFM Nanoshaving of Covalently Modified Graphite for Studying Molecular Self-Assembly under Lateral Nanoconfinement. The Journal of Physical Chemistry C 2021, 125 (39) , 21624-21634. https://doi.org/10.1021/acs.jpcc.1c05700
    4. Yi Hu, Shern-Long Lee, Wenli Deng. Structural Diversity and Phase Transition Control via Kinetics and Thermodynamics in Mixed Solvents: Two-Dimensional Self-Assembly at the Liquid/Solid Interface. The Journal of Physical Chemistry C 2020, 124 (49) , 27148-27157. https://doi.org/10.1021/acs.jpcc.0c08110
    5. Roelof Steeno, Miriam C. Rodríguez González, Samuel Eyley, Wim Thielemans, Kunal S. Mali, Steven De Feyter. Covalent Functionalization of Carbon Surfaces: Diaryliodonium versus Aryldiazonium Chemistry. Chemistry of Materials 2020, 32 (12) , 5246-5255. https://doi.org/10.1021/acs.chemmater.0c01393
    6. Kazukuni Tahara, Yuki Kubo, Shingo Hashimoto, Toru Ishikawa, Hiromasa Kaneko, Anton Brown, Brandon E. Hirsch, Steven De Feyter, Yoshito Tobe. Porous Self-Assembled Molecular Networks as Templates for Chiral-Position-Controlled Chemical Functionalization of Graphitic Surfaces. Journal of the American Chemical Society 2020, 142 (16) , 7699-7708. https://doi.org/10.1021/jacs.0c02979
    7. Chunmei Zhang, Xin Zhou, Chunlei Zhu, Yufen Zong, Hai Cao. STM studies on porphyrins and phthalocyanines at the liquid/solid interface for molecular-scale electronics. Dalton Transactions 2023, 52 (32) , 11017-11024. https://doi.org/10.1039/D3DT01518A
    8. Thi Mien Trung Huynh, Kazukuni Tahara, Steven De Feyter, Thanh Hai Phan. On the role of functional groups in the formation of diazonium based covalent attachments: dendritic vs. layer-by-layer growth. RSC Advances 2023, 13 (35) , 24576-24582. https://doi.org/10.1039/D3RA02661B
    9. Sasikumar Rahul, Miriam C. Rodríguez González, Shingo Hirose, Hiromasa Kaneko, Kazukuni Tahara, Kunal S. Mali, Steven De Feyter. Nanoscale chemical patterning of graphite at different length scales. Nanoscale 2023, 15 (24) , 10295-10305. https://doi.org/10.1039/D3NR00632H
    10. Thi Mien Trung Huynh, Duy Dien Nguyen, Nhat Hieu Hoang, Thanh Hai Phan. Reversible Tuning of Surface Properties of Graphene-like Material via Covalently Functionalized Hydrophobic Layer. Crystals 2023, 13 (4) , 635. https://doi.org/10.3390/cryst13040635
    11. Zhi Li, Yiming Guo, Kai Li, Shuang Wang, Enrico De Bonis, Hai Cao, Stijn F.L. Mertens, Chao Teng. Shape control of bimetallic MOF/Graphene composites for efficient oxygen evolution reaction. Journal of Electroanalytical Chemistry 2023, 930 , 117144. https://doi.org/10.1016/j.jelechem.2023.117144
    12. Cecilia Wetzl, Alessandro Silvestri, Marina Garrido, Hui‐Lei Hou, Alejandro Criado, Maurizio Prato. The Covalent Functionalization of Surface‐Supported Graphene: An Update. Angewandte Chemie International Edition 2023, 62 (6) https://doi.org/10.1002/anie.202212857
    13. Cecilia Wetzl, Alessandro Silvestri, Marina Garrido, Hui‐Lei Hou, Alejandro Criado, Maurizio Prato. The Covalent Functionalization of Surface‐Supported Graphene: An Update. Angewandte Chemie 2023, 135 (6) https://doi.org/10.1002/ange.202212857
    14. Yuanzhi Xia, Semih Sevim, João Pedro Vale, Johannes Seibel, David Rodríguez-San-Miguel, Donghoon Kim, Salvador Pané, Tiago Sotto Mayor, Steven De Feyter, Josep Puigmartí-Luis. Covalent transfer of chemical gradients onto a graphenic surface with 2D and 3D control. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-34684-w
    15. Yuanzhi Xia, Johannes Seibel, Steven De Feyter. Self‐templated covalent functionalization of graphitic surfaces with a quasi‐periodic pattern. Aggregate 2022, 3 (4) https://doi.org/10.1002/agt2.205
    16. Antonio Dominguez-Alfaro, Ngoc Do Quyen Chau, Stephen Yan, Donato Mancino, Sushma Pamulapati, Steven Williams, Lauren W. Taylor, Oliver S. Dewey, Matteo Pasquali, Maurizio Prato, Alberto Bianco, Alejandro Criado. Electrochemical modification of carbon nanotube fibres. Nanoscale 2022, 14 (26) , 9313-9322. https://doi.org/10.1039/D1NR07495D
    17. Zhi Li, Kai Li, Shuang Wang, Chao Teng. Covalent Patterning of Graphene for Controllable Functionalization from Microscale to Nanoscale: A Mini-Review. Frontiers in Chemistry 2022, 10 https://doi.org/10.3389/fchem.2022.829614
    18. Thi Mien Trung Huynh, Thanh Hai Phan, Roald Phillipson, Alexander Volodine, Steven De Feyter. Doping of graphene via adlayer formation of electrochemically reduced dibenzyl viologen. Journal of Materials Chemistry C 2022, 10 (7) , 2696-2702. https://doi.org/10.1039/D1TC03142B
    19. Cristina Gutiérrez-Sánchez, Encarnación Lorenzo. Review—Advances on Oxidase Enzymes Modified Nanoporous Carbon and Gold Surfaces for Bioelectrochemical Applications. Journal of The Electrochemical Society 2022, 169 (2) , 027513. https://doi.org/10.1149/1945-7111/ac527b
    20. Miriam C. Rodríguez González, Kunal S. Mali, Steven De Feyter. Covalent Modification of Graphite and Graphene Using Diazonium Chemistry. 2022, 157-181. https://doi.org/10.1007/978-3-031-04398-7_8
    21. Shingo Hashimoto, Hiromasa Kaneko, Steven De Feyter, Yoshito Tobe, Kazukuni Tahara. Symmetry and spacing controls in periodic covalent functionalization of graphite surfaces templated by self-assembled molecular networks. Nanoscale 2022, 23 https://doi.org/10.1039/D2NR02858A
    22. Stephan Getzin, Hezi Yizhaq, Walter R. Tschinkel, . Definition of “fairy circles” and how they differ from other common vegetation gaps and plant rings. Journal of Vegetation Science 2021, 32 (6) https://doi.org/10.1111/jvs.13092
    23. Lander Verstraete, Steven De Feyter. 2D Self-assembled molecular networks and on-surface reactivity under nanoscale lateral confinement. Chemical Society Reviews 2021, 50 (10) , 5884-5897. https://doi.org/10.1039/D0CS01338B
    24. Martin K. L. Silva, Alcides L. Leão, Mohini Sain, Ivana Cesarino. A functionalized renewable carbon-based surface for sensor development. Journal of Solid State Electrochemistry 2021, 25 (3) , 1093-1099. https://doi.org/10.1007/s10008-020-04882-x
    25. Cristina Gutiérrez-Sánchez, Emiliano Martínez-Periñán, Carlos Busó-Rogero, Mónica Revenga-Parra, Félix Pariente, Encarnación Lorenzo. Carbon nanodots: a new precursor to achieve reactive nanoporous HOPG surfaces. Nano Research 2020, 13 (12) , 3425-3432. https://doi.org/10.1007/s12274-020-3030-3
    26. Byeonggwan Kim, Cheolhyun Cho, Imad Arfaoui, Céline Paris, Christophe Petit, Tangui Le Bahers, Eunkyoung Kim, André-Jean Attias. 2D host–guest supramolecular chemistry for an on-monolayer graphene emitting platform. Materials Horizons 2020, 7 (10) , 2741-2748. https://doi.org/10.1039/D0MH00950D
    27. Adam J. Clancy, Heather Au, Noelia Rubio, Gabriel O. Coulter, Milo S. P. Shaffer. Understanding and controlling the covalent functionalisation of graphene. Dalton Transactions 2020, 49 (30) , 10308-10318. https://doi.org/10.1039/D0DT01589J
    28. Yuanzhi Xia, Cristina Martin, Johannes Seibel, Samuel Eyley, Wim Thielemans, Mark van der Auweraer, Kunal S. Mali, Steven De Feyter. Iodide mediated reductive decomposition of diazonium salts: towards mild and efficient covalent functionalization of surface-supported graphene. Nanoscale 2020, 12 (22) , 11916-11926. https://doi.org/10.1039/D0NR03309J
    29. Zhi Li, Joachim F. R. Van Guyse, Victor R. de la Rosa, Hans Van Gorp, Peter Walke, Miriam C. Rodríguez González, Hiroshi Uji‐i, Richard Hoogenboom, Steven De Feyter, Stijn F. L. Mertens. One‐Step Covalent Immobilization of β‐Cyclodextrin on sp 2 Carbon Surfaces for Selective Trace Amount Probing of Guests. Advanced Functional Materials 2019, 29 (36) https://doi.org/10.1002/adfm.201901488

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect