ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Epitaxial Ge0.81Sn0.19 Nanowires for Nanoscale Mid-Infrared Emitters

Cite this: ACS Nano 2019, 13, 7, 8047–8054
Publication Date (Web):July 8, 2019
https://doi.org/10.1021/acsnano.9b02843
Copyright © 2019 American Chemical Society

    Article Views

    1216

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (4 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Highly oriented Ge0.81Sn0.19 nanowires have been synthesized by a low-temperature chemical vapor deposition growth technique. The nanostructures form by a self-seeded vapor–liquid–solid mechanism. In this process, liquid metallic Sn seeds enable the anisotropic crystal growth and act as a sole source of Sn for the formation of the metastable Ge1–xSnx semiconductor material. The strain relaxation for a lattice mismatch of ε = 2.94% between the Ge (111) substrate and the constant Ge0.81Sn0.19 composition of nanowires is confined to a transition zone of <100 nm. In contrast, Ge1–xSnx structures with diameters in the micrometer range show a 5-fold longer compositional gradient very similar to epitaxial thin-film growth. Effects of the Sn growth promoters’ dimensions on the morphological and compositional evolution of Ge1–xSnx are described. The temperature- and laser power-dependent photoluminescence analyses verify the formation of a direct band gap material with emission in the mid-infrared region and values expected for unstrained Ge0.81Sn0.19 (e.g., band gap of 0.3 eV at room temperature). These materials  hold promise in applications such as thermal imaging and photodetection as well as building blocks for group IV-based mid- to near-IR photonics.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.9b02843.

    • Statistics on size of oriented NWs, additional STEM-EDX maps, SEM images, and PL data as well as examples for fitting operations (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 32 publications.

    1. Michael S. Seifner, Tianyi Hu, Markus Snellman, Daniel Jacobsson, Knut Deppert, Maria E. Messing, Kimberly A. Dick. Insights into the Synthesis Mechanisms of Ag-Cu3P-GaP Multicomponent Nanoparticles. ACS Nano 2023, 17 (8) , 7674-7684. https://doi.org/10.1021/acsnano.3c00140
    2. Benedikt Köstler, Felix Jungwirth, Luisa Achenbach, Masiar Sistani, Michael Bolte, Hans-Wolfram Lerner, Philipp Albert, Matthias Wagner, Sven Barth. Mixed-Substituted Single-Source Precursors for Si1–xGex Thin Film Deposition. Inorganic Chemistry 2022, 61 (43) , 17248-17255. https://doi.org/10.1021/acs.inorgchem.2c02835
    3. Drew Z. Spera, Indika U. Arachchige. Improved Surface Passivation of Colloidal Ge1–xSnx Nanoalloys through Amorphous SiO2 Shell Growth. The Journal of Physical Chemistry C 2022, 126 (23) , 9862-9874. https://doi.org/10.1021/acs.jpcc.2c00063
    4. Subhajit Biswas, Jessica Doherty, Emmanuele Galluccio, Hugh G. Manning, Michele Conroy, Ray Duffy, Ursel Bangert, John J. Boland, Justin D. Holmes. Stretching the Equilibrium Limit of Sn in Ge1–xSnx Nanowires: Implications for Field Effect Transistors. ACS Applied Nano Materials 2021, 4 (2) , 1048-1056. https://doi.org/10.1021/acsanm.0c02569
    5. Shaoteng Wu, Lin Zhang, Bongkwon Son, Qimiao Chen, Hao Zhou, Chuan Seng Tan. Insights into the Origins of Guided Microtrenches and Microholes/rings from Sn Segregation in Germanium–Tin Epilayers. The Journal of Physical Chemistry C 2020, 124 (37) , 20035-20045. https://doi.org/10.1021/acs.jpcc.0c03820
    6. Jessica Doherty, Subhajit Biswas, Emmanuele Galluccio, Christopher A. Broderick, Adria Garcia-Gil, Ray Duffy, Eoin P. O’Reilly, Justin D. Holmes. Progress on Germanium–Tin Nanoscale Alloys. Chemistry of Materials 2020, 32 (11) , 4383-4408. https://doi.org/10.1021/acs.chemmater.9b04136
    7. Emmanuele Galluccio, Jessica Doherty, Subhajit Biswas, Justin D. Holmes, Ray Duffy. Field-Effect Transistor Figures of Merit for Vapor–Liquid–Solid-Grown Ge1-xSnx (x = 0.03–0.09) Nanowire Devices. ACS Applied Electronic Materials 2020, 2 (5) , 1226-1234. https://doi.org/10.1021/acsaelm.0c00036
    8. Yuekun Yang, Xudong Wang, Chen Wang, Yuxin Song, Miao Zhang, Zhongying Xue, Shumin Wang, Zhongyunshen Zhu, Guanyu Liu, Panlin Li, Linxi Dong, Yongfeng Mei, Paul K. Chu, Weida Hu, Jianlu Wang, Zengfeng Di. Ferroelectric Enhanced Performance of a GeSn/Ge Dual-Nanowire Photodetector. Nano Letters 2020, 20 (5) , 3872-3879. https://doi.org/10.1021/acs.nanolett.0c01039
    9. Sven Barth, Michael S. Seifner, Stephen Maldonado. Metastable Group IV Allotropes and Solid Solutions: Nanoparticles and Nanowires. Chemistry of Materials 2020, 32 (7) , 2703-2741. https://doi.org/10.1021/acs.chemmater.9b04471
    10. Simone Assali, Roberto Bergamaschini, Emilio Scalise, Marcel A. Verheijen, Marco Albani, Alain Dijkstra, Ang Li, Sebastian Koelling, Erik P. A. M. Bakkers, Francesco Montalenti, Leo Miglio. Kinetic Control of Morphology and Composition in Ge/GeSn Core/Shell Nanowires. ACS Nano 2020, 14 (2) , 2445-2455. https://doi.org/10.1021/acsnano.9b09929
    11. Youngmin Kim, Simone Assali, Hyo-Jun Joo, Sebastian Koelling, Melvina Chen, Lu Luo, Xuncheng Shi, Daniel Burt, Zoran Ikonic, Donguk Nam, Oussama Moutanabbir. Short-wave infrared cavity resonances in a single GeSn nanowire. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-40140-0
    12. Zhaoliang Yu, Wei Li, Duo Wang, Peng Liu, Ming Lu, Jiaming Li, Xiangdong Meng, Haibo Li. Catalyst- and template-free direct electrodeposition of germanium and germanium–tin alloy nanowires from an ionic liquid. Materials Research Bulletin 2023, 168 , 112482. https://doi.org/10.1016/j.materresbull.2023.112482
    13. Guochen Lin, Yue Zhao, Kai Yu, Chandrasekar Perumal Veeramalai, Runze Ma, Jun Zheng, Buwen Cheng, Xiaoming Zhang, Chuanbo Li. Dramatic increase in SWIR detection for GeSn strip detector with graphene hybrid structure. Journal of Alloys and Compounds 2023, 945 , 169287. https://doi.org/10.1016/j.jallcom.2023.169287
    14. Enrico Di Russo, Francesco Sgarbossa, Pierpaolo Ranieri, Gianluigi Maggioni, Samba Ndiaye, Sébastien Duguay, François Vurpillot, Lorenzo Rigutti, Jean-Luc Rouvière, Vittorio Morandi, Davide De Salvador, Enrico Napolitani. Synthesis of relaxed Ge0.9Sn0.1/Ge by nanosecond pulsed laser melting. Applied Surface Science 2023, 612 , 155817. https://doi.org/10.1016/j.apsusc.2022.155817
    15. Sudarshan Singh, Samaresh Das, Samit K. Ray. Progress in group-IV semiconductor nanowires based photonic devices. Applied Physics A 2023, 129 (3) https://doi.org/10.1007/s00339-023-06483-7
    16. Raphael Behrle, Vanessa Krause, Michael S. Seifner, Benedikt Köstler, Kimberly A. Dick, Matthias Wagner, Masiar Sistani, Sven Barth. Electrical and Structural Properties of Si1−xGex Nanowires Prepared from a Single-Source Precursor. Nanomaterials 2023, 13 (4) , 627. https://doi.org/10.3390/nano13040627
    17. Xiaomeng Wang, Dongfeng Qi, Wenju Zhou, Haotian Deng, Yuhan Liu, Shiyong Shangguan, Jianguo Zhang, Hongyu Zheng, Xueyun Liu. Effect of Laser Pulse Width and Intensity Distribution on the Crystallographic Characteristics of GeSn Film. Coatings 2023, 13 (2) , 453. https://doi.org/10.3390/coatings13020453
    18. A.V. Kuchuk, P.M. Lytvyn, Yu.I. Mazur, H. Stanchu, S.V. Kondratenko, F.M. de Oliveira, S.V. Malyuta, M.D. Teodoro, M. Benamara, S.-Q. Yu, G.J. Salamo. Sn-guided self-grown Ge stripes banded by GeSn Nanowires: Formation mechanism and electric-field-induced switching from p- to n-type conduction. Applied Surface Science 2022, 604 , 154443. https://doi.org/10.1016/j.apsusc.2022.154443
    19. Vyacheslav A. Timofeev, Vladimir I. Mashanov, Alexandr I. Nikiforov, Ilya V. Skvortsov, Alexey E. Gayduk, Aleksei A. Bloshkin, Ivan D. Loshkarev, Viktor V. Kirienko, Dmitry V. Kolyada, Dmitry D. Firsov, Oleg S. Komkov. Tuning the structural and optical properties of GeSiSn/Si multiple quantum wells and GeSn nanostructures using annealing and a faceted surface as a substrate. Applied Surface Science 2022, 593 , 153421. https://doi.org/10.1016/j.apsusc.2022.153421
    20. Ruiling Gong, Lulu Zheng, Pere Roca i Cabarrocas, Wanghua Chen. Rational Control of GeSn Nanowires. physica status solidi (RRL) – Rapid Research Letters 2022, 16 (5) https://doi.org/10.1002/pssr.202100554
    21. Sudarshan Singh, Subhrajit Mukherjee, Samik Mukherjee, Simone Assali, Lu Luo, Samaresh Das, Oussama Moutanabbir, Samit K. Ray. Ge–Ge0.92Sn0.08 core–shell single nanowire infrared photodetector with superior characteristics for on-chip optical communication. Applied Physics Letters 2022, 120 (17) https://doi.org/10.1063/5.0087379
    22. Lulu Zheng, Edy Azrak, Ruiling Gong, Celia Castro, Sébastien Duguay, Philippe Pareige, Pere Roca i Cabarrocas, Wanghua Chen. Investigation of Sn-containing precursors for in-plane GeSn nanowire growth. Journal of Alloys and Compounds 2022, 899 , 163273. https://doi.org/10.1016/j.jallcom.2021.163273
    23. Zheng Fan, Jean-Luc Maurice, Ileana Florea, Wanghua Chen, Linwei Yu, Stéphane Guilet, Edmond Cambril, Xavier Lafosse, Laurent Couraud, Sophie Bouchoule, Pere Roca i Cabarrocas. In situ observation of droplet nanofluidics for yielding low-dimensional nanomaterials. Applied Surface Science 2022, 573 , 151510. https://doi.org/10.1016/j.apsusc.2021.151510
    24. Andrian V. Kuchuk, P.M. Lytvyn, Yu.I. Mazur, H. Stanchu, S.V. Kondratenko, F.M. de Oliveira, S. V. Malyuta, M.D. Teodoro, M. Benamara, S.-Q. Yu, G. J. Salamo. Sn-Guided Self-Grown Ge Stripes Banded by Gesn Nanowires: Formation Mechanism and Electric-Field-Induced Switching from P- to N-Type Conduction. SSRN Electronic Journal 2022, 2021 https://doi.org/10.2139/ssrn.4097333
    25. Ruiling Gong, Edy Azrak, Celia Castro, Sébastien Duguay, Philippe Pareige, Pere Roca i Cabarrocas, Wanghua Chen. Controlling solid–liquid–solid GeSn nanowire growth modes by changing deposition sequences of a-Ge:H layer and SnO 2 nanoparticles. Nanotechnology 2021, 32 (34) , 345602. https://doi.org/10.1088/1361-6528/abfc72
    26. Vyacheslav Timofeev, Vladimir Mashanov, Alexandr Nikiforov, Anton Gutakovskii, Tatyana Gavrilova, Ilya Skvortsov, Dmitry Gulyaev, Dmitry Firsov, Oleg Komkov. Epitaxial growth of peculiar GeSn and SiSn nanostructures using a Sn island array as a seed. Applied Surface Science 2021, 553 , 149572. https://doi.org/10.1016/j.apsusc.2021.149572
    27. Alexey Minenkov, Heiko Groiss. Evolution of phases and their thermal stability in Ge–Sn nanofilms: a comprehensive in situ TEM investigation. Journal of Alloys and Compounds 2021, 859 , 157763. https://doi.org/10.1016/j.jallcom.2020.157763
    28. O. Moutanabbir, S. Assali, X. Gong, E. O'Reilly, C. A. Broderick, B. Marzban, J. Witzens, W. Du, S-Q. Yu, A. Chelnokov, D. Buca, D. Nam. Monolithic infrared silicon photonics: The rise of (Si)GeSn semiconductors. Applied Physics Letters 2021, 118 (11) https://doi.org/10.1063/5.0043511
    29. S. Assali, A. Dijkstra, A. Attiaoui, É. Bouthillier, J.E.M. Haverkort, O. Moutanabbir. Midinfrared Emission and Absorption in Strained and Relaxed Direct-Band-Gap Ge 1 − x Sn x Semiconductors. Physical Review Applied 2021, 15 (2) https://doi.org/10.1103/PhysRevApplied.15.024031
    30. A. Attiaoui, É. Bouthillier, G. Daligou, A. Kumar, S. Assali, O. Moutanabbir. Extended Short-Wave Infrared Absorption in Group-IV Nanowire Arrays. Physical Review Applied 2021, 15 (1) https://doi.org/10.1103/PhysRevApplied.15.014034
    31. Monika Nehra, Neeraj Dilbaghi, Giovanna Marrazza, Ajeet Kaushik, Reza Abolhassani, Yogendra Kumar Mishra, Ki Hyun Kim, Sandeep Kumar. 1D semiconductor nanowires for energy conversion, harvesting and storage applications. Nano Energy 2020, 76 , 104991. https://doi.org/10.1016/j.nanoen.2020.104991
    32. Vyacheslav Timofeev, Vladimir Mashanov, Alexander Nikiforov, Ilya Skvortsov, Tatyana Gavrilova, Dmitry Gulyaev, Anton Gutakovskii, Igor Chetyrin. Effect of Sn for the dislocation-free SiSn nanostructure formation on the vapor-liquid-crystal mechanism. AIP Advances 2020, 10 (1) https://doi.org/10.1063/1.5139936

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect