ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Reshaping Prostate Tumor Microenvironment To Suppress Metastasis via Cancer-Associated Fibroblast Inactivation with Peptide-Assembly-Based Nanosystem

  • Jiayan Lang
    Jiayan Lang
    CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
    Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
    Sino-Danish Center for Education and Research, Sino-Danish College of UCAS, Beijing 100190, China
    More by Jiayan Lang
  • Xiao Zhao
    Xiao Zhao
    CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
    Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
    More by Xiao Zhao
  • Yingqiu Qi
    Yingqiu Qi
    CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
    School of Basic Medical Sciences, Zhengzhou University, Henan 450001, China
    More by Yingqiu Qi
  • Yinlong Zhang
    Yinlong Zhang
    CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
    Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • Xuexiang Han
    Xuexiang Han
    CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
    Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
    More by Xuexiang Han
  • Yanping Ding
    Yanping Ding
    CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
    Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
    More by Yanping Ding
  • Jiajing Guan
    Jiajing Guan
    CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
    More by Jiajing Guan
  • Tianjiao Ji*
    Tianjiao Ji
    CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
    Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
    *E-mail: [email protected]
    More by Tianjiao Ji
  • Ying Zhao*
    Ying Zhao
    CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
    Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
    *E-mail: [email protected]
    More by Ying Zhao
  • , and 
  • Guangjun Nie*
    Guangjun Nie
    CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
    Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
    *E-mail: [email protected]
    More by Guangjun Nie
Cite this: ACS Nano 2019, 13, 11, 12357–12371
Publication Date (Web):September 23, 2019
https://doi.org/10.1021/acsnano.9b04857
Copyright © 2019 American Chemical Society

    Article Views

    5431

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (14 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Prostate cancer is one of the most common malignant tumors in men, and inhibiting metastasis is a key event but still a major challenge in prostate cancer treatment. Cancer-associated fibroblasts (CAFs) play an important role in prostate tumor metastasis by shaping the malignant tumor microenvironment. Herein, we constructed a CAF-targeting siRNA delivery system by loading the fibroblast activation protein-α (FAP-α) antibody onto the cell-penetrating peptide (CPP)-based nanoparticles, which specifically downregulated C–X–C motif chemokine ligand 12 (CXCL12) expression in CAFs. This regulation generated a series of changes through inactivating CAFs so that the malignant prostate tumor microenvironment was reshaped. The tumor cell invasion, migration, and tumor angiogenesis were significantly inhibited, which all contributed to the suppression of the metastasis of an orthotopic prostate tumor. This tumor microenvironment reshaping strategy via CAF targeting and inactivation provides an alternative approach for malignant prostate tumor metastasis inhibition.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.9b04857.

    • Additional experimental data such as DLS characterization, expression changes of cytokines, cytotoxicity, and blood clearance rate shown in Tables S1–S3 and Figure S1–S9 (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 90 publications.

    1. Yun Zhao, Ruomeng Li, Junlin Sun, Zhiqiao Zou, Fuan Wang, Xiaoqing Liu. Multifunctional DNAzyme-Anchored Metal–Organic Framework for Efficient Suppression of Tumor Metastasis. ACS Nano 2022, 16 (4) , 5404-5417. https://doi.org/10.1021/acsnano.1c09008
    2. Jia-Wei Wang, Qi-Wen Chen, Guo-Feng Luo, Zi-Yi Han, Wen-Fang Song, Juan Yang, Wei-Hai Chen, Xian-Zheng Zhang. A Self-Driven Bioreactor Based on Bacterium–Metal–Organic Framework Biohybrids for Boosting Chemotherapy via Cyclic Lactate Catabolism. ACS Nano 2021, 15 (11) , 17870-17884. https://doi.org/10.1021/acsnano.1c06123
    3. Shan Gao, Xiaoye Yang, Jiangkang Xu, Na Qiu, Guangxi Zhai. Nanotechnology for Boosting Cancer Immunotherapy and Remodeling Tumor Microenvironment: The Horizons in Cancer Treatment. ACS Nano 2021, 15 (8) , 12567-12603. https://doi.org/10.1021/acsnano.1c02103
    4. Yu Chen, Yukun Huang, Songlei Zhou, Minli Sun, Liang Chen, Jiahao Wang, Minjun Xu, Shanshan Liu, Kaifan Liang, Qian Zhang, Tianze Jiang, Qingxiang Song, Gan Jiang, Xuyi Tang, Xiaoling Gao, Jun Chen. Tailored Chemodynamic Nanomedicine Improves Pancreatic Cancer Treatment via Controllable Damaging Neoplastic Cells and Reprogramming Tumor Microenvironment. Nano Letters 2020, 20 (9) , 6780-6790. https://doi.org/10.1021/acs.nanolett.0c02622
    5. Zhaohua Miao, Shanshan Jiang, Mengli Ding, Siyuan Sun, Yan Ma, Muhammad Rizwan Younis, Gang He, Jingguo Wang, Jing Lin, Zhong Cao, Peng Huang, Zhengbao Zha. Ultrasmall Rhodium Nanozyme with RONS Scavenging and Photothermal Activities for Anti-Inflammation and Antitumor Theranostics of Colon Diseases. Nano Letters 2020, 20 (5) , 3079-3089. https://doi.org/10.1021/acs.nanolett.9b05035
    6. Jian Guo, Huating Zeng, Yan Chen. Emerging Nano Drug Delivery Systems Targeting Cancer-Associated Fibroblasts for Improved Antitumor Effect and Tumor Drug Penetration. Molecular Pharmaceutics 2020, 17 (4) , 1028-1048. https://doi.org/10.1021/acs.molpharmaceut.0c00014
    7. Chenglong Ge, Jiandong Yang, Shanzhou Duan, Yong Liu, Fenghua Meng, Lichen Yin. Fluorinated α-Helical Polypeptides Synchronize Mucus Permeation and Cell Penetration toward Highly Efficient Pulmonary siRNA Delivery against Acute Lung Injury. Nano Letters 2020, 20 (3) , 1738-1746. https://doi.org/10.1021/acs.nanolett.9b04957
    8. Rongze Wang, Keze Hong, Qiaoyun Zhang, Jianrong Cao, Tao Huang, Zecong Xiao, Yong Wang, Xintao Shuai. A nanodrug simultaneously inhibits pancreatic stellate cell activation and regulatory T cell infiltration to promote the immunotherapy of pancreatic cancer. Acta Biomaterialia 2023, 169 , 451-463. https://doi.org/10.1016/j.actbio.2023.08.007
    9. Daoxia Guo, Xiaoyuan Ji, Hui Xie, Jia Ma, Chunchen Xu, Yanfeng Zhou, Nan Chen, Hui Wang, Chunhai Fan, Haiyun Song. Targeted Reprogramming of Vitamin B 3 Metabolism as a Nanotherapeutic Strategy towards Chemoresistant Cancers. Advanced Materials 2023, 35 (36) https://doi.org/10.1002/adma.202301257
    10. Zhangyi Luo, Katherine M. Eichinger, Anju Zhang, Song Li. Targeting cancer metabolic pathways for improving chemotherapy and immunotherapy. Cancer Letters 2023, 73 , 216396. https://doi.org/10.1016/j.canlet.2023.216396
    11. Mei-Chi Su, Susheel Kumar Nethi, Pavan Kumar Dhanyamraju, Swayam Prabha. Nanomedicine Strategies for Targeting Tumor Stroma. Cancers 2023, 15 (16) , 4145. https://doi.org/10.3390/cancers15164145
    12. Daifeng Li, Shengnan Ma, Denghui Xu, Xiaocao Meng, Ningjing Lei, Chen Liu, Ying Zhao, Yingqiu Qi, Zhen Cheng, Fazhan Wang. Peptide-functionalized therapeutic nanoplatform for treatment orthotopic triple negative breast cancer and bone metastasis. Nanomedicine: Nanotechnology, Biology and Medicine 2023, 50 , 102669. https://doi.org/10.1016/j.nano.2023.102669
    13. Wei Ai, Tianhui Liu, Changshun Lv, Xiangru Feng, Qingshuang Wang. Modulation of cancer-associated fibroblasts by nanodelivery system to enhance efficacy of tumor therapy. Nanomedicine 2023, 18 (15) , 1025-1039. https://doi.org/10.2217/nnm-2023-0088
    14. Yonghua Gong, Jinyang Zhang, Yan Lu, Dong Wan, Jie Pan, Guilei Ma. Light-activated arginine-rich peptide-modified nanoparticles for deep-penetrating chemo-photo-immunotherapy of solid tumor. Nano Research 2023, 35 https://doi.org/10.1007/s12274-023-5665-3
    15. Xiaocong Ma, Weimin Fang, Duo Wang, Ni Shao, Jifeng Chen, Tianqi Nie, Cuiqing Huang, Yanyu Huang, Liangping Luo, Zeyu Xiao. Nanomaterial-Based Antivascular Therapy in the Multimodal Treatment of Cancer. Pharmaceutics 2023, 15 (4) , 1207. https://doi.org/10.3390/pharmaceutics15041207
    16. Shan Peng, Xiaomeng Yuan, Hongjie Li, Yanan Wei, Baolong Zhou, Gang Ding, Jingkun Bai. Recent progress in nanocarrier-based drug delivery systems for antitumour metastasis. European Journal of Medicinal Chemistry 2023, 252 , 115259. https://doi.org/10.1016/j.ejmech.2023.115259
    17. Zhixin Tao, Chao Huang, Deqiang Wang, Qianqian Wang, Qiuzhi Gao, Hao Zhang, Yuanyuan Zhao, Mei Wang, Juan Xu, Bo Shen, Chenglin Zhou, Wei Zhu. Lactate induced mesenchymal stem cells activation promotes gastric cancer cells migration and proliferation. Experimental Cell Research 2023, 424 (1) , 113492. https://doi.org/10.1016/j.yexcr.2023.113492
    18. Fang Zheng, Yujia Luo, Yuanqi Liu, Yuanyuan Gao, Wenyu Chen, Kun Wei. Nano-baicalein facilitates chemotherapy in breast cancer by targeting tumor microenvironment. International Journal of Pharmaceutics 2023, 635 , 122778. https://doi.org/10.1016/j.ijpharm.2023.122778
    19. Xiang Wang, Feifei Sun, Ya Wang, Zidi Yan, Xunrui Wang, Haoran Kong, Yu Wang. Textured propyl gallate modified MXene biopaster with prolonged photothermal effect for in-situ post-surgery residual tumor clearance. Nano Today 2023, 48 , 101701. https://doi.org/10.1016/j.nantod.2022.101701
    20. Meichen Zhang, Haiyan Xu. Peptide-assembled nanoparticles targeting tumor cells and tumor microenvironment for cancer therapy. Frontiers in Chemistry 2023, 11 https://doi.org/10.3389/fchem.2023.1115495
    21. Jasmine S. Owen, Aled Clayton, Helen B. Pearson. Cancer-Associated Fibroblast Heterogeneity, Activation and Function: Implications for Prostate Cancer. Biomolecules 2023, 13 (1) , 67. https://doi.org/10.3390/biom13010067
    22. Luke R. Lemmerman, Jordan T. Moore, Erin R. Goebel, Aidan J. Maxwell, Jordan Deguzman, Daniel Gallego-Perez. Nanotechnology for Manipulating Cell Plasticity. 2023, 623-653. https://doi.org/10.1007/978-981-16-8984-0_21
    23. Mohammad Javad Mousavi, Jafar Karami, Masoumeh Alimohammadi, Farid Solaymani-Mohammadi, Nima Rezaei. Fibroblast Activation Protein (FAP): A Key Modulator of the Cancer Microenvironment. 2023, 1-23. https://doi.org/10.1007/978-3-030-80962-1_357-1
    24. Yi Feng, Zhen Liao, Hanxi Zhang, Xiaoxue Xie, Fengming You, Xiaoling Liao, Chunhui Wu, Wei Zhang, Hong Yang, Yiyao Liu. Emerging nanomedicines strategies focused on tumor microenvironment against cancer recurrence and metastasis. Chemical Engineering Journal 2023, 452 , 139506. https://doi.org/10.1016/j.cej.2022.139506
    25. Haoqi Yu, Shuhui Zhang, Huiru Yang, Jiamin Miao, Xu Ma, Wei Xiong, Gang Chen, Tianjiao Ji. Specific interaction based drug loading strategies. Nanoscale Horizons 2023, 14 https://doi.org/10.1039/D3NH00165B
    26. Giorgia Imparato, Francesco Urciuolo, Claudia Mazio, Paolo A. Netti. Capturing the spatial and temporal dynamics of tumor stroma for on-chip optimization of microenvironmental targeting nanomedicine. Lab on a Chip 2022, 23 (1) , 25-43. https://doi.org/10.1039/D2LC00611A
    27. Jian Guo, Huating Zeng, Xinmeng Shi, Tao Han, Yimin Liu, Yuping Liu, Congyan Liu, Ding Qu, Yan Chen. A CFH peptide-decorated liposomal oxymatrine inactivates cancer-associated fibroblasts of hepatocellular carcinoma through epithelial–mesenchymal transition reversion. Journal of Nanobiotechnology 2022, 20 (1) https://doi.org/10.1186/s12951-022-01311-1
    28. Jiaye Liu, Yang Wang, Chunyang Mu, Meng Li, Kewei Li, Shan Li, Wenshuang Wu, Lingyao Du, Xiaoyun Zhang, Chuan Li, Wei Peng, Junyi Shen, Yang Liu, Dujiang Yang, Kaixiang Zhang, Qingyang Ning, Xiaoying Fu, Yu Zeng, Yinyun Ni, Zongguang Zhou, Yi Liu, Yiguo Hu, Xiaofeng Zheng, Tianfu Wen, Zhihui Li, Yong Liu. Pancreatic tumor eradication via selective Pin1 inhibition in cancer-associated fibroblasts and T lymphocytes engagement. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-31928-7
    29. Xiao-Yan Yang, Jin-Guo Zhang, Qiao-Mei Zhou, Jie-Ni Yu, Yuan-Fei Lu, Xiao-Jie Wang, Jia-Ping Zhou, Xin-Fa Ding, Yong-Zhong Du, Ri-Sheng Yu. Extracellular matrix modulating enzyme functionalized biomimetic Au nanoplatform-mediated enhanced tumor penetration and synergistic antitumor therapy for pancreatic cancer. Journal of Nanobiotechnology 2022, 20 (1) https://doi.org/10.1186/s12951-022-01738-6
    30. Yanyan Xu, Jingyuan Xiong, Xiyang Sun, Huile Gao. Targeted nanomedicines remodeling immunosuppressive tumor microenvironment for enhanced cancer immunotherapy. Acta Pharmaceutica Sinica B 2022, 12 (12) , 4327-4347. https://doi.org/10.1016/j.apsb.2022.11.001
    31. Meirong Huo, Jiyuan Zhou, Honglan Wang, Yuzhao Zheng, Yuqing Tong, Jianping Zhou, Jiyong Liu, Tingjie Yin. A pHe sensitive nanodrug for collaborative penetration and inhibition of metastatic tumors. Journal of Controlled Release 2022, 352 , 893-908. https://doi.org/10.1016/j.jconrel.2022.11.012
    32. Xinyuan Shen, Chaojie Zhu, Qing Wu, Jiaqi Shi, Wei Wu, Xiao Zhao, Jie Sun, Hongjun Li, Zhen Gu. Nanomodulators targeting tumor-resident immunosuppressive cells: Mechanisms and recent updates. Nano Today 2022, 47 , 101641. https://doi.org/10.1016/j.nantod.2022.101641
    33. Zhou Zhou, Yuhao Hu, Yixuan Wu, Qianyi Qi, Jianxin Wang, Lin Chen, Feng Wang. The immunosuppressive tumor microenvironment in hepatocellular carcinoma-current situation and outlook. Molecular Immunology 2022, 151 , 218-230. https://doi.org/10.1016/j.molimm.2022.09.010
    34. Mohd Mughees, Jyoti Bala Kaushal, Gunjan Sharma, Saima Wajid, Surinder Kumar Batra, Jawed Akhtar Siddiqui. Chemokines and cytokines: Axis and allies in prostate cancer pathogenesis. Seminars in Cancer Biology 2022, 86 , 497-512. https://doi.org/10.1016/j.semcancer.2022.02.017
    35. Hsi-Chien Huang, Yun-Chieh Sung, Chung-Pin Li, Dehui Wan, Po-Han Chao, Yu-Ting Tseng, Bo-Wen Liao, Hui-Teng Cheng, Fu-Fei Hsu, Chieh-Cheng Huang, Yi-Ting Chen, Yu-Hui Liao, Hsin Tzu Hsieh, Yu-Chuan Shih, I-Ju Liu, Han-Chung Wu, Tsai-Te Lu, Jane Wang, Yunching Chen. Reversal of pancreatic desmoplasia by a tumour stroma-targeted nitric oxide nanogel overcomes TRAIL resistance in pancreatic tumours. Gut 2022, 71 (9) , 1843-1855. https://doi.org/10.1136/gutjnl-2021-325180
    36. Jinxing Huang, Kai Xiao. Nanoparticles-Based Strategies to Improve the Delivery of Therapeutic Small Interfering RNA in Precision Oncology. Pharmaceutics 2022, 14 (8) , 1586. https://doi.org/10.3390/pharmaceutics14081586
    37. Thecla Trinity Wheeler, Pei Cao, Muhammad Daniyal Ghouri, Tianjiao Ji, Guangjun Nie, Yuliang Zhao. Nanotechnological strategies for prostate cancer imaging and diagnosis. Science China Chemistry 2022, 65 (8) , 1498-1514. https://doi.org/10.1007/s11426-022-1271-0
    38. Milad Ashrafizadeh, Shahin Aghamiri, Shing Cheng Tan, Ali Zarrabi, Esmaeel Sharifi, Navid Rabiee, Firoz Babu Kadumudi, Alireza Dolatshahi Pirouz, Masoud Delfi, Kullaiah Byrappa, Vijay Kumar Thakur, Kothanahally S. Sharath Kumar, Yarabahally R. Girish, Farshid Zandsalimi, Ehsan Nazarzadeh Zare, Gorka Orive, Franklin Tay, Kiavash Hushmandi, Alan Prem Kumar, Ceren Karaman, Hassan Karimi-Maleh, Ebrahim Mostafavi, Pooyan Makvandi, Yuzhuo Wang. Nanotechnological Approaches in Prostate Cancer Therapy: Integration of engineering and biology. Nano Today 2022, 45 , 101532. https://doi.org/10.1016/j.nantod.2022.101532
    39. Kairav Shah, Sanchari Basu Mallik, Praveer Gupta, Abishek Iyer. Targeting Tumour-Associated Fibroblasts in Cancers. Frontiers in Oncology 2022, 12 https://doi.org/10.3389/fonc.2022.908156
    40. Shun‐Yu Wu, Fu‐Gen Wu, Xiaoyuan Chen. Antibody‐Incorporated Nanomedicines for Cancer Therapy. Advanced Materials 2022, 34 (24) https://doi.org/10.1002/adma.202109210
    41. Jiangsheng Xu, Yunhua Liu, Sheng Liu, Wenquan Ou, Alisa White, Samantha Stewart, Katherine H.R. Tkaczuk, Lee M. Ellis, Jun Wan, Xiongbin Lu, Xiaoming He. Metformin bicarbonate-mediated efficient RNAi for precise targeting of TP53 deficiency in colon and rectal cancers. Nano Today 2022, 43 , 101406. https://doi.org/10.1016/j.nantod.2022.101406
    42. Masud M A, Jae-Young Kim, Cheol-Ho Pan, Eunjung Kim, . The impact of the spatial heterogeneity of resistant cells and fibroblasts on treatment response. PLOS Computational Biology 2022, 18 (3) , e1009919. https://doi.org/10.1371/journal.pcbi.1009919
    43. Minghai Ma, Pu Zhang, Xiao Liang, Daxiang Cui, Qiuya Shao, Haibao Zhang, Mengzhao Zhang, Tao Yang, Lu Wang, Nan Zhang, Minxuan Jing, Lu Zhang, Weichao Dan, Rundong Song, Xi Liu, Jiatao Hao, Yuhang Chen, Lijiang Gu, Lei Wang, Jinhai Fan. R11 peptides can promote the molecular imaging of spherical nucleic acids for bladder cancer margin identification. Nano Research 2022, 15 (3) , 2278-2287. https://doi.org/10.1007/s12274-021-3807-z
    44. Samuel Longoria-García, Celia Nohemi Sánchez-Domínguez, Hugo Gallardo-Blanco. Recent applications of cell-penetrating peptide guidance of nanosystems in breast and prostate cancer (Review). Oncology Letters 2022, 23 (3) https://doi.org/10.3892/ol.2022.13223
    45. Peifang Song, Quisha Pan, Zhaohui Sun, Liwei Zou, Ling Yang. Fibroblast activation protein alpha: Comprehensive detection methods for drug target and tumor marker. Chemico-Biological Interactions 2022, 354 , 109830. https://doi.org/10.1016/j.cbi.2022.109830
    46. Xinru Kong, Jiangkang Xu, Xiaoye Yang, Yujia Zhai, Jianbo Ji, Guangxi Zhai. Progress in tumour-targeted drug delivery based on cell-penetrating peptides. Journal of Drug Targeting 2022, 30 (1) , 46-60. https://doi.org/10.1080/1061186X.2021.1920026
    47. Dongyoon Kim, Yina Wu, Yu-Kyoung Oh. Targeting cancer-associated fibroblasts in immunotherapy. 2022, 163-209. https://doi.org/10.1016/B978-0-323-85781-9.00007-5
    48. Luke R. Lemmerman, Jordan T. Moore, Erin R. Goebel, Aidan J. Maxwell, Jordan Deguzman, Daniel Gallego-Perez. Nanotechnology for Manipulating Cell Plasticity. 2022, 1-31. https://doi.org/10.1007/978-981-13-9374-7_21-1
    49. Ammu V. V. V. Ravi Kiran, Garikapati Kusuma Kumari, Praveen T. Krishnamurthy, Renat R. Khaydarov. Tumor microenvironment and nanotherapeutics: intruding the tumor fort. Biomaterials Science 2021, 9 (23) , 7667-7704. https://doi.org/10.1039/D1BM01127H
    50. Qingqing Xiong, Yang Bai, Run Shi, Jian Wang, Weiguo Xu, Mingming Zhang, Tianqiang Song. Preferentially released miR-122 from cyclodextrin-based star copolymer nanoparticle enhances hepatoma chemotherapy by apoptosis induction and cytotoxics efflux inhibition. Bioactive Materials 2021, 6 (11) , 3744-3755. https://doi.org/10.1016/j.bioactmat.2021.03.026
    51. Liying Wang, Zimo Liu, Quan Zhou, Sufang Gu, Xiangsheng Liu, Jianxiang Huang, Haiping Jiang, Huifang Wang, Liping Cao, Jihong Sun, Youqing Shen, Huan Meng, Xiangrui Liu. Prodrug nanoparticles rationally integrating stroma modification and chemotherapy to treat metastatic pancreatic cancer. Biomaterials 2021, 278 , 121176. https://doi.org/10.1016/j.biomaterials.2021.121176
    52. Jing Wang, Motao Zhu, Guangjun Nie. Biomembrane-based nanostructures for cancer targeting and therapy: From synthetic liposomes to natural biomembranes and membrane-vesicles. Advanced Drug Delivery Reviews 2021, 178 , 113974. https://doi.org/10.1016/j.addr.2021.113974
    53. Wenqi Yu, Chuan Hu, Huile Gao. Advances of nanomedicines in breast cancer metastasis treatment targeting different metastatic stages. Advanced Drug Delivery Reviews 2021, 178 , 113909. https://doi.org/10.1016/j.addr.2021.113909
    54. Zhipeng Li, Fang Ning, Changduo Wang, Hongli Yu, Qingming Ma, Yong Sun. Normalization of the tumor microvasculature based on targeting and modulation of the tumor microenvironment. Nanoscale 2021, 13 (41) , 17254-17271. https://doi.org/10.1039/D1NR03387E
    55. Manuela Salvucci, Nyree Crawford, Katie Stott, Susan Bullman, Daniel B Longley, Jochen H M Prehn. Patients with mesenchymal tumours and high Fusobacteriales prevalence have worse prognosis in colorectal cancer (CRC). Gut 2021, 17 , gutjnl-2021-325193. https://doi.org/10.1136/gutjnl-2021-325193
    56. Qinrong Ping, Ruping Yan, Xin Cheng, Wenju Wang, Yiming Zhong, Zongliu Hou, Yunqiang Shi, Chunhui Wang, Ruhong Li. Cancer-associated fibroblasts: overview, progress, challenges, and directions. Cancer Gene Therapy 2021, 28 (9) , 984-999. https://doi.org/10.1038/s41417-021-00318-4
    57. Zhenyu Duan, Qiang Luo, Lei Gu, Xiaoling Li, Hongyan Zhu, Zhongwei Gu, Qiyong Gong, Hu Zhang, Kui Luo. A co-delivery nanoplatform for a lignan-derived compound and perfluorocarbon tuning IL-25 secretion and the oxygen level in tumor microenvironments for meliorative tumor radiotherapy. Nanoscale 2021, 13 (32) , 13681-13692. https://doi.org/10.1039/D1NR03738B
    58. Lei Xin, Jinfang Gao, Ziliang Zheng, Yiyou Chen, Shuxin Lv, Zhikai Zhao, Chunhai Yu, Xiaotang Yang, Ruiping Zhang. Fibroblast Activation Protein-α as a Target in the Bench-to-Bedside Diagnosis and Treatment of Tumors: A Narrative Review. Frontiers in Oncology 2021, 11 https://doi.org/10.3389/fonc.2021.648187
    59. Yuelin Fang, Aihua Yu, Lei Ye, Guangxi Zhai. Research progress in tumor targeted immunotherapy. Expert Opinion on Drug Delivery 2021, 18 (8) , 1067-1090. https://doi.org/10.1080/17425247.2021.1882992
    60. Junyu Wu, Yang Long, Man Li, Qin He. Emerging nanomedicine-based therapeutics for hematogenous metastatic cascade inhibition: Interfering with the crosstalk between “seed and soil”. Acta Pharmaceutica Sinica B 2021, 11 (8) , 2286-2305. https://doi.org/10.1016/j.apsb.2020.11.024
    61. Hongfang Zhang, Hong Jiang, Lucheng Zhu, Jiawei Li, Shenglin Ma. Cancer-associated fibroblasts in non-small cell lung cancer: Recent advances and future perspectives. Cancer Letters 2021, 514 , 38-47. https://doi.org/10.1016/j.canlet.2021.05.009
    62. Madiha Saeed, Fangming Chen, Jiayi Ye, Yang Shi, Twan Lammers, Bruno G. De Geest, Zhi Ping Xu, Haijun Yu. From Design to Clinic: Engineered Nanobiomaterials for Immune Normalization Therapy of Cancer. Advanced Materials 2021, 33 (30) https://doi.org/10.1002/adma.202008094
    63. Giulio Giustarini, Andrea Pavesi, Giulia Adriani. Nanoparticle-Based Therapies for Turning Cold Tumors Hot: How to Treat an Immunosuppressive Tumor Microenvironment. Frontiers in Bioengineering and Biotechnology 2021, 9 https://doi.org/10.3389/fbioe.2021.689245
    64. Masoud Delfi, Rossella Sartorius, Milad Ashrafizadeh, Esmaeel Sharifi, Yapei Zhang, Piergiuseppe De Berardinis, Ali Zarrabi, Rajender S. Varma, Franklin R. Tay, Bryan Ronain Smith, Pooyan Makvandi. Self-assembled peptide and protein nanostructures for anti-cancer therapy: Targeted delivery, stimuli-responsive devices and immunotherapy. Nano Today 2021, 38 , 101119. https://doi.org/10.1016/j.nantod.2021.101119
    65. Qian‐Ni Ye, Yue Wang, Song Shen, Cong‐Fei Xu, Jun Wang. Biomaterials‐Based Delivery of Therapeutic Antibodies for Cancer Therapy. Advanced Healthcare Materials 2021, 10 (11) , 2002139. https://doi.org/10.1002/adhm.202002139
    66. Han Gao, Ruoyu Cheng, Hélder A. Santos. Nanoparticle‐mediated siRNA delivery systems for cancer therapy. VIEW 2021, 2 (3) https://doi.org/10.1002/VIW.20200111
    67. Yue Zhao, Weiwei Xiao, Wanqing Peng, Qinghua Huang, Kunru Wu, Colin E. Evans, Xinguang Liu, Hua Jin. Oridonin-Loaded Nanoparticles Inhibit Breast Cancer Progression Through Regulation of ROS-Related Nrf2 Signaling Pathway. Frontiers in Bioengineering and Biotechnology 2021, 9 https://doi.org/10.3389/fbioe.2021.600579
    68. Jaehyun Kim, Juhyeong Hong, Jieun Lee, Shayan Fakhraei Lahiji, Yong-Hee Kim. Recent advances in tumor microenvironment-targeted nanomedicine delivery approaches to overcome limitations of immune checkpoint blockade-based immunotherapy. Journal of Controlled Release 2021, 332 , 109-126. https://doi.org/10.1016/j.jconrel.2021.02.002
    69. Lei Chen, Yue-Yang Wang, Deng Li, Cheng Wang, Shi-Yuan Wang, Si-Hui Shao, Zheng-Yang Zhu, Jing Zhao, Yu Zhang, Yuan Ruan, Bang-Min Han, Shu-Jie Xia, Chen-Yi Jiang, Fu-Jun Zhao. LMO2 upregulation due to AR deactivation in cancer-associated fibroblasts induces non-cell-autonomous growth of prostate cancer after androgen deprivation. Cancer Letters 2021, 503 , 138-150. https://doi.org/10.1016/j.canlet.2021.01.017
    70. Tingting Zhang, Xiulan Chen, Lang Sun, Xiaojing Guo, Tanxi Cai, Jifeng Wang, Yanqiong Zeng, Jing Ma, Xiang Ding, Zhensheng Xie, Lili Niu, Mengmeng Zhang, Ning Tao, Fuquan Yang. Proteomics reveals the function reverse of MPSSS‐treated prostate cancer‐associated fibroblasts to suppress PC‐3 cell viability via the FoxO pathway. Cancer Medicine 2021, 10 (7) , 2509-2522. https://doi.org/10.1002/cam4.3825
    71. Xiaoli Yi, Yue Yan, Lian Li, Qiuyi Li, Yucheng Xiang, Yuan Huang. Sequentially Targeting Cancer‐Associated Fibroblast and Mitochondria Alleviates Tumor Hypoxia and Inhibits Cancer Metastasis by Preventing “Soil” Formation and “Seed” Dissemination. Advanced Functional Materials 2021, 31 (17) https://doi.org/10.1002/adfm.202010283
    72. Min Zhu, Shan Wang. Functional Nucleic‐Acid‐Decorated Spherical Nanoparticles: Preparation Strategies and Current Applications in Cancer Therapy. Small Science 2021, 1 (3) https://doi.org/10.1002/smsc.202000056
    73. Yingmin Li, Yang Luo, Xingyang Li, Zhengjie Huang, Yi Wang. Nanoparticles breakthroughs tumor treatment limitations by regulating tumor immune microenvironment to enhance tumor immunotherapy efficacy. Smart Materials in Medicine 2021, 2 , 314-321. https://doi.org/10.1016/j.smaim.2021.08.004
    74. Jie Zhang, Chaoyu Gu, Qianqian Song, Mengqi Zhu, Yuqing Xu, Mingbing Xiao, Wenjie Zheng. Identifying cancer-associated fibroblasts as emerging targets for hepatocellular carcinoma. Cell & Bioscience 2020, 10 (1) https://doi.org/10.1186/s13578-020-00488-y
    75. Xuexiang Han, Michael J. Mitchell, Guangjun Nie. Nanomaterials for Therapeutic RNA Delivery. Matter 2020, 3 (6) , 1948-1975. https://doi.org/10.1016/j.matt.2020.09.020
    76. Xiaoming Xie, Tingting Zheng, Wen Li. Recent Progress in Ionic Coassembly of Cationic Peptides and Anionic Species. Macromolecular Rapid Communications 2020, 41 (24) https://doi.org/10.1002/marc.202000534
    77. Yanqiong Zeng, Qingdi Du, Zhiwei Zhang, Jing Ma, Le Han, Yuanyuan Wang, Linpu Yang, Ning Tao, Zhihai Qin. Curcumin promotes cancer-associated fibroblasts apoptosis via ROS-mediated endoplasmic reticulum stress. Archives of Biochemistry and Biophysics 2020, 694 , 108613. https://doi.org/10.1016/j.abb.2020.108613
    78. Hai Huang, Xiaorong Yang, Huili Li, Hansi Lu, James Oswald, Yongmei Liu, Jun Zeng, Chaohui Jin, Xingchen Peng, Jiyan Liu, Xiangrong Song. iRGD decorated liposomes: A novel actively penetrating topical ocular drug delivery strategy. Nano Research 2020, 13 (11) , 3105-3109. https://doi.org/10.1007/s12274-020-2980-9
    79. Wei Zhang, Fei Wang, Chuan Hu, Yang Zhou, Huile Gao, Jiang Hu. The progress and perspective of nanoparticle-enabled tumor metastasis treatment. Acta Pharmaceutica Sinica B 2020, 10 (11) , 2037-2053. https://doi.org/10.1016/j.apsb.2020.07.013
    80. Yuefei Zhu, Xiangrong Yu, Soracha D. Thamphiwatana, Ying Zheng, Zhiqing Pang. Nanomedicines modulating tumor immunosuppressive cells to enhance cancer immunotherapy. Acta Pharmaceutica Sinica B 2020, 10 (11) , 2054-2074. https://doi.org/10.1016/j.apsb.2020.08.010
    81. Xia Chen, Shiwei Niu, David H. Bremner, Xuejing Zhang, Hongmei Zhang, Yanyan Zhang, Shude Li, Li-Min Zhu. Co-delivery of doxorubicin and oleanolic acid by triple-sensitive nanocomposite based on chitosan for effective promoting tumor apoptosis. Carbohydrate Polymers 2020, 247 , 116672. https://doi.org/10.1016/j.carbpol.2020.116672
    82. Jingxian Yang, Chunhui Wang, Shuo Shi, Chunyan Dong. Nanotechnologies for enhancing cancer immunotherapy. Nano Research 2020, 13 (10) , 2595-2616. https://doi.org/10.1007/s12274-020-2904-8
    83. Milad Ashrafizadeh, Kiavash Hushmandi, Ebrahim Rahmani Moghadam, Vahideh Zarrin, Sharareh Hosseinzadeh Kashani, Saied Bokaie, Masoud Najafi, Shima Tavakol, Reza Mohammadinejad, Noushin Nabavi, Chia-Ling Hsieh, Atefeh Zarepour, Ehsan Nazarzadeh Zare, Ali Zarrabi, Pooyan Makvandi. Progress in Delivery of siRNA-Based Therapeutics Employing Nano-Vehicles for Treatment of Prostate Cancer. Bioengineering 2020, 7 (3) , 91. https://doi.org/10.3390/bioengineering7030091
    84. Daniela Gerovska, Gorka Larrinaga, Jon Danel Solano-Iturri, Joana Márquez, Patricia García Gallastegi, Abdel-Majid Khatib, Gereon Poschmann, Kai Stühler, María Armesto, Charles H. Lawrie, Iker Badiola, Marcos J. Araúzo-Bravo. An Integrative Omics Approach Reveals Involvement of BRCA1 in Hepatic Metastatic Progression of Colorectal Cancer. Cancers 2020, 12 (9) , 2380. https://doi.org/10.3390/cancers12092380
    85. Letizia Rinella, Benedetta Pizzo, Roberto Frairia, Luisa Delsedime, Giorgio Calleris, Paolo Gontero, Valentina Zunino, Nicoletta Fortunati, Emanuela Arvat, Maria Graziella Catalano. Modulating tumor reactive stroma by extracorporeal shock waves to control prostate cancer progression. The Prostate 2020, 80 (13) , 1087-1096. https://doi.org/10.1002/pros.24037
    86. Zheng Lian, Tianjiao Ji. Functional peptide-based drug delivery systems. Journal of Materials Chemistry B 2020, 8 (31) , 6517-6529. https://doi.org/10.1039/D0TB00713G
    87. Alexey Kuzmich, Olga Rakitina, Dmitry Didych, Victor Potapov, Marina Zinovyeva, Irina Alekseenko, Eugene Sverdlov. Novel Histone-Based DNA Carrier Targeting Cancer-Associated Fibroblasts. Polymers 2020, 12 (8) , 1695. https://doi.org/10.3390/polym12081695
    88. Liang Ee Low, Jiahe Wu, Jiyoung Lee, Beng Ti Tey, Bey-Hing Goh, Jianqing Gao, Fangyuan Li, Daishun Ling. Tumor-responsive dynamic nanoassemblies for targeted imaging, therapy and microenvironment manipulation. Journal of Controlled Release 2020, 324 , 69-103. https://doi.org/10.1016/j.jconrel.2020.05.014
    89. Xuexiang Han, Ying Xu, Marzieh Geranpayehvaghei, Gregory J. Anderson, Yiye Li, Guangjun Nie. Emerging nanomedicines for anti-stromal therapy against desmoplastic tumors. Biomaterials 2020, 232 , 119745. https://doi.org/10.1016/j.biomaterials.2019.119745
    90. Qiuyue Huang, Jinzhi Du. Barriers for Tumor Drug Delivery. 2020, 5-26. https://doi.org/10.1007/978-981-15-5159-8_2

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect