ACS Publications. Most Trusted. Most Cited. Most Read
Dual-Wavelength Lasing in Quantum-Dot Plasmonic Lattice Lasers
My Activity
    Article

    Dual-Wavelength Lasing in Quantum-Dot Plasmonic Lattice Lasers
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (1)

    ACS Nano

    Cite this: ACS Nano 2020, 14, 5, 5223–5232
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.9b09698
    Published March 11, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Arrays of metallic particles patterned on a substrate have emerged as a promising design for on-chip plasmonic lasers. In past examples of such devices, the periodic particles provided feedback at a single resonance wavelength, and organic dye molecules were used as the gain material. Here, we introduce a flexible template-based fabrication method that allows a broader design space for Ag particle-array lasers. Instead of dye molecules, we integrate colloidal quantum dots (QDs), which offer better photostability and wavelength tunability. Our fabrication approach also allows us to easily adjust the refractive index of the substrate and the QD-film thickness. Exploiting these capabilities, we demonstrate not only single-wavelength lasing but dual-wavelength lasing via two distinct strategies. First, by using particle arrays with rectangular lattice symmetries, we obtain feedback from two orthogonal directions. The two output wavelengths from this laser can be selected individually using a linear polarizer. Second, by adjusting the QD-film thickness, we use higher-order transverse waveguide modes in the QD film to obtain dual-wavelength lasing at normal and off-normal angles from a symmetric square array. We thus show that our approach offers various design possibilities to tune the laser output.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsnano.9b09698.

    • Detailed description of our sample fabrication and optical setup; additional data supporting our analysis (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 64 publications.

    1. Nelson de Gaay Fortman, Debapriya Pal, Peter Schall, A. Femius Koenderink. Accessing Beyond-Light Line Dispersion and High-Q Resonances of Dense Plasmon Lattices by Bandfolding. ACS Photonics 2025, 12 (2) , 1163-1173. https://doi.org/10.1021/acsphotonics.4c02323
    2. Antti J. Moilanen, Moritz Cavigelli, Takashi Taniguchi, Kenji Watanabe, Lukas Novotny. Electrical Control of Photoluminescence in 2D Semiconductors Coupled to Plasmonic Lattices. ACS Nano 2025, 19 (4) , 4731-4738. https://doi.org/10.1021/acsnano.4c15459
    3. Anna Fischer, Toby Severs Millard, Xiaofei Xiao, T.V. Raziman, Jakub Dranczewski, Ross C. Schofield, Heinz Schmid, Kirsten Moselund, Riccardo Sapienza, Rupert F. Oulton. Surface Lattice Resonance Lasers with Epitaxial InP Gain Medium. ACS Photonics 2024, 11 (10) , 4316-4322. https://doi.org/10.1021/acsphotonics.4c01236
    4. Nanli Mou, Bing Tang, Bowen Han, Jingyue Yu, Delin Zhang, Zichun Bai, Mou Zhong, Biye Xie, Zhaoyu Zhang, Shikai Deng, Andrey L. Rogach, Jingtian Hu, Jun Guan. Large-Area Perovskite Nanocrystal Metasurfaces for Direction-Tunable Lasing. Nano Letters 2024, 24 (40) , 12676-12683. https://doi.org/10.1021/acs.nanolett.4c03921
    5. Max J. H. Tan, Francisco Freire-Fernández, Teri W. Odom. Symmetry-Guided Engineering of Polarization by 2D Moiré Metasurfaces. ACS Nano 2024, 18 (34) , 23181-23188. https://doi.org/10.1021/acsnano.4c05714
    6. Guanyue Zhao, Xinyu Gao, Yufeng Zhou, Mengyuan Song, Yixuan Du, Zhuang Li, Jun Guan, Yangjian Cai, Xianyu Ao. Unidirectional Lasing from Mirror-Coupled Dielectric Lattices. Nano Letters 2024, 24 (11) , 3378-3385. https://doi.org/10.1021/acs.nanolett.3c05038
    7. Xinyu Sun, Jiacheng Sun, Zichen Wang, Lang Wang, Feng Qiu, Liaoyong Wen. Manipulating Dual Bound States in the Continuum for Efficient Spatial Light Modulator. Nano Letters 2022, 22 (24) , 9982-9989. https://doi.org/10.1021/acs.nanolett.2c03539
    8. Jun Guan, Jeong-Eun Park, Shikai Deng, Max J. H. Tan, Jingtian Hu, Teri W. Odom. Light–Matter Interactions in Hybrid Material Metasurfaces. Chemical Reviews 2022, 122 (19) , 15177-15203. https://doi.org/10.1021/acs.chemrev.2c00011
    9. Baodong Gai, Jingwei Guo. Collective Resonances of a Twisted Plasmonic Array Pair. The Journal of Physical Chemistry C 2021, 125 (46) , 25670-25679. https://doi.org/10.1021/acs.jpcc.1c07123
    10. Kwangdong Roh, Lianfeng Zhao, Barry P. Rand. Tuning Laser Threshold within the Large Optical Gain Bandwidth of Halide Perovskite Thin Films. ACS Photonics 2021, 8 (8) , 2548-2554. https://doi.org/10.1021/acsphotonics.1c00910
    11. Jimmie Mitchell, Jeffrey J. Weimer. Controlled Spreading Rates to Distribute Nanoparticles as Uniform Langmuir Films. Langmuir 2021, 37 (17) , 5139-5150. https://doi.org/10.1021/acs.langmuir.1c00032
    12. Naihao Chiang, Leonardo Scarabelli, Gail A. Vinnacombe-Willson, Luis A. Pérez, Camilla Dore, Agustín Mihi, Steven J. Jonas, Paul S. Weiss. Large-Scale Soft-Lithographic Patterning of Plasmonic Nanoparticles. ACS Materials Letters 2021, 3 (3) , 282-289. https://doi.org/10.1021/acsmaterialslett.0c00535
    13. Francisco Freire-Fernández, Sang-Min Park, Max J. H. Tan, Teri W. Odom. Plasmonic lattice lasers. Nature Reviews Materials 2025, 99 https://doi.org/10.1038/s41578-025-00803-4
    14. Zhensheng Wang, Yan Li, Haizhu Wang, Dengkui Wang, Jiao Wang, Minghui Lv, Lulu Gan, Shucun Zhao. Luminescence characterisation of composite quantum confinement structures of In0.29Ga0.71As well-cluster composite. Photonics and Nanostructures - Fundamentals and Applications 2025, 63 , 101354. https://doi.org/10.1016/j.photonics.2025.101354
    15. Yangzhi Tan, Wai Yuen Fu, Hemin Lin, Dan Wu, Xiao Wei Sun, Hoi Wai Choi, Kai Wang. Low-threshold anisotropic polychromatic emission from monodisperse quantum dots. National Science Review 2025, 12 (2) https://doi.org/10.1093/nsr/nwae311
    16. Shadman Shahid, Muhammad Anisuzzaman Talukder. Beyond periodicity: tailoring Tamm resonances in plasmonic nanohole arrays for multimodal lasing. New Journal of Physics 2025, 27 (1) , 013014. https://doi.org/10.1088/1367-2630/adaa10
    17. Boya Fu, Xianyu Ao. Multiple high-Q resonances from mirror-coupled dielectric arrays. Journal of the Optical Society of America B 2024, 41 (11) , 2618. https://doi.org/10.1364/JOSAB.534296
    18. Yongqiang Zhang, Shurong Ding, Jingkun Yu, Laizhi Sui, Haoqiang Song, Yongsheng Hu, Geoffrey I.N. Waterhouse, Zhiyong Tang, Siyu Lu. Unveiling the photoluminescence mechanisms of carbon dots through tunable near-infrared dual-wavelength lasing. Matter 2024, 7 (10) , 3518-3536. https://doi.org/10.1016/j.matt.2024.06.011
    19. Fabio M. Fasanelli, Francisco Freire‐Fernández, Teri W. Odom. Symmetry‐Determined Lasing from Incommensurate Moiré Nanoparticle Lattices. Advanced Optical Materials 2024, 12 (24) https://doi.org/10.1002/adom.202400797
    20. Yang Zhang, Chao Wu, Haoyu Gu, Yingbin Song, Ruoxi Zhao, Dongjie Zhang, Zhimin Xie, Yuyan Liu, Zhongjun Cheng. An Active Strategy Based on Different Droplet Removal Modes on Polydimethylsiloxane Magnetic Microstructures. Small 2024, 20 (35) https://doi.org/10.1002/smll.202400466
    21. Zhigao Li, Feng Xu, Yue Gu, Yuying Wang, Zhijun Sun. Control of band-edge surface plasmons and their influences on photoluminescence of colloidal quantum dots on metal gratings. Journal of Luminescence 2024, 272 , 120612. https://doi.org/10.1016/j.jlumin.2024.120612
    22. Nelson de Gaay Fortman, Radoslaw Kolkowski, Debapriya Pal, Said R. K. Rodriguez, Peter Schall, A. Femius Koenderink. Spontaneous symmetry breaking in plasmon lattice lasers. Science Advances 2024, 10 (27) https://doi.org/10.1126/sciadv.adn2723
    23. Qiong Zhang, Minglin Zhao, Yang Li, Ang Bian, Ramy El-Bashar, Hamdy Abdelhamid, Salah S. A. Obayya, Mohamed Farhat O. Hameed, Jun Dai. Polarization dependent exciton-plasmon coupling in PEA 2 PbI 4 /Al and its application to perovskite solar cell. Optics Express 2024, 32 (14) , 25327. https://doi.org/10.1364/OE.529605
    24. Mahin Ahamed, Md. Nasim Afroj, Shadman Shahid, Muhammad Anisuzzaman Talukder. Wavelength selective beam-steering in a dual-mode multi-layer plasmonic laser. Optics Express 2024, 32 (11) , 19895. https://doi.org/10.1364/OE.518705
    25. Max J. H. Tan, Shreya K. Patel, Jessica Chiu, Zhaoyun Tiffany Zheng, Teri W. Odom. Liquid lasing from solutions of ligand-engineered semiconductor nanocrystals. The Journal of Chemical Physics 2024, 160 (15) https://doi.org/10.1063/5.0201731
    26. Yufeng Zhou, Guanyue Zhao, Yixuan Du, Xianyu Ao. Dual-mode lasing with vortex and linear polarization from a shallowly etched photonic crystal. Physical Review B 2024, 109 (7) https://doi.org/10.1103/PhysRevB.109.075134
    27. Ylli Conti, Nicolas Passarelli, Jose Mendoza-Carreño, Leonardo Scarabelli, Agustin Mihi. Colloidal Silver Nanoparticle Plasmonic Arrays for Versatile Lasing Architectures via Template‐Assisted Self‐Assembly. Advanced Optical Materials 2023, 11 (23) https://doi.org/10.1002/adom.202300983
    28. Xiaoyan Liu, Guozheng Nie, Kai Zhao, Huilin Li, Xin Su, Shiping Zhan. Self-routing dual color nanosource based on the co-excitation via coupling between nano cavities. Results in Physics 2023, 55 , 107197. https://doi.org/10.1016/j.rinp.2023.107197
    29. Yazhou Gu, Zhengmei Yang, Zhitong Li. Field Manipulations in On-Chip Micro/Nanoscale Lasers Based on Colloid Nanocrystals. Nanomaterials 2023, 13 (23) , 3069. https://doi.org/10.3390/nano13233069
    30. Haiyan Zheng, Yating Bai, Qiang Zhang, Ying Yu, Shaoding Liu. Multiple surface lattice resonances of overlapping nanoparticle arrays with different lattice spacing. Optics Express 2023, 31 (22) , 35937. https://doi.org/10.1364/OE.503748
    31. Chenyang Li, Xutao Zhang, Ruixuan Yi, Ziyuan Li, Fanlu Zhang, Kaihui Liu, Xuetao Gan, Lan Fu, Fajun Xiao, Jianlin Zhao, Hark Hoe Tan, Chennupati Jagadish. Low‐Threshold Multiwavelength Plasmonic Nanolasing in an “H”‐Shape Cavity. Laser & Photonics Reviews 2023, 17 (10) https://doi.org/10.1002/lpor.202300187
    32. Renjie Tang, Yilin Shi, Hongpeng Shang, Jianghong Wu, Hui Ma, Maoliang Wei, Ye Luo, Zequn Chen, Yuting Ye, Jialing Jian, Xiaorui Zheng, Hongtao Lin, Lan Li. Two-dimensional heterostructure quasi-BIC photonic crystal surface-emitting laser with low divergence. Nanophotonics 2023, 12 (16) , 3257-3265. https://doi.org/10.1515/nanoph-2023-0156
    33. Ru Wang, Chunfeng Wang, Yi Ma, Jianli Sun, Peiguang Yan, Chunxiang Xu, Caofeng Pan. Recent Progress in Low Threshold Plasmonic Nanolasers. Advanced Optical Materials 2023, 11 (15) https://doi.org/10.1002/adom.202203137
    34. Shuang Wen, Wu Zhou, Zhiyuan Tian, Yongli Yan, Yong Sheng Zhao. Photoisomerization-controlled wavelength-tunable plasmonic lasers. Chemical Communications 2023, 59 (49) , 7631-7634. https://doi.org/10.1039/D3CC01505J
    35. Jun Guan, Jingtian Hu, Yi Wang, Max J. H. Tan, George C. Schatz, Teri W. Odom. Far-field coupling between moiré photonic lattices. Nature Nanotechnology 2023, 18 (5) , 514-520. https://doi.org/10.1038/s41565-023-01320-7
    36. Haoxian Pan, Jiancai Xue, Zhihui Pan, Cuiyu Ou, Huafeng Dong, Ziming Meng, Jinyun Zhou. Morphology Engineering for High-Q Plasmonic Surface Lattice Resonances with Large Field Enhancement. Photonics 2023, 10 (5) , 570. https://doi.org/10.3390/photonics10050570
    37. Andrei Piryatinski, Maxim Sukharev. Degenerate parametric down-conversion facilitated by exciton-plasmon polariton states in a nonlinear plasmonic cavity. Nanotechnology 2023, 34 (17) , 175001. https://doi.org/10.1088/1361-6528/acb5a8
    38. Baodong Gai, Jingwei Guo, Yuqi Jin. Lattice relaxation effects on the collective resonance spectra of a finite dipole array. Physical Chemistry Chemical Physics 2023, 25 (14) , 10054-10062. https://doi.org/10.1039/D3CP00195D
    39. Qiong Zhang, Canran Zhang, Minglin Zhao, Yang Li, Jun Dai. Exciton-Plasmon Coupling Modulation between Organic-Inorganic Hybrid Bromide Lead Perovskites and Aluminum Nanoparticle Lattices. Journal of Luminescence 2023, 255 , 119608. https://doi.org/10.1016/j.jlumin.2022.119608
    40. Di Xing, Cheng‐Chieh Lin, Ya‐Lun Ho, Yang‐Chun Lee, Mu‐Hsin Chen, Bo‐Wei Lin, Chun‐Wei Chen, Jean‐Jacques Delaunay. Ligand Engineering and Recrystallization of Perovskite Quantum‐Dot Thin Film for Low‐Threshold Plasmonic Lattice Laser. Small 2022, 18 (44) https://doi.org/10.1002/smll.202204070
    41. Jingjing Wang, Shaofeng Zhang, Yunfei Li, Cuiyu Wu, Wenfei Zhang, Hailong Zhang, Zheng Xie, Shuyun Zhou. Ultra‐Broadband Random Laser and White‐Light Emissive Carbon Dots/Crystal In‐Situ Hybrids. Small 2022, 18 (41) https://doi.org/10.1002/smll.202203152
    42. Max J. H. Tan, Jeong‐Eun Park, Francisco Freire‐Fernández, Jun Guan, Xitlali G. Juarez, Teri W. Odom. Lasing Action from Quasi‐Propagating Modes. Advanced Materials 2022, 34 (34) https://doi.org/10.1002/adma.202203999
    43. Shahed-E-Zumrat, Shadman Shahid, Muhammad Anisuzzaman Talukder. Dual-wavelength hybrid Tamm plasmonic laser. Optics Express 2022, 30 (14) , 25234. https://doi.org/10.1364/OE.456249
    44. Jie Liu, Yujie Chen, Feng Jin, Jingxia Wang, Tomiki Ikeda, Lei Jiang. Single‐, Dual‐, Triple, and Quadruple‐Wavelength Surface‐Emitting Lasing in Blue‐Phase Liquid Crystal. Advanced Materials 2022, 34 (9) https://doi.org/10.1002/adma.202108330
    45. Shadman Shahid, Shahed-E- Zumrat, Muhammad Anisuzzaman Talukder. A merged lattice metal nanohole array based dual-mode plasmonic laser with an ultra-low threshold. Nanoscale Advances 2022, 4 (3) , 801-813. https://doi.org/10.1039/D1NA00402F
    46. Yunjie Shi, Yuming Dong, Degui Sun, Guangyuan Li. Significant Near-Field Enhancement over Large Volumes around Metal Nanorods via Strong Coupling of Surface Lattice Resonances and Fabry–Pérot Resonance. Materials 2022, 15 (4) , 1523. https://doi.org/10.3390/ma15041523
    47. Xinyu Fang, Lei Xiong, Jianping Shi, Hongwei Ding, Guangyuan Li. Narrow quadrupolar surface lattice resonances and band reversal in vertical metal-insulator-metal gratings. Journal of Physics D: Applied Physics 2022, 55 (2) , 025111. https://doi.org/10.1088/1361-6463/ac2b64
    48. Mikhail Yu. Gubin, Alexei V. Prokhorov, Valentyn S. Volkov, Andrey B. Evlyukhin. Controllable Excitation of Surface Plasmon Polaritons in Graphene‐Based Semiconductor Quantum Dot Waveguides. Annalen der Physik 2021, 533 (11) https://doi.org/10.1002/andp.202100139
    49. Wenjie Gao, Xinpeng Wang, Junhua Gao, Lingyan Liang, Hongliang Zhang, Yunjie Luo, Hongtao Cao. Microstructural and optical characterization of polymer nanotemplates with different morphologies. Vacuum 2021, 193 , 110512. https://doi.org/10.1016/j.vacuum.2021.110512
    50. Jhen‐Hong Yang, Zhen‐Ting Huang, Dmitrii N. Maksimov, Pavel S. Pankin, Ivan V. Timofeev, Kuo‐Bing Hong, Heng Li, Jia‐Wei Chen, Chu‐Yuan Hsu, Yi‐Yun Liu, Tien‐Chang Lu, Tzy‐Rong Lin, Chan‐Shan Yang, Kuo‐Ping Chen. Low‐Threshold Bound State in the Continuum Lasers in Hybrid Lattice Resonance Metasurfaces. Laser & Photonics Reviews 2021, 15 (10) https://doi.org/10.1002/lpor.202100118
    51. Zhen-Ting Huang, Chih-Wei Yin, Heng Li, Kuo-Bin Hong, Tien-Chang Lu. Hybridized plasmonic surface lattice resonance perovskite laser. 2021, 1-2. https://doi.org/10.23919/MOC52031.2021.9598111
    52. Zhen‐Ting Huang, Chih‐Wei Yin, Yu‐Heng Hong, Heng Li, Kuo‐Bin Hong, Tsung Sheng Kao, Min‐Hsiung Shih, Tien‐Chang Lu. Hybrid Plasmonic Surface Lattice Resonance Perovskite Lasers on Silver Nanoparticle Arrays. Advanced Optical Materials 2021, 9 (17) https://doi.org/10.1002/adom.202100299
    53. Mengyu Chen, Lihua Lu, Hui Yu, Cheng Li, Ni Zhao. Integration of Colloidal Quantum Dots with Photonic Structures for Optoelectronic and Optical Devices. Advanced Science 2021, 8 (18) https://doi.org/10.1002/advs.202101560
    54. Xuelian Liu, Xiang Xia, Le Yang, Jun Zhu, Miao Xu, Guobing Zhang, Guo Xia, Longzhen Qiu, Hongbo Lu. Physical properties of liquid crystals doped with CsPbBr 3 quantum dots. Liquid Crystals 2021, 48 (10) , 1357-1364. https://doi.org/10.1080/02678292.2020.1870009
    55. Mohammed Gamal, Ishac Kandas, Hussein Badran, Ali Hajjiah, Mufasila Muhammed, Nader Shehata. Decay Rates of Plasmonic Elliptical Nanostructures via Effective Medium Theory. Nanomaterials 2021, 11 (8) , 1928. https://doi.org/10.3390/nano11081928
    56. Di Xing, Cheng‐Chieh Lin, Phillip Won, Rong Xiang, Tzu‐Pei Chen, A. Syazwan A. Kamal, Yang‐Chun Lee, Ya‐Lun Ho, Shigeo Maruyama, Seung Hwan Ko, Chun‐Wei Chen, Jean‐Jacques Delaunay. Metallic Nanowire Coupled CsPbBr 3 Quantum Dots Plasmonic Nanolaser. Advanced Functional Materials 2021, 31 (28) https://doi.org/10.1002/adfm.202102375
    57. Jianjun Chen, Kexiu Rong. Nanophotonic devices and circuits based on colloidal quantum dots. Materials Chemistry Frontiers 2021, 5 (12) , 4502-4537. https://doi.org/10.1039/D0QM01118E
    58. Anton D. Utyushev, Vadim I. Zakomirnyi, Ilia L. Rasskazov. Collective lattice resonances: Plasmonics and beyond. Reviews in Physics 2021, 6 , 100051. https://doi.org/10.1016/j.revip.2021.100051
    59. Xinyu Fang, Lei Xiong, Jianping Shi, Guangyuan Li. High-Q quadrupolar plasmonic lattice resonances in horizontal metal–insulator–metal gratings. Optics Letters 2021, 46 (7) , 1546. https://doi.org/10.1364/OL.419364
    60. Huimin Shi, Jiangyong He, Huiyi Guo, Xiaoqi Liu, Zhi Wang, Yan-Ge Liu. Single-resonator, stable dual-longitudinal-mode optofluidic microcavity laser based on a hollow-core microstructured optical fiber. Optics Express 2021, 29 (7) , 10077. https://doi.org/10.1364/OE.418936
    61. Maxim Sukharev, Oleksiy Roslyak, Andrei Piryatinski. Second-harmonic generation in nonlinear plasmonic lattices enhanced by quantum emitter gain medium. The Journal of Chemical Physics 2021, 154 (8) https://doi.org/10.1063/5.0037453
    62. Aaro I. Väkeväinen, Antti J. Moilanen, Marek Nečada, Tommi K. Hakala, Konstantinos S. Daskalakis, Päivi Törmä. Sub-picosecond thermalization dynamics in condensation of strongly coupled lattice plasmons. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-16906-1
    63. Xinan Xu, Jinwu Dong, Shuai Chen, Xianyu Ao. Plasmonic crystal with independently tunable double resonances. Journal of Optics 2020, 22 (9) , 095007. https://doi.org/10.1088/2040-8986/ababe8
    64. Grégory Barbillon. Nanoplasmonics in High Pressure Environment. Photonics 2020, 7 (3) , 53. https://doi.org/10.3390/photonics7030053

    ACS Nano

    Cite this: ACS Nano 2020, 14, 5, 5223–5232
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.9b09698
    Published March 11, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    3478

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.