ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Extending Single-Molecule Förster Resonance Energy Transfer (FRET) Range beyond 10 Nanometers in Zero-Mode Waveguides

  • Mikhail Baibakov
    Mikhail Baibakov
    Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France
  • Satyajit Patra
    Satyajit Patra
    Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France
  • Jean-Benoît Claude
    Jean-Benoît Claude
    Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France
  • Antonin Moreau
    Antonin Moreau
    Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France
  • Julien Lumeau
    Julien Lumeau
    Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France
  • , and 
  • Jérôme Wenger*
    Jérôme Wenger
    Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France
    *E-mail: [email protected]
Cite this: ACS Nano 2019, 13, 7, 8469–8480
Publication Date (Web):July 8, 2019
https://doi.org/10.1021/acsnano.9b04378
Copyright © 2019 American Chemical Society

    Article Views

    2191

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (4 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Single-molecule Förster resonance energy transfer (smFRET) is widely used to monitor conformations and interaction dynamics at the molecular level. However, conventional smFRET measurements are ineffective at donor–acceptor distances exceeding 10 nm, impeding the studies on biomolecules of larger size. Here, we show that zero-mode waveguide (ZMW) apertures can be used to overcome the 10 nm barrier in smFRET. Using an optimized ZMW structure, we demonstrate smFRET between standard commercial fluorophores up to 13.6 nm distance with a significantly improved FRET efficiency. To further break into the classical FRET range limit, ZMWs are combined with molecular constructs featuring multiple acceptor dyes to achieve high FRET efficiencies together with high fluorescence count rates. As we discuss general guidelines for quantitative smFRET measurements inside ZMWs, the technique can be readily applied for monitoring conformations and interactions on large molecular complexes with enhanced brightness.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications Web site at DOI: The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.9b04378.

    • Orientation-dependent numerical simulations of the donor intensity inside the ZMW; single-molecule fluorescence time traces with ZMWs of different diameters; FCS analysis with ZMWs; FRET histograms recorded for the sample labeled only with the donor; influence of the crosstalk parameter α on the measured FRET efficiency; influence of the direct excitation parameter δ on the measured FRET efficiency; influence of the γ parameter on the measured FRET efficiency; influence of the binning time on the measured FRET efficiency; comparison of models to fit the smFRET histograms; fluorescence lifetime analysis, S–E plot diagrams; experimental determination of the γ correction factor; fluorescence spectra of the multiacceptor DNA sample; expression of the total energy transfer rate constant inside the ZMW (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 46 publications.

    1. Jiefei Wang, Ping Shangguan, Ming Lin, Libing Fu, Yisheng Liu, Lulu Han, Sudi Chen, Xiao Wang, Mengya Lu, Zhengqun Luo, Yong Zhong, Bingyang Shi, Feng Bai. Dual-Site Förster Resonance Energy Transfer Route of Upconversion Nanoparticles-Based Brain-Targeted Nanotheranostic Boosts the Near-Infrared Phototherapy of Glioma. ACS Nano 2023, 17 (17) , 16840-16853. https://doi.org/10.1021/acsnano.3c03724
    2. Prithu Roy, Jean-Benoît Claude, Sunny Tiwari, Aleksandr Barulin, Jérôme Wenger. Ultraviolet Nanophotonics Enables Autofluorescence Correlation Spectroscopy on Label-Free Proteins with a Single Tryptophan. Nano Letters 2023, 23 (2) , 497-504. https://doi.org/10.1021/acs.nanolett.2c03797
    3. Asem Hassan, Paul C. Whitford. Identifying Strategies to Experimentally Probe Multidimensional Dynamics in the Ribosome. The Journal of Physical Chemistry B 2022, 126 (42) , 8460-8471. https://doi.org/10.1021/acs.jpcb.2c05706
    4. Satyajit Patra, Jean-Benoît Claude, Jérôme Wenger. Fluorescence Brightness, Photostability, and Energy Transfer Enhancement of Immobilized Single Molecules in Zero-Mode Waveguide Nanoapertures. ACS Photonics 2022, 9 (6) , 2109-2118. https://doi.org/10.1021/acsphotonics.2c00349
    5. Mark F. Nüesch, Miloš T. Ivanović, Jean-Benoît Claude, Daniel Nettels, Robert B. Best, Jérôme Wenger, Benjamin Schuler. Single-molecule Detection of Ultrafast Biomolecular Dynamics with Nanophotonics. Journal of the American Chemical Society 2022, 144 (1) , 52-56. https://doi.org/10.1021/jacs.1c09387
    6. Robert Collison, Juan B. Pérez-Sánchez, Matthew Du, Jacob Trevino, Joel Yuen-Zhou, Stephen O’Brien, Vinod M. Menon. Purcell Effect of Plasmonic Surface Lattice Resonances and Its Influence on Energy Transfer. ACS Photonics 2021, 8 (8) , 2211-2219. https://doi.org/10.1021/acsphotonics.1c00616
    7. Prithu Roy, Clémence Badie, Jean-Benoît Claude, Aleksandr Barulin, Antonin Moreau, Julien Lumeau, Marco Abbarchi, Lionel Santinacci, Jérôme Wenger. Preventing Corrosion of Aluminum Metal with Nanometer-Thick Films of Al2O3 Capped with TiO2 for Ultraviolet Plasmonics. ACS Applied Nano Materials 2021, 4 (7) , 7199-7205. https://doi.org/10.1021/acsanm.1c01160
    8. Yeonjun Jeong, George C. Schatz. Enhancement and Suppression of Resonance Energy Transfer Near Metal Nanoparticles. The Journal of Physical Chemistry C 2020, 124 (37) , 20589-20597. https://doi.org/10.1021/acs.jpcc.0c05937
    9. Mikhail Baibakov, Satyajit Patra, Jean-Benoît Claude, Jérôme Wenger. Long-Range Single-Molecule Förster Resonance Energy Transfer between Alexa Dyes in Zero-Mode Waveguides. ACS Omega 2020, 5 (12) , 6947-6955. https://doi.org/10.1021/acsomega.0c00322
    10. Denis Garoli, Hirohito Yamazaki, Nicolò Maccaferri, Meni Wanunu. Plasmonic Nanopores for Single-Molecule Detection and Manipulation: Toward Sequencing Applications. Nano Letters 2019, 19 (11) , 7553-7562. https://doi.org/10.1021/acs.nanolett.9b02759
    11. Aleksandr Barulin, Jean-Benoît Claude, Satyajit Patra, Nicolas Bonod, Jérôme Wenger. Deep Ultraviolet Plasmonic Enhancement of Single Protein Autofluorescence in Zero-Mode Waveguides. Nano Letters 2019, 19 (10) , 7434-7442. https://doi.org/10.1021/acs.nanolett.9b03137
    12. Kseniia Lezhennikova, Kaizad Rustomji, Boris T. Kuhlmey, Tryfon Antonakakis, Pierre Jomin, Stanislav Glybovski, C. Martijn de Sterke, Jérôme Wenger, Redha Abdeddaim, Stefan Enoch. Experimental evidence of Förster energy transfer enhancement in the near field through engineered metamaterial surface waves. Communications Physics 2023, 6 (1) https://doi.org/10.1038/s42005-023-01347-1
    13. Suzit Hasan Nayem, Bejoy Sikder, Shiekh Zia Uddin. Anisotropic energy transfer near multi-layer black phosphorus. 2D Materials 2023, 10 (4) , 045022. https://doi.org/10.1088/2053-1583/acf052
    14. Pooja Semalti, Vikash Sharma, Meenakshi Devi, Pathi Prathap, Naval Kishor Upadhyay, Shailesh Narain Sharma. Surface engineering of colloidal quaternary chalcogenide Cu2ZnSnS4 nanocrystals: a potential low-cost photocatalyst for water remediation. Environmental Science and Pollution Research 2023, 30 (33) , 79774-79788. https://doi.org/10.1007/s11356-023-26603-3
    15. Deep Sekhar Biswas, Paraskevi Gaki, Elisabete Cruz Da Silva, Antoine Combes, Andreas Reisch, Pascal Didier, Andrey S. Klymchenko. Long‐Range Energy Transfer between Dye‐Loaded Nanoparticles: Observation and Amplified Detection of Nucleic Acids. Advanced Materials 2023, 35 (29) https://doi.org/10.1002/adma.202301402
    16. Sunny Tiwari, Prithu Roy, Jean‐Benoît Claude, Jérôme Wenger. Achieving High Temporal Resolution in Single‐Molecule Fluorescence Techniques Using Plasmonic Nanoantennas. Advanced Optical Materials 2023, 11 (13) https://doi.org/10.1002/adom.202300168
    17. Lambertus Hesselink, Mohammad Asif Zaman. Plasmonic C-Shaped Structures and their Applications in Photonics and Biotechnology. 2023, 382-396. https://doi.org/10.1016/B978-0-12-819728-8.00029-2
    18. Lei Sun, Jinfang Zhang, Jing-e Zhou, Jing Wang, Zhehao Wang, Shenggen Luo, Yeying Wang, Shulei Zhu, Fan Yang, Jie Tang, Wei Lu, Yiting Wang, Lei Yu, Zhiqiang Yan. Monitoring the in vivo siRNA release from lipid nanoparticles based on the fluorescence resonance energy transfer principle. Asian Journal of Pharmaceutical Sciences 2023, 18 (1) , 100769. https://doi.org/10.1016/j.ajps.2022.11.003
    19. Aleksandr Barulin, Prithu Roy, Jean-Benoît Claude, Jérôme Wenger. Ultraviolet optical horn antennas for label-free detection of single proteins. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-29546-4
    20. Siwei Wang, Yi-Ting Chuang, Liang-Yan Hsu. Macroscopic quantum electrodynamics approach to multichromophoric excitation energy transfer. I. Formalism. The Journal of Chemical Physics 2022, 157 (18) , 184107. https://doi.org/10.1063/5.0106828
    21. Pingzhun Ma, Qiyong Tao, Zhe Qi, Yuhang Su, Ying Zhong, Haitao Liu. Remote two-dimensional nanometric localization of molecules by the analysis of fluorescence coupled to guided surface plasmons. Journal of Materials Chemistry C 2022, 10 (19) , 7651-7661. https://doi.org/10.1039/D2TC00751G
    22. Troy C. Messina, Bernadeta R. Srijanto, Charles Patrick Collier, Ivan I. Kravchenko, Christopher I. Richards. Gold Ion Beam Milled Gold Zero-Mode Waveguides. Nanomaterials 2022, 12 (10) , 1755. https://doi.org/10.3390/nano12101755
    23. Abdullah O. Hamza, Jean‐Sebastien G. Bouillard, Ali M. Adawi. Förster Resonance Energy Transfer Rate and Efficiency in Plasmonic Nanopatch Antennas. ChemPhotoChem 2022, 6 (5) https://doi.org/10.1002/cptc.202100285
    24. A. Femius Koenderink, Roman Tsukanov, Jörg Enderlein, Ignacio Izeddin, Valentina Krachmalnicoff. Super-resolution imaging: when biophysics meets nanophotonics. Nanophotonics 2022, 11 (2) , 169-202. https://doi.org/10.1515/nanoph-2021-0551
    25. Zhang Lian, Wang Hua-Yu, Wang Ning, Tao Can, Zhai Xue-Lin, Ma Ping-Zhun, Zhong Ying, Liu Hai-Tao, , , , . Broadband Enhancement of the Spontaneous Emission by an Optical Dipole Nanoantenna on Metallic Substrate: an Intuitive Model of Surface Plasmon Polariton. Acta Physica Sinica 2022, Article ASAP.
    26. Lian Zhang, Hua-Yu Wang, Ning Wang, Can Tao, Xue-Lin Zhai, Ping-Zhun Ma, Ying Zhong, Hai-Tao Liu, , , , . Broadband enhancement of spontaneous emission by optical dipole nanoantenna on metallic substrate: An intuitive model of surface plasmon polariton. Acta Physica Sinica 2022, 71 (11) , 118101. https://doi.org/10.7498/aps.70.20212290
    27. Satyajit Patra, Jean-Benoît Claude, Jean-Valère Naubron, Jérome Wenger. Fast interaction dynamics of G-quadruplex and RGG-rich peptides unveiled in zero-mode waveguides. Nucleic Acids Research 2021, 49 (21) , 12348-12357. https://doi.org/10.1093/nar/gkab1002
    28. Kseniia Lezhennikova, Stanislav Glybovski, Redha Abdeddaim, Kaizad Rustomji, Jerome Wenger, C. Martijn de Sterke, Stefan Enoch. Near Field Dipole-Dipole Coupling Near Conductive Plate In The Microwave Range: An RF Analogue To Förster Resonance Energy Transfer In Optics. 2021, 374-374. https://doi.org/10.1109/ICEAA52647.2021.9539600
    29. Nils Klughammer, Cees Dekker. Palladium zero-mode waveguides for optical single-molecule detection with nanopores. Nanotechnology 2021, 32 (18) , 18LT01. https://doi.org/10.1088/1361-6528/abd976
    30. Eitan Lerner, Anders Barth, Jelle Hendrix, Benjamin Ambrose, Victoria Birkedal, Scott C Blanchard, Richard Börner, Hoi Sung Chung, Thorben Cordes, Timothy D Craggs, Ashok A Deniz, Jiajie Diao, Jingyi Fei, Ruben L Gonzalez, Irina V Gopich, Taekjip Ha, Christian A Hanke, Gilad Haran, Nikos S Hatzakis, Sungchul Hohng, Seok-Cheol Hong, Thorsten Hugel, Antonino Ingargiola, Chirlmin Joo, Achillefs N Kapanidis, Harold D Kim, Ted Laurence, Nam Ki Lee, Tae-Hee Lee, Edward A Lemke, Emmanuel Margeat, Jens Michaelis, Xavier Michalet, Sua Myong, Daniel Nettels, Thomas-Otavio Peulen, Evelyn Ploetz, Yair Razvag, Nicole C Robb, Benjamin Schuler, Hamid Soleimaninejad, Chun Tang, Reza Vafabakhsh, Don C Lamb, Claus AM Seidel, Shimon Weiss. FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. eLife 2021, 10 https://doi.org/10.7554/eLife.60416
    31. Zheng Yuan, Dapeng Zhang, Fangzhi Yu, Yangde Ma, Yan Liu, Xiangjun Li, Hailin Wang. Precise sequencing of single protected-DNA fragment molecules for profiling of protein distribution and assembly on DNA. Chemical Science 2021, 12 (6) , 2039-2049. https://doi.org/10.1039/D0SC01742F
    32. Nicolò Maccaferri, Grégory Barbillon, Alemayehu Nana Koya, Guowei Lu, Guillermo P. Acuna, Denis Garoli. Recent advances in plasmonic nanocavities for single-molecule spectroscopy. Nanoscale Advances 2021, 3 (3) , 633-642. https://doi.org/10.1039/D0NA00715C
    33. Shunsuke Takahashi, Masahiko Oshige, Shinji Katsura. DNA Manipulation and Single-Molecule Imaging. Molecules 2021, 26 (4) , 1050. https://doi.org/10.3390/molecules26041050
    34. Xuanhua Wang, Zhedong Zhang, Jin Wang. Excitation-energy transfer under strong laser drive. Physical Review A 2021, 103 (1) https://doi.org/10.1103/PhysRevA.103.013516
    35. Rong Cai, Long Xiao, Meixiu Liu, Fengyi Du, Zhirong Wang. Recent Advances in Functional Carbon Quantum Dots for Antitumour. International Journal of Nanomedicine 2021, Volume 16 , 7195-7229. https://doi.org/10.2147/IJN.S334012
    36. Satyajit Patra, Mikhail Baibakov, Jean-Benoît Claude, Jérôme Wenger. Surface passivation of zero-mode waveguide nanostructures: benchmarking protocols and fluorescent labels. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-61856-9
    37. Xavier Zambrana-Puyalto, Paolo Ponzellini, Nicolò Maccaferri, Denis Garoli. Förster-Resonance Energy Transfer between Diffusing Molecules and a Functionalized Plasmonic Nanopore. Physical Review Applied 2020, 14 (5) https://doi.org/10.1103/PhysRevApplied.14.054065
    38. Ryan J. Durham, Danielle R. Latham, Hugo Sanabria, Vasanthi Jayaraman. Structural Dynamics of Glutamate Signaling Systems by smFRET. Biophysical Journal 2020, 119 (10) , 1929-1936. https://doi.org/10.1016/j.bpj.2020.10.009
    39. Artur Bednarkiewicz, Emory M. Chan, Katarzyna Prorok. Enhancing FRET biosensing beyond 10 nm with photon avalanche nanoparticles. Nanoscale Advances 2020, 2 (10) , 4863-4872. https://doi.org/10.1039/D0NA00404A
    40. Reuven Gordon. Metal Nanoapertures and Single Emitters. Advanced Optical Materials 2020, 8 (20) https://doi.org/10.1002/adom.202001110
    41. Wenlong Lu, Rui Hu, Xin Tong, Dapeng Yu, Qing Zhao. Electro‐Optical Detection of Single Molecules Based on Solid‐State Nanopores. Small Structures 2020, 1 (1) https://doi.org/10.1002/sstr.202000003
    42. Mikhail Baibakov, Aleksandr Barulin, Prithu Roy, Jean-Benoît Claude, Satyajit Patra, Jérôme Wenger. Zero-mode waveguides can be made better: fluorescence enhancement with rectangular aluminum nanoapertures from the visible to the deep ultraviolet. Nanoscale Advances 2020, 2 (9) , 4153-4160. https://doi.org/10.1039/D0NA00366B
    43. Maria Sanz-Paz, Jerome Wenger, Niek F. van Hulst, Mathieu Mivelle, Maria F. Garcia-Parajo. Nanoscale control of single molecule Förster resonance energy transfer by a scanning photonic nanoantenna. Nanophotonics 2020, 9 (12) , 4021-4031. https://doi.org/10.1515/nanoph-2020-0221
    44. Grégory Barbillon. Nanoplasmonics in High Pressure Environment. Photonics 2020, 7 (3) , 53. https://doi.org/10.3390/photonics7030053
    45. Ágnes Szabó, Tímea Szendi-Szatmári, János Szöllősi, Peter Nagy. Quo vadis FRET? Förster’s method in the era of superresolution. Methods and Applications in Fluorescence 2020, 8 (3) , 032003. https://doi.org/10.1088/2050-6120/ab9b72
    46. Chen-chen Li, Ying Li, Yan Zhang, Chun-yang Zhang. Single-molecule fluorescence resonance energy transfer and its biomedical applications. TrAC Trends in Analytical Chemistry 2020, 122 , 115753. https://doi.org/10.1016/j.trac.2019.115753

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect