ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Iron-Sequestering Nanocompartments as Multiplexed Electron Microscopy Gene Reporters

  • Felix Sigmund
    Felix Sigmund
    Department of Nuclear Medicine, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
    Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
    Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
  • Susanne Pettinger
    Susanne Pettinger
    Department of Nuclear Medicine, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
    Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
    Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
  • Massimo Kube
    Massimo Kube
    Laboratory for Biomolecular Design, Department of Physics, Technical University of Munich, 85748 Garching, Germany
    More by Massimo Kube
  • Fabian Schneider
    Fabian Schneider
    Laboratory for Biomolecular Design, Department of Physics, Technical University of Munich, 85748 Garching, Germany
  • Martina Schifferer
    Martina Schifferer
    Institute of Neuronal Cell Biology, TUM School of Medicine, Technical University of Munich, 80802 Munich, Germany
    German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
  • Steffen Schneider
    Steffen Schneider
    Computational Neuroengineering, Department of Electrical and Computer Engineering, Technical University of Munich, 80333 Munich, Germany
    Tübingen AI Center, University of Tübingen, 72076 Tübingen, Germany
  • Maria V. Efremova
    Maria V. Efremova
    Department of Nuclear Medicine, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
    Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
    Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
    Laboratory of Chemical Design of Bionanomaterials for Medical Applications, Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
  • Jesús Pujol-Martí
    Jesús Pujol-Martí
    Department “Circuits - Computation - Models”, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
  • Michaela Aichler
    Michaela Aichler
    Research Unit Analytical Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
  • Axel Walch
    Axel Walch
    Research Unit Analytical Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
    More by Axel Walch
  • Thomas Misgeld
    Thomas Misgeld
    Institute of Neuronal Cell Biology, TUM School of Medicine, Technical University of Munich, 80802 Munich, Germany
    German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
  • Hendrik Dietz
    Hendrik Dietz
    Laboratory for Biomolecular Design, Department of Physics, Technical University of Munich, 85748 Garching, Germany
  • , and 
  • Gil G. Westmeyer*
    Gil G. Westmeyer
    Department of Nuclear Medicine, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
    Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
    Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
    *E-mail: [email protected]
Cite this: ACS Nano 2019, 13, 7, 8114–8123
Publication Date (Web):June 7, 2019
https://doi.org/10.1021/acsnano.9b03140
Copyright © 2019 American Chemical Society

    Article Views

    2716

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (1 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Multicolored gene reporters for light microscopy are indispensable for biomedical research, but equivalent genetic tools for electron microscopy (EM) are still rare despite the increasing importance of nanometer resolution for reverse engineering of molecular machinery and reliable mapping of cellular circuits. We here introduce the fully genetic encapsulin/cargo system of Quasibacillus thermotolerans (Qt), which in combination with the recently characterized encapsulin system from Myxococcus xanthus (Mx) enables multiplexed gene reporter imaging via conventional transmission electron microscopy (TEM) in mammalian cells. Cryo-electron reconstructions revealed that the Qt encapsulin shell self-assembles to nanospheres with T = 4 icosahedral symmetry and a diameter of ∼43 nm harboring two putative pore regions at the 5-fold and 3-fold axes. We also found that upon heterologous expression in mammalian cells, the native cargo is autotargeted to the inner surface of the shell and exhibits ferroxidase activity leading to efficient intraluminal iron biomineralization, which enhances cellular TEM contrast. We furthermore demonstrate that the two differently sized encapsulins of Qt and Mx do not intermix and can be robustly differentiated by conventional TEM via a deep learning classifier to enable automated multiplexed EM gene reporter imaging.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.9b03140.

    • Dynamic light scattering data from purified encapsulins, additional cryo-EM data, cell viability assay, manual segmentation of TEM data, details on the deep learning approach, analyses of coexpression of differently sized encapsulins, in vivo expression in Drosophila, list of genetic constructs, and detailed statistical data (PDF)

    Accession Codes

    EM maps can be accessed from the EMDB under accession numbers EMD-4881 (QtEnc+QtIMEF expressed in HEK293E cells), EMD-4879 (QtEnc expressed in E. coli), and EMD-4880 (QtEnc+QtIMEF expressed in E. coli). Data and materials are available from the corresponding author upon request.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 27 publications.

    1. India Boyton, Sophia C. Goodchild, Dennis Diaz, Aaron Elbourne, Lyndsey E. Collins-Praino, Andrew Care. Characterizing the Dynamic Disassembly/Reassembly Mechanisms of Encapsulin Protein Nanocages. ACS Omega 2022, 7 (1) , 823-836. https://doi.org/10.1021/acsomega.1c05472
    2. Sandra Michel-Souzy, Naomi M. Hamelmann, Sara Zarzuela-Pura, Jos M. J. Paulusse, Jeroen J. L. M. Cornelissen. Introduction of Surface Loops as a Tool for Encapsulin Functionalization. Biomacromolecules 2021, 22 (12) , 5234-5242. https://doi.org/10.1021/acs.biomac.1c01156
    3. Dennis Diaz, Xavier Vidal, Anwar Sunna, Andrew Care. Bioengineering a Light-Responsive Encapsulin Nanoreactor: A Potential Tool for In Vitro Photodynamic Therapy. ACS Applied Materials & Interfaces 2021, 13 (7) , 7977-7986. https://doi.org/10.1021/acsami.0c21141
    4. Kimberly E. Beatty, Claudia S. López. Characteristics of genetic tags for correlative light and electron microscopy. Current Opinion in Chemical Biology 2023, 76 , 102369. https://doi.org/10.1016/j.cbpa.2023.102369
    5. Felix Sigmund, Oleksandr Berezin, Sofia Beliakova, Bernhard Magerl, Martin Drawitsch, Alberto Piovesan, Filipa Gonçalves, Silviu-Vasile Bodea, Stefanie Winkler, Zoe Bousraou, Martin Grosshauser, Eleni Samara, Jesús Pujol-Martí, Sebastian Schädler, Chun So, Stephan Irsen, Axel Walch, Florian Kofler, Marie Piraud, Joergen Kornfeld, Kevin Briggman, Gil Gregor Westmeyer. Genetically encoded barcodes for correlative volume electron microscopy. Nature Biotechnology 2023, 599 https://doi.org/10.1038/s41587-023-01713-y
    6. Dae-Hyeon Song, Chang Woo Song, Jinkyoung Chung, Eun-Hae Jang, Hyunwoo Kim, Yongsuk Hur, Eun-Mi Hur, Doory Kim, Jae-Byum Chang. In situ silver nanoparticle development for molecular-specific biological imaging via highly accessible microscopies. Nanoscale Advances 2023, 5 (6) , 1636-1650. https://doi.org/10.1039/D2NA00449F
    7. Nelly S. Chmelyuk, Vera V. Oda, Anna N. Gabashvili, Maxim A. Abakumov. Encapsulins: Structure, Properties, and Biotechnological Applications. Biochemistry (Moscow) 2023, 88 (1) , 35-49. https://doi.org/10.1134/S0006297923010042
    8. Amy Ruth Quinton, Harry Benjamin McDowell, Egbert Hoiczyk. Encapsulins: Nanotechnology’s future in a shell. 2023, 1-48. https://doi.org/10.1016/bs.aambs.2023.09.001
    9. Harry Benjamin McDowell, Egbert Hoiczyk, . Bacterial Nanocompartments: Structures, Functions, and Applications. Journal of Bacteriology 2022, 204 (3) https://doi.org/10.1128/jb.00346-21
    10. Jennifer Ross, Zak McIver, Thomas Lambert, Cecilia Piergentili, Jasmine Emma Bird, Kelly J. Gallagher, Faye L. Cruickshank, Patrick James, Efrain Zarazúa-Arvizu, Louise E. Horsfall, Kevin J. Waldron, Marcus D. Wilson, C. Logan Mackay, Arnaud Baslé, David J. Clarke, Jon Marles-Wright. Pore dynamics and asymmetric cargo loading in an encapsulin nanocompartment. Science Advances 2022, 8 (4) https://doi.org/10.1126/sciadv.abj4461
    11. Kelly Wallin, Ruijie Zhang, Claudia Schmidt-Dannert. Programmable Self-Assembling Protein Nanomaterials: Current Status and Prospects. 2022, 51-94. https://doi.org/10.1007/978-3-030-92949-7_3
    12. Ana V. Almeida, Ana J. Carvalho, Alice S. Pereira. Encapsulin nanocages: Protein encapsulation and iron sequestration. Coordination Chemistry Reviews 2021, 448 , 214188. https://doi.org/10.1016/j.ccr.2021.214188
    13. Anna N. Gabashvili, Stepan S. Vodopyanov, Nelly S. Chmelyuk, Viktoria A. Sarkisova, Konstantin A. Fedotov, Maria V. Efremova, Maxim A. Abakumov. Encapsulin Based Self-Assembling Iron-Containing Protein Nanoparticles for Stem Cells MRI Visualization. International Journal of Molecular Sciences 2021, 22 (22) , 12275. https://doi.org/10.3390/ijms222212275
    14. Philipp Lohner, Mariia Zmyslia, Johann Thurn, Jasmin K. Pape, Rūta Gerasimaitė, Jan Keller‐Findeisen, Saskia Groeer, Benedikt Deuringer, Regine Süss, Andreas Walther, Stefan W. Hell, Gražvydas Lukinavičius, Thorsten Hugel, Claudia Jessen‐Trefzer. Inside a Shell—Organometallic Catalysis Inside Encapsulin Nanoreactors. Angewandte Chemie 2021, 133 (44) , 24028-24034. https://doi.org/10.1002/ange.202110327
    15. Philipp Lohner, Mariia Zmyslia, Johann Thurn, Jasmin K. Pape, Rūta Gerasimaitė, Jan Keller‐Findeisen, Saskia Groeer, Benedikt Deuringer, Regine Süss, Andreas Walther, Stefan W. Hell, Gražvydas Lukinavičius, Thorsten Hugel, Claudia Jessen‐Trefzer. Inside a Shell—Organometallic Catalysis Inside Encapsulin Nanoreactors. Angewandte Chemie International Edition 2021, 60 (44) , 23835-23841. https://doi.org/10.1002/anie.202110327
    16. Martina Schifferer, Nicolas Snaidero, Minou Djannatian, Martin Kerschensteiner, Thomas Misgeld. Niwaki Instead of Random Forests: Targeted Serial Sectioning Scanning Electron Microscopy With Reimaging Capabilities for Exploring Central Nervous System Cell Biology and Pathology. Frontiers in Neuroanatomy 2021, 15 https://doi.org/10.3389/fnana.2021.732506
    17. Alexander Van de Steen, Rana Khalife, Noelle Colant, Hasan Mustafa Khan, Matas Deveikis, Saverio Charalambous, Clare M. Robinson, Rupali Dabas, Sofia Esteban Serna, Diana A. Catana, Konstantin Pildish, Vladimir Kalinovskiy, Kenth Gustafsson, Stefanie Frank. Bioengineering bacterial encapsulin nanocompartments as targeted drug delivery system. Synthetic and Systems Biotechnology 2021, 6 (3) , 231-241. https://doi.org/10.1016/j.synbio.2021.09.001
    18. Roy A. J. F. Oerlemans, Suzanne B. P. E. Timmermans, Jan C. M. van Hest. Artificial Organelles: Towards Adding or Restoring Intracellular Activity. ChemBioChem 2021, 22 (12) , 2051-2078. https://doi.org/10.1002/cbic.202000850
    19. Javier M. Rodríguez, Carolina Allende-Ballestero, Jeroen J. L. M. Cornelissen, José R. Castón. Nanotechnological Applications Based on Bacterial Encapsulins. Nanomaterials 2021, 11 (6) , 1467. https://doi.org/10.3390/nano11061467
    20. Alessandro Groaz, Hossein Moghimianavval, Franco Tavella, Tobias W. Giessen, Anthony G. Vecchiarelli, Qiong Yang, Allen P. Liu. Engineering spatiotemporal organization and dynamics in synthetic cells. WIREs Nanomedicine and Nanobiotechnology 2021, 13 (3) https://doi.org/10.1002/wnan.1685
    21. Arash Farhadi, Felix Sigmund, Gil Gregor Westmeyer, Mikhail G. Shapiro. Genetically encodable materials for non-invasive biological imaging. Nature Materials 2021, 20 (5) , 585-592. https://doi.org/10.1038/s41563-020-00883-3
    22. Raunak Dhanker, Touseef Hussain, Priyanka Tyagi, Kawal Jeet Singh, Shashank S. Kamble. The Emerging Trend of Bio-Engineering Approaches for Microbial Nanomaterial Synthesis and Its Applications. Frontiers in Microbiology 2021, 12 https://doi.org/10.3389/fmicb.2021.638003
    23. Maria Efremova, Silviu-Vasile Bodea, Felix Sigmund, Alevtina Semkina, Gil Westmeyer, Maxim Abakumov. Genetically Encoded Self-Assembling Iron Oxide Nanoparticles as a Possible Platform for Cancer-Cell Tracking. Pharmaceutics 2021, 13 (3) , 397. https://doi.org/10.3390/pharmaceutics13030397
    24. Zhao Lei, Yang Zhang, Gang Liu. eMIONs: novel genetically engineered nanocages for magnetic hyperthermia cancer therapy. Molecular & Cellular Oncology 2021, 8 (1) , 1863739. https://doi.org/10.1080/23723556.2020.1863739
    25. Jesse A. Jones, Tobias W. Giessen. Advances in encapsulin nanocompartment biology and engineering. Biotechnology and Bioengineering 2021, 118 (1) , 491-505. https://doi.org/10.1002/bit.27564
    26. Anna N. Gabashvili, Nelly S. Chmelyuk, Maria V. Efremova, Julia A. Malinovskaya, Alevtina S. Semkina, Maxim A. Abakumov. Encapsulins—Bacterial Protein Nanocompartments: Structure, Properties, and Application. Biomolecules 2020, 10 (6) , 966. https://doi.org/10.3390/biom10060966
    27. Lara Szewczak. Just Solid or Liquid Enough. Cell 2019, 178 (4) , 763-765. https://doi.org/10.1016/j.cell.2019.07.027

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect