ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES

Demonstrating the Potential of Alkali Metal-Doped Cyclic C6O6Li6 Organometallics as Electrides and High-Performance NLO Materials

  • Sunaina Wajid
    Sunaina Wajid
    Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
  • Naveen Kosar
    Naveen Kosar
    Department of Chemistry, University of Management and Technology (UMT), C11, Johar Town Lahore 54770, Pakistan
    More by Naveen Kosar
  • Faizan Ullah
    Faizan Ullah
    Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
    More by Faizan Ullah
  • Mazhar Amjad Gilani
    Mazhar Amjad Gilani
    Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
  • Khurshid Ayub
    Khurshid Ayub
    Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
  • Shabbir Muhammad
    Shabbir Muhammad
    Department of Physics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
  • , and 
  • Tariq Mahmood*
    Tariq Mahmood
    Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
    *Email: [email protected]. Phone: +92-343-7628474.
Cite this: ACS Omega 2021, 6, 44, 29852–29861
Publication Date (Web):October 29, 2021
https://doi.org/10.1021/acsomega.1c04349
Copyright © 2021 The Authors. Published by American Chemical Society
ACS AuthorChoiceACS AuthorChoiceCC: Creative CommonsCC: Creative CommonsBY: Credit must be given to the creatorBY: Credit must be given to the creatorNC: Only noncommercial uses of the work are permittedNC: Only noncommercial uses of the work are permittedND: No derivatives or adaptations of the work are permittedND: No derivatives or adaptations of the work are permitted
Article Views
628
Altmetric
-
Citations
-
LEARN ABOUT THESE METRICS
PDF (2 MB)

Abstract

In this report, the geometric and electronic properties and static and dynamic hyperpolarizabilities of alkali metal-doped C6O6Li6 organometallics are analyzed via density functional theory methods. The thermal stability of the considered complexes is examined through interaction energy (Eint) calculations. Doping of alkali metal derives diffuse excess electrons, which generate the electride characteristics in the respective systems ([email protected], e@[email protected]6O6Li6, M = Li, Na, and K). The electronic density shifting is also supported by natural bond orbital charge analysis. These electrides are further investigated for their nonlinear optical (NLO) responses through static and dynamic hyperpolarizability analyses. The potassium-doped C6O6Li6 ([email protected]6O6Li6) complex has high values of second- (βtot = 2.9 × 105 au) and third-order NLO responses (γtot = 1.6 × 108 au) along with a high refractive index at 1064 nm, indicating that the NLO response of the corresponding complex increases at a higher wavelength. UV–vis absorption analysis is used to confirm the electronic excitations, which occur from the metal toward C6O6Li6. We assume that these newly designed organometallic electrides can be used in optical and optoelectronic fields for achieving better second-harmonic-generation-based NLO materials.

1. Introduction

ARTICLE SECTIONS
Jump To

Interest in designing high-performance nonlinear optical (NLO) materials is growing rapidly due to their widespread applications in optical computing, (1−3) optical communication, (4,5) optical switching, (6,7) optical logic functions, (8,9) dynamic image processing, (10,11) and many other optoelectronic fields. (12−17) Recently, a unique class of compounds known as electrides having isolated excess electrons has garnered great interest from the chemical society. (18−21) Due to this nontrivial electronic structure, they are easily polarizable and can serve as superior nonlinear optical materials. (19,22,23) Electrides due to their certain interesting properties such as the ultralow work function, relatively high catalytic activity, high electronic mobility, and optical and anisotropic properties have great potential for various applications. (24−28) In 1983, Dye and co-workers fabricated the first organic crystalline electride consisting of organic complexant cages in which alkali metals and electrons were trapped. (29) Since then, various organic and inorganic electrides have been reported in literature, and their novel electronic structures have been investigated both computationally and experimentally. (30−33)
Johnson and co-workers performed density functional theory (DFT) investigation for describing the organic electronic structure of eight organic electrides and confirmed the presence of localized interstitial electrons and hence defined their electride properties. (34) Kim et al. studied organic magnetic electrides in which they used maximally localized Wannier functions to identify the “cavity” electrons and the “empty atom” technique. (35) Saha et al. prepared synthetically viable neutral [Mg4(DippHL)2]2–·2[[email protected]]+ (CE = 18-crown-6 ether), containing four magnesium atoms and two Mg–Mg bonds, where the latter one act as an electride. (36) Dale and Johnson also used the DFT method for reproducing the known antiferromagnetic behavior of organic electrides. (24,37) Organic electrides are thermally less stable, so research is shifted toward the design and synthesis of thermally stable inorganic electrides. (24,38,39) Hosono and co-workers synthesized the first room-temperature-stable inorganic electride Ca6Al7O16 (C12A7:2e) via oxygen-reduction processes while starting from the mineral mayenite (12CaO·7Al2O3). (40) Since then, C12A7:2e has been used for ammonia synthesis (41) and as an electron-injection barrier material. (42) The discovery of C12A7:2e has stimulated many new efforts to search for other inorganic electrides. Zhang et al. designed 33 hitherto unexpected structure prototypes of inorganic electrides through computer-assisted methods, in which 19 are not in the known structure databases. (43) Boldyrev and co-workers studied electride-like features in the MgO crystal with the defect F-centers. Their calculations show that the corresponding electride-like cluster possesses a noticeably large first hyperpolarizability (βo = 5733 au). (44) Wang et al. designed bipyramidal CaN3Ca by using quantum mechanical methods. They observed that these inorganic aromatic Robin–Day-type superalkali electrides have high sensitivity for use in multistate nonlinear optical switches. (45) The design and synthesis of organic and inorganic electrides continues because of their applications in catalysis, metal-ion batteries, NLO materials, and so forth Recently, transition-metal-based organometallics have been reported to exhibit a better second-harmonic generation (SHG) response. (46−49)
From the literature, it has been revealed that introducing excess electrons into a molecule can remarkably enhance the first hyperpolarizability (βo). (50,51) The first hyperpolarizability (βo) is the key factor which determines the presence of the NLO response in materials. (52,53) Many studies have been conducted to investigate the first hyperpolarizability (βo) of different materials. (54−56) Computational work on the electride-type structure of Mg4O3 showed that Mg4O3 has pronounced NLO properties because it exhibited a large value of hyperpolarizability, that is, βo = 5733.46 au. (44) Meanwhile, the strategy of metal adsorption on isolated surfaces has been introduced in recent years to further enhance the NLO properties. In this regard, many computational chemists studied the effect of alkali metal doping on NLO responses. As we know, alkali metals have a low ionization energy, due to which they can easily donate electrons to the system and results in an increase of the electron number. Thus, the NLO response will be enhanced due to the increasing number of electrons. (57−59) For example, the doping of inorganic Al12N12 nanocages into alkali metals narrowed the highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) gap to a range of 0.49–0.71 eV. Furthermore, the value of hyperpolarizability (βo) is also increased, which resulted in a large NLO response. (60,61)
Various alkali metal-doped organic electrides have been reported in literature with a large NLO response. For example, the alkali-metal-doped organic complexes ([email protected] and Li+(calix4pyrrole)M) have been reported by Yu and co-workers as effective NLO materials because of their high values of hyperpolarizability (ranging from 10,969 to 35,934 au). (62) Similarly, alkali metal-doped organic fluorocarbon chains of H–(CF2–CH2)3–H with a high NLO response have been studied. Six different structures of Li atom-doped fluorocarbon complexes [Lin-H–(CF2–CH2)3–H (n= 1, 2] have been examined. Among them, the highest NLO response of 76,978 au was recorded. (63) Recently, another electride Li+(C20H15Li5)e modified by lithiation of the dodecahedron has been investigated computationally. In this electride, the C20 closed cage not only acts as a barrier for lithium ions but also has a negative inner electric field to stabilize the Li ion. Here, the excess electrons are released, which remain encapsulated in the Li5 cavity. Thus, Li+(C20H15Li5)e exhibits a large value of hyperpolarizability (1.4 × 104 au) with potential for application in NLO materials. (64) Mahmood and co-workers analyzed the organometallic C6O6 surface for the NLO response. They doped superalkalis on the C6O6 surface and achieved electride characteristics in their designed complexes with large hyperpolarizability. (65) C6O6Li6 is obtained from lithium-ion batteries, as a result of redox reactions of electrodes. Cyclohexane is the precursor of this compound in lithium-ion batteries. Pure C6O6Li6 and alkali metal-doped C6O6Li6 are used here to study their NLO properties. We expect that the doped organometallics might show high values of induced dipole moment, polarizability, hyperpolarizability, and a high NLO response. The reason might be the increase in electronic density diffusion from the dopant to the surface or vice versa. Among alkali metals, lithium, sodium, and potassium are taken into account for doping on the C6O6Li6 organometallic surface, and their electronic and NLO properties are comparatively studied.

2. Results and Discussion

ARTICLE SECTIONS
Jump To

2.1. Geometries, Thermodynamic Stabilities, and Electride Characteristics of Alkali Metal (Li, Na, and K)-Doped C6O6Li6 Organometallics

The energy minimum structure of C6O6Li6 is shown in Figure 1, which is optimized at the ωb97XD/6-31+G(d,p) level of theory. It has a planar and star-like geometry having C–C, C–O, and O–Li bond lengths of 1.42, 1.38, and 1.79 Å, respectively. The alkali metal (Li, Na, and K)-doped [email protected]6O6Li6 complexes are also optimized at the same level of theory as shown in Figure 1. After optimizing the metal-doped organometallics, the bond lengths observed are 1.41, 1.37, and 1.81 Å for C–C, C–O, and C–Li, respectively. These minute changes in bond lengths confirm that structural integrity of the organometallic complex remains preserved after doping. The interaction distance of the Li metal from the center of ring is 1.95 Å, whereas for Na and K these are 2.46 and 2.80 Å, respectively. A monotonic trend of an increasing interaction distance, with an increase in the atomic number, from the center of the ring is observed, and this is similar to the already reported results. (66) The interaction energy of the system reveals that the thermodynamic stability of any system that is highly exothermic in nature reflects a greater thermodynamic stability. (67) The interaction energies of these alkali metal-doped [email protected]6O6Li6 complexes are given in Table 1. The Eint. values of [email protected]6O6Li6, [email protected] C6O6Li6, and [email protected]6O6Li6 organometallics are −27.11, −19.30, and −19.46 kcal mol–1, respectively. Among the three considered organometallics, the most stable one is the [email protected]6O6Li6 complex due to the least interaction distance of Li with the complexant (vide supra) and hence a stronger interaction. The reason for the high thermal stability of Li-doped complexes is the low ionization potential and a smaller atomic size of the Li metal and thus is considered as the best adsorbing species on the C20 nanocage. The results are comparable to those of the work reported by Mahmood and co-workers on single and multiple alkali-doped C24 nanocages. (66)

Figure 1

Figure 1. Side and top views of the optimized geometry of pristine C6O6Li6 and alkali metal (Li, Na, and K)-doped C6O6Li6 organometallics calculated at the ωB97XD/6-31+G(d,p) level.

Table 1. Smallest M-Ring Distance (dM-ring, M = Li, Na, and K); NBO Charges on Carbon (Qc), NBO Charges on Oxygen (Qo), and NBO Charges on Lithium (QLi) of the C6O6Li6 Nanocluster; NBO Charges on the Metal Dopant (QM, M = Li, Na, and K); Interaction Energies (Eint); and Vertical Ionization Energies (IEv)
systemsdM-ring (Å)QC (|e|)Qo (|e|)QLi (|e|)QM (|e|)Eint kcal mol–1IEv eV
C6O6Li6 0.176–1.1220.947  4.39
C6O6Li6–Li1.950.133–1.0890.9510.033–27.112.82
C6O6Li6–Na2.460.147–1.0990.9520.007–19.303.03
C6O6Li6–K2.800.154–1.1060.9510.015–19.462.73
To investigate the electride characteristics and electronic properties of [email protected]6O6Li6 organometallic complexes, Frontier molecular orbital analysis is performed. The energies of HOMOs, LUMOs, and the corresponding HOMO–LUMO (H–Lgap) energy gaps of pure C6O6Li6 and alkali metal-doped organometallics are presented in Table 2. The calculated energy gap (H–Lgap) of pure C6O6Li6 is 4.64 eV. The decoration of alkali metals on the surface resulted in a decrease of the corresponding H–Lgap (2.77–3.12 eV). The energies of the HOMO, LUMO, and the corresponding H–Lgap of the [email protected]6O6Li6 complex are −2.73, 0.08, and 2.9 eV, respectively. For [email protected]6O6Li6, the energies of the HOMO, LUMO, and H–Lgap are −3.03, 0.09, and 3.12 eV, respectively. Similarly, in the case of the [email protected]6O6Li6 complex, they are −2.73, 0.04, and 2.77 eV, respectively. The decreased H–L gaps reflect the conducting behavior of all newly designed organometallics. (66) The decrease in H–Lgap is due to the formation of new HOMOs at high energy because of the presence of excess electrons. These excess electrons are introduced by electropositive alkali metals. (68,69)
Table 2. Dipole Moment (in Debye), Polarizability (αo), Static First Hyperpolarizability (βo), Vector-Based Static First Hyperpolarizability (βVec), Static Second Hyperpolarizability (γtot), Oscillator Strength (fo), Transition Energy (ΔE), the Variational Dipole Moment Z Component between the Ground and Crucial Excited States (Δμ), βZ under the Two-Level Model, the Energies of HOMO (EHOMO), the Energies LUMO (ELUMO), and the HOMO–LUMO Gaps (H–Lgap in eV)a
parametersC6O6Li6C6O6Li6–LiC6O6Li6–NaC6O6Li6–K
μo (au)0.015.966.347.84
αo (au)136608503558
*1βo (au)2.3 × 1028.7 × 1041.4 × 1052.9 × 105
*2βo (au)1.9 × 1024.7 × 1044.9 × 1042.5 × 105
βvec (au)4.138.4 × 1048.3 × 1032.7 × 105
βHRS (au)1.603.8 × 1042.9 × 1058.4 × 103
γtot (au)2.3 × 1059.7 × 1073.4 × 1071.6 × 108
fo 0.200.220.11
E (eV)2.391.451.591.02
Δμ (Debye) 0.010.115.35
βZ (au) 1.1 × 1034.3 × 1031.2 × 105
EHOMO (eV)–4.39–2.82–3.03–2.73
ELUMO (eV)0.240.070.090.04
H–Lgap (eV)4.632.893.122.77
a

*1βo (au) and *2βo (au) represent hyperpolarizability at the ωB97XD and LC-BLYP levels, respectively.

From the pictorial representation of isodensities of HOMOs of pure C6O6Li6 and alkali metal-doped organometallics (Figure 2), it is observed that the electronic density of HOMOs of the [email protected]6O6Li6 and [email protected]6O6Li6 organometallics mainly resides in empty space (does not shared by any atom), which proves their electride characteristics. (65,70,71) The electride features of these both organometallics ([email protected]6O6Li6 and [email protected]6O6Li6) originate due to the presence of an intramolecular push–pull mechanism. The isolated C6O6Li6 molecule first pulls the valence s-shell electrons of the alkali metal to form an anion and then the resulting anion pushes these electrons to produce isolated excess electrons. In these newly designed electrides, the electronic density is present mainly near the alkali metal, which reflects the more contribution of alkali metal as compared to C6O6Li6. An exceptional behavior is observed for the [email protected]6O6Li6 complex, wherein the electronic density mainly resides over K, reflecting the simple excess electron system instead of the electride character. (50,65)

Figure 2

Figure 2. Graphical representation of HOMO of pristine C6O6Li6 and alkali metal-doped C6O6Li6 organometallics (isovalue = 0.05).

As the electrides contain a loosely bound electronic density, not belonging to any atom, the electronic stability is very important, which is directly related to the vertical ionization energies. (43,72) Both electrides, [email protected]6O6Li6 and [email protected]6O6Li6, possess sufficiently high vertical ionization energies of 2.83 and 3.03 eV, respectively, which is indicative of their electronic stability.
Natural bond orbital (NBO) charge analysis revealed that the alkali metal is positively charged, whereas the negative charge on the complexant is increased. This indicates that charge is transferred from the metal to the C6O6Li6 ring. The average NBO charge on the Li atom (0.033 |e|) is comparatively higher than those of Na (0.007 |e|) and K (0.015 |e|) atoms. The reason for a higher charge on Li represents the ease in releasing electrons due to its smaller size and low ionization energy as observed by Biglari and co-workers. (73) In all these organometallics, alkali metals donate the electronic density to the C6O6Li6 surface due to their low ionization energies compared to other metal atoms and are considered as the source of excess electrons for the generation of electride properties in the respective complexes.

2.2. Static and Dynamic Hyperpolarizability Analyses of Newly Designed Electrides for NLO Applications

2.2.1. Static Hyperpolarizability Analysis

All parameters, which are responsible for the effective NLO response of the newly designed organometallics (electrides), are given in Table 2. The dipole moment of isolated C6O6Li6 is 0.0 D due to its symmetry. However, the doping of alkali metals results in charge transfer, thus breaking the symmetry, which in turn increases the dipole moment. The dipole moments of [email protected]6O6Li6, [email protected]6O6Li6, and [email protected]6O6Li6 organometallic complexes are 5.96 D, 6.34 D, and 7.84 D, respectively. The monotonic trend of the increase in the dipole moment reflects the more charge separation of charges with an internuclear distance, going from Li to K, which is indicative of their possible linear and nonlinear optical potential, similar to the work of Cherepanov and co-workers. (74) For investigation of the linear optical response, the mean static polarizabilities (αo) of newly designed electrides and the excess electron complex are investigated as well. αo of [email protected]6O6Li6 complexes is in the range of 503 to 608 au, which is very high as compared to that of the pure C6O6Li6 (136 au). The nonmonotonic trend of the increase in αo is observed as follows; [email protected]6O6Li6 > [email protected]6O6Li6 > [email protected]6O6Li6. The trend of polarization is governed by the charge transfer. More charge is transferred in the case of Li (0.033 |e|), followed by K (0.015 |e|), while less charge is shifted from the Na metal (0.007 |e|). Subsequently, this charge separation causes polarization changes in these organometallics.
Furthermore, the NLO response of alkali metal-doped [email protected]6O6Li6 (M = Li, Na, and K) complexes (electrides) is confirmed by computing their static first hyperpolarizabilities (βo) at the LC-BLYP and ωB97XD levels with a similar 6-311++G (2d,2p) basis set (Table 2). The βo value of the pristine system is relatively small (1.9 × 102 au at LC-BLYP and 2.3 × 102 au at ωB97XD). The βo values of the [email protected]6O6Li6 (M = Li, Na, and K) complexes (electrides) range from 4.7 × 104 to 2.5 × 105 au at the LC-BLYP level. At the ωB97XD level, the βo values of the [email protected]6O6Li6 (M = Li, Na, and K) complexes (electrides) range from 8.7 × 104 au to 2.9 × 105 au. Despite the small differences in their values with different functionals, the trend of hyperpolarizabilities is quite comparable. The similar values and the same trend of hyperpolarizability with both functionals are due to the same 1.00 fraction of nonlocal exchange. As a result of doping of alkali metals, a remarkable NLO response of [email protected]6O6Li6 electrides is observed and the static first hyperpolarizability (βo) is tremendously increased. βo values of the newly designed electrides and the excess electron system are in the range of 3.4 × 104 to 2.9 × 105 au. The highest βo is observed for [email protected]6O6Li6, that is, of 2.9 × 105 au, while the lowest value is computed for the [email protected]6O6Li6 electride. The results revealed the monotonic increasing trend of βo, and it increases from [email protected]6O6Li6 to [email protected]6O6Li6. This monotonic behavior of the designed electrides can be correlated with the vertical ionization potential, which is the major factor that affects the βo value. It increases with the decrease in vertical ionization energy. (75−77) The [email protected]6O6Li6 complex has the lowest vertical ionization energy (−2.73 eV) among all organometallics ([email protected]6O6Li6 = −2.73 eV and [email protected]6O6Li6 = −2.73 eV), and exhibits the largest nonlinear optical response (2.9 × 105 au). To gain further insights into factors affecting the βo values of the designed electrides, we calculated the βz values by employing a two-level model using Multiwfn software. (78) The βz values from the two-level model nicely correlate with our computed values of first hyperpolarizability (βo). From the two-level model, it can be observed that the crucial excitation energy is the dominant factor in determining the first hyperpolarizability values of the electrides. The crucial excitation energies of [email protected]6O6Li6, [email protected]6O6Li6, and [email protected]6O6Li6 are 1.45, 1.59, and 1.02 eV, respectively. Because (βo) is inversely proportional to the cube of crucial excitation energy, the βo value of [email protected]6O6Li6 is large, but the crucial excitation energy is low; on the other hand, the βo value of [email protected]6O6Li6 is small, while the crucial excitation energy is large. An exceptional behavior is observed for [email protected]6O6Li6, where the excitation energy is large (1.59 eV); however, βo for this complex is also high (1.4 × 105 au). Besides the excitation energy, βtot is directly proportional to Δμ. The trend in the values of Δμ is the same as that in the values of first static hyperpolarizability. It can be concluded that Δμ is a major factor, which influences the hyperpolarizability of the complexes (as shown in Table 2). The trend of increasing βo and Δμ is [email protected]6O6Li6o = 8.7 × 104 au and Δμ = 0.01 eV) < [email protected]6O6Li6o = 1.4 × 105 au and Δμ = 0.11 eV) < [email protected]6O6Li6o = 2.9 × 105 au and Δμ = 5.35 eV).
βvec values of alkali metal-doped [email protected]6O6Li6 (M = Li, Na, and K) electrides are calculated and provided in Table 2. βvec is the projection of the first hyperpolarizability along the dipole moment vector and is a more reliable factor for predicting the NLO properties. (79) Among all [email protected]6O6Li6 electrides, the dipole moment vector lies on the z-axis. The βvec values of [email protected]6O6Li6, [email protected]6O6Li6, and [email protected]6O6Li6 are 8.4 × 104, 8.3 × 103, and 2.7 × 105 au, respectively. It is observed that βvec values are very much comparable with the first hyperpolarizability (βo) results. The trend of increasing βvec value (2.7 × 105 au) for [email protected]6O6Li6 is almost similar to that of βo (2.9 × 105 au).
Hyper-Rayleigh scattering (HRS) is a very useful experimental technique for the direct measurement of the static hyperpolarizability values. (75,80) βHRS values along with the depolarization ratio (DR) of all newly designed electrides and the diffuse excess electron system are calculated, and the values are given in Table 2. The observed trend of βHRS values is as follows; [email protected]6O6Li6 (2.9 × 105 au) > [email protected]6O6Li6 (3.8 × 104 au) > [email protected]6O6Li6 (8.4 × 103 au). The DR values of pure and alkali metal-doped organometallics, that is, [email protected]6O6Li6, [email protected]6O6Li6, and [email protected]6O6Li6, are 1.5, 3.1, and 3.4, respectively. βHRS depends on the polarization angle, and it is observed that pristine C6O6Li6 and the corresponding alkali metal-doped organometallics ([email protected]6O6Li6 and [email protected]6O6Li6) are octupolar molecules with an octupolar contribution of Φ (βJ = 3) of 89.6, 58.8, and 56.6%, respectively.

2.2.2. Frequency-Dependent (Dynamic) Hyperpolarizability Analysis

For explaining the high accuracy of the results and gaining insights for the experimental utility, we computed the frequency-dependent first hyperpolarizability coefficients that include electro-optic Pockel’s effect (EOPE) with β(−ω;ω,0) and SHG of first hyperpolarizability with β(−2ω;ω,ω) at the routinely used laser wavelengths of 532 and 1064 nm, respectively. The detailed values are given in Table 3. The dynamic first hyperpolarizability parameters are always dependent on wavelengths. At 532 nm, the values of EOPE range from 2.6 × 104 to 7.3 × 105, and at 1064 nm of wavelength these are from 4.3 × 105 to 5.8 × 105 au. Both electrides, [email protected]6O6Li6 and [email protected]6O6Li6, have their maximum EOPE values at 532 and 1064 nm, respectively, indicating the resonant enhancement of these at respective wavelengths, while for [email protected]6O6Li6 the resonant enhancement occurs at 1064 nm (4.3 × 105 au). Similarly, β(−2ω;ω,ω) values reflecting the SHG response range from 1.7 × 104 to 6.5 × 105 au at a wavelength of 532 nm and range from 2.7 × 105 to 3.8 × 105 au at a wavelength of 1064 nm. At 532 nm, the highest SHG value has been computed for the [email protected]6O6Li6 complex, while both [email protected]6O6Li6 and [email protected]6O6Li6 organometallics have shown the strong SHG response at 1064 nm.
Table 3. Frequency-Dependent First Hyperpolarizability (β in au), Second Hyperpolarizability (γ in au), and the Nonlinear Refractive Index (n2 in cm2 W–1) of Designed Electrides (Complexes) [email protected]6O6Li6 (M = Li, Na, and K)
parametersfrequency ωC6O6Li6C6O6Li6–LiC6O6Li6–NaC6O6Li6–K
β(−ω,ω,0) (au)0.0004.1 × 1008.4 × 1048.9 × 1032.7 × 105
 0.0428 (1064 nm)6.7 × 1005.9 × 1054.3 × 1054.3 × 105
 0.856 (532 nm)1.0 × 1033.5 × 1057.3 × 1052.6 × 104
β(−2ω,ω,ω) (au)0.0004.1 × 1008.4 × 1048.9 × 1032.7 × 105
 0.0428 (1064 nm)7.4 × 1013.0 × 1053.8 × 1052.7 × 105
 0.0856 (532 nm)3.5 × 1039.3 × 1046.5 × 1051.7 × 104
γ(−ω;ω,0,0) (au)0.0002.3 × 1059.8 × 1073.3 × 1071.6 × 108
 0.0428 (1064 nm)3.7 × 1052.0 × 1081.4 × 1091.4 × 108
 0.0856 (532 nm)5.2 × 1081.5 × 10111.3 × 1093.5 × 106
γ(−2ω;ω,0,0) (au)0.0002.3 × 1059.8 × 1073.3 × 1071.6 × 108
 0.0428 (1064 nm)1.5 × 1071.5 × 1093.8 × 1084.7 × 107
 0.0856 (532 nm)5.0 × 1075.9 × 10101.2 × 1095.4 × 106
γDFWM (−ω;ω,−ω,ω) (au)0.0428 (1064 nm)3.4 × 1073.6 × 1091.5 × 10102.4 × 107
 0.0856 (532 nm)6.1 × 10102.7 × 10136.4 × 10104.85 × 104
n2 (cm2 W–1)0.0428 (1064 nm)2.8 × 10–153.0 × 10–1312.9 × 10–132.0 × 10–16
 0.0856 (532 nm)5.1 × 10–122.2 × 10–125.3 × 10–134.0 × 10–19

2.2.3. Third-Order Nonlinear Optical Response

The third-order nonlinear optical response of the respective complexes was determined, and the dc-Kerr effect γ(−ω;ω,0,0), the electric field-induced SHG(ESHG), and the quadratic nonlinear refractive index of organometallics at 532 and 1064 nm were computed. The results emphasize that C6O6Li6 and [email protected]6O6Li6 have the highest responses for the dc-Kerr effect γ(−ω;ω,0,0) at 532 nm; on the other hand, [email protected]6O6Li6 and [email protected]6O6Li6 have their highest values at 1064 nm. It is reflected from the results that all organometallics except the K-doped complex have their highest values of the ESHG response at 532 nm. The remarkably high ESHG and the dc-Kerr effect γ(−ω;ω,0,0) values of C6O6Li6–K at high wavelengths indicate that the response of this organometallic complex can be enhanced by increasing the wavelength of incident light.
The four degenerate wave mixing values are calculated by using the second hyperpolarizability coefficients, then the nonlinear quadratic refractive index is calculated from γDWFM by using the equation shown below(1)
The results of n2 are shown in Table 3. The quadratic nonlinear refractive index values of all doped organometallics are high at 532 nm, that is, 2.2 × 10–12 au ([email protected]6O6Li6) and 5.3 × 10–13 au ([email protected]6O6Li6), except for the potassium doped complex ([email protected]6O6Li6 = 2.0 × 10–16 au), which has a high value of quadratic nonlinear refractive index at 1064 nm. Among all these organometallics, the highest response has been observed for [email protected]6O6Li6 at 532 nm, followed by a similar high response for [email protected]6O6Li6 at a higher wavelength (1064 nm). Thus, we can predict that any variation in wavelength affects the response of a complex.

2.3. TD-DFT Calculations

NLO materials having high first hyperpolarizability are used in SHG for doubling of the frequency. (67,81) Thus, these NLO materials (those that have high first hyperpolarizability) must have sufficient transparency in the laser beam UV region. For this purpose, UV–vis absorption analysis of the pure C6O6Li6 surface and doped organometallics was performed. Absorption spectroscopy calculations performed using the TD-DFT method also provides information about the absorption maxima (wavelength) of these NLO materials. None of these organometallics has shown absorption in the UV region and some part of the visible region (below 500 nm). Only the pure C6O6Li6 surface (λmax = 519 nm) shows absorption in these regions, as shown in Figure 3. After doping of the pure surface, the resultant-doped organometallics show a red shift to a large extent. The highest λmax value (1658 nm) is obtained for [email protected]6O6Li6, followed by [email protected]6O6Li6max = 1438 nm), and the lowest λmax value (1188 nm) is observed for [email protected]6O6Li6. A monotonic increase of the absorption maxima (wavelength) occurs with increasing atomic number of alkali metals in the dopant except for Na-doped organometallics. As the atomic size of K increases, more easily it can lose an electron to the surrounding species because the ionization potential is decreased. The Li atom has a small atomic size, so it can also shift the electronic density toward the surface. The obtained UV–vis results justify that the electronic excitation takes place in these organometallics. The HOMO–LUMO gaps are inversely proportional to the λmax values, which also clarified these results. The UV–vis spectra clearly illustrate the transparency of doped organometallics, which ought to be practically used for routine laser works. The proposed organometallics can be used as efficient NLO materials in the deep-UV region because of their full transparency in the deep-UV region (≤200 nm).

Figure 3

Figure 3. UV–vis spectra of pure and metal-doped [email protected]6O6Li6 (M = Li, Na, and K) organometallics.

3. Conclusions

ARTICLE SECTIONS
Jump To

In this study, we investigated the geometric, electronic, and optical properties and the NLO response of pure C6O6Li6 and alkali metal-doped C6O6Li6 organometallics. Thermal stabilities of the pure and doped organometallics are analyzed using interaction energy (Eint) calculations. Their electronic and FMO properties are also studied. The results illustrate that doping of a system with alkali metals increases the electronic density and enhances the electride character in the system via generating an excess electron system ([email protected], e@[email protected]6O6Li6, M = Li, Na, and K). The electronic density shifting is also supported by NBO charge analysis. These electrides are then investigated further for high NLO responses. The results revealed that the potassium-doped C6O6Li6 ([email protected]6O6Li6) complex has high values of first hyperpolarizability (βo = 2.9 × 105 au) and a third-order NLO response (γtot 1.6 × 108 au), along with a high refractive index at 1064 nm, implying that the NLO response will be increased by increasing the wavelength. From these results, it is believed that these newly designed organometallics can be used in optical and optoelectronic fields for achieving better SHGs based on their electride properties.

4. Computational Methodology

ARTICLE SECTIONS
Jump To

All calculations are performed using Gaussian 09, (82) and the results are visualized by using GaussView 5.0. (83) The geometries of pristine C6O6Li6 and alkali metal (Li, Na, and K)-doped C6O6Li6 complexes are optimized at the ωB97XD/6-31+G(d,p) level of theory. (84−86) Frequency calculations are also performed to confirm that the optimized structures correspond to true minima on the potential energy surface (absence of imaginary frequency). Interaction energies for the alkali metal-doped C6O6Li6 organometallic complexes are calculated as follows(2)
All other parameters, that is, electronic energy, interaction energy, vertical ionization energy, NBO charges, and HOMO–LUMO gaps have been calculated using the same ωB97XD functional with the 6-31+G(d,p) basis set.
The vertical ionization energy is calculated by using the formula(3)where E(X) is the energy of the neutral complex and E(X+) is the energy of the respective cation.
Parameters used for investigation of the linear optical response and nonlinear optical response include the polarizability (αo), first hyperpolarizability (βo), and second hyperpolarizability (γ). These parameters are calculated by using the LC-BLYP/6-311++G (2d,2p) and ωB97XD/6-311++G (2d,2p) levels of theory. LC-BLYP and ωb97XD are long-range-corrected functionals and have the correct 1.00 fraction of nonlocal exchange. They give more accurate results for noncovalent interactions (30,87,88) and optical and nonlinear optical properties. (71) The literature reveals several studies, which illustrate the reliability and validity of these functionals for the calculation of polarizability and hyperpolarizabilities. (89−93) Pople’s 6-311++G (2d,2p) basis set is a suitable basis set with these functionals for the calculations of nonlinear optical properties and used in a number of recent works on nonlinear optical materials. (94) Therefore, it is also selected in this study. The static polarizability (αo), static first hyperpolarizability (βo), and static second hyperpolarizability (γtot) are calculated through eqs 4, 5, and 7, respectively. Furthermore, frequency-dependent NLO responses are also calculated at wavelengths 532 and 1064 nm to obtain the results, which are predominantly required by the experimentalists. These frequency-dependent NLO responses are calculated in terms of the EOPE β(−ω,ω,0), electro-optical Kerr effect (EOKO) γ(−ω;ω,0,0), and SHG, that is, β(−2ω,ω,ω) and γ(−2ω,ω,ω,0).(4)(5)Whereas eq 4 is derived as
The frequency-dependent first-order hyperpolarizability is estimated as follows(6)
Static second hyperpolarizability (γ) can be calculated from the following equation(7)
The frequency-dependent second-order hyperpolarizability is estimated as follows(8)where
βvec is the projection of first hyperpolarizability on the dipole moment vector, which is as follows(9)Here, μi is the representation of the dipole moment in the direction of i, while |μ| is the total dipole moment of complexes, where βi = βiii (−2ω,ω,ω) + βijj (−2ω,ω,ω) + βikk (−2ω,ω,ω) for SHG and βi = βiii (−ω,ω,0) + βijj (−ω,ω,0) + βikk (−ω,ω,0) for EOPE.
HRS is calculated as follows(10)
The two-level model is also applied to investigate the factors that affect the hyperpolarizability.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Author
  • Authors
    • Sunaina Wajid - Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
    • Naveen Kosar - Department of Chemistry, University of Management and Technology (UMT), C11, Johar Town Lahore 54770, Pakistan
    • Faizan Ullah - Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
    • Mazhar Amjad Gilani - Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
    • Khurshid Ayub - Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, PakistanOrcidhttps://orcid.org/0000-0003-0990-1860
    • Shabbir Muhammad - Department of Physics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
  • Author Contributions

    S.W. and N.K. have equal contribution for the first authorship

  • Notes
    The authors declare no competing financial interest.

Acknowledgments

ARTICLE SECTIONS
Jump To

The author from the King Khalid University of Saudi Arabia extends his appreciation to the Deanship of Scientific Research in King Khalid University for supporting the work through project RGP.1/168/42. This study was also financially supported by the Higher Education Commission of Pakistan under a HEC indigenous fellowship to F.U. (315-19560-2PS3-146) and NRPU projects 3013 and 5309.

References

ARTICLE SECTIONS
Jump To

This article references 94 other publications.

  1. 1
    Cruzeiro, E. Z.; Tiranov, A.; Lavoie, J.; Ferrier, A.; Goldner, P.; Gisin, N.; Afzelius, M. Efficient Optical Pumping Using Hyperfine Levels in 145 Nd3+ :Y2SiO5 and Its Application to Optical Storage. New J. Phys. 2018, 20, 053013,  DOI: 10.1088/1367-2630/aabe3b
  2. 2
    Mande, P.; Mathew, E.; Chitrambalam, S.; Joe, I. H.; Sekar, N. NLO Properties of 1, 4-Naphthoquinone, Juglone and Lawsone by DFT and Z-Scan Technique – A Detailed Study. Opt. Mater. 2017, 72, 549558,  DOI: 10.1016/j.optmat.2017.06.058
  3. 3
    Demkov, A. A.; Bajaj, C.; Ekerdt, J. G.; Palmstrøm, C. J.; Ben Yoo, S. J. Materials for Emergent Silicon-Integrated Optical Computing. J. Appl. Phys. 2021, 130, 070907,  DOI: 10.1063/5.0056441
  4. 4
    Karothu, D. P.; Dushaq, G.; Ahmed, E.; Catalano, L.; Polavaram, S.; Ferreira, R.; Li, L.; Mohamed, S.; Rasras, M.; Naumov, P. Mechanically Robust Amino Acid Crystals as Fiber-Optic Transducers and Wide Bandpass Filters for Optical Communication in the near-Infrared. Nat. Commun. 2021, 12, 1326,  DOI: 10.1038/s41467-021-21324-y
  5. 5
    Wada, O. Femtosecond All-Optical Devices for Ultrafast Communication and Signal Processing. New J. Phys. 2004, 6, 183,  DOI: 10.1088/1367-2630/6/1/183
  6. 6
    Hu, X.; Jiang, P.; Ding, C.; Yang, H.; Gong, Q. Picosecond and Low-Power All-Optical Switching Based on an Organic Photonic-Bandgap Microcavity. Nat. Photonics 2008, 2, 185189,  DOI: 10.1038/nphoton.2007.299
  7. 7
    Hu, Y.; Tong, M.; Cheng, X. a.; Zhang, J.; Hao, H.; You, J.; Zheng, X.; Jiang, T. Bi2Se3 -Functionalized Metasurfaces for Ultrafast All-Optical Switching and Efficient Modulation of Terahertz Waves. ACS Photonics 2021, 8, 771780,  DOI: 10.1021/acsphotonics.0c01194
  8. 8
    Janjua, M. R. S. A. Structure–Property Relationship and Systematic Study of a Series of Terpyridine Based Nonlinear Optical Compounds: DFT Computation of Interactive Design. J. Cluster Sci. 2019, 30, 4551,  DOI: 10.1007/s10876-018-1458-3
  9. 9
    Singh, L.; Zhu, G.; Mohan Kumar, G.; Revathi, D.; Pareek, P. Numerical Simulation of All-Optical Logic Functions at Micrometer Scale by Using Plasmonic Metal-Insulator-Metal (MIM) Waveguides. Opt. Laser Technol. 2021, 135, 106697,  DOI: 10.1016/j.optlastec.2020.106697
  10. 10
    Sathiya, S.; Senthilkumar, M.; Ramachandra Raja, C. Crystal Growth, Hirshfeld Surface Analysis, DFT Study and Third Order NLO Studies of Thiourea 4 Dimethyl Aminobenzaldehyde. J. Mol. Struct. 2019, 1180, 8188,  DOI: 10.1016/j.molstruc.2018.11.067
  11. 11
    Wang, N.; Zhang, Y.; Zhang, L. Dynamic Selection Network for Image Inpainting. IEEE Trans. Image Process. 2021, 30, 1784,  DOI: 10.1109/TIP.2020.3048629
  12. 12
    Sreedharan, R.; Ravi, S.; Raghi, K. R.; Kumar, T. K. M.; Naseema, K. Growth, Linear- Nonlinear Optical Studies and Quantum Chemistry Formalism on an Organic NLO Crystal for Opto-Electronic Applications: Experimental and Theoretical Approach. SN Appl. Sci. 2020, 2, 578,  DOI: 10.1007/s42452-020-2360-9
  13. 13
    Dong, J.-X.; Zhang, H.-L. Azulene-Based Organic Functional Molecules for Optoelectronics. Chin. Chem. Lett. 2016, 27, 10971104,  DOI: 10.1016/j.cclet.2016.05.005
  14. 14
    Islam, N.; Pandith, A. H. Optoelectronic and Nonlinear Optical Properties of Triarylamine Helicenes: A DFT Study. J. Mol. Model. 2014, 20, 2535,  DOI: 10.1007/s00894-014-2535-7
  15. 15
    Hazim, A.; Abduljalil, H. M.; Hashim, A. First Principles Calculations of Electronic, Structural and Optical Properties of (PMMA–ZrO2–Au) and (PMMA–Al2O3–Au) Nanocomposites for Optoelectronics Applications. Trans. Electr. Electron. Mater. 2021, 22, 185203,  DOI: 10.1007/s42341-020-00224-w
  16. 16
    Lay-Ekuakille, A.; Massaro, A.; Singh, S. P.; Jablonski, I.; Rahman, M. Z. U.; Spano, F. Optoelectronic and Nanosensors Detection Systems: A Review. IEEE Sens. J. 2021, 21, 1264512653,  DOI: 10.1109/JSEN.2021.3055750
  17. 17
    Ghosh, D.; Sarkar, K.; Devi, P.; Kim, K.-H.; Kumar, P. Current and Future Perspectives of Carbon and Graphene Quantum Dots: From Synthesis to Strategy for Building Optoelectronic and Energy Devices. Renewable Sustainable Energy Rev. 2021, 135, 110391,  DOI: 10.1016/j.rser.2020.110391
  18. 18
    Dale, S. G.; Johnson, E. R. Theoretical Descriptors of Electrides. J. Phys. Chem. A 2018, 122, 93719391,  DOI: 10.1021/acs.jpca.8b08548
  19. 19
    Hosono, H.; Kitano, M. Advances in Materials and Applications of Inorganic Electrides. Chem. Rev. 2021, 121, 31213185,  DOI: 10.1021/acs.chemrev.0c01071
  20. 20
    Nie, S.; Bernevig, B. A.; Wang, Z. Sixfold Excitations in Electrides. Phys. Rev. Res. 2021, 3, L012028,  DOI: 10.1103/PhysRevResearch.3.L012028
  21. 21
    Yang, X.; Parrish, K.; Li, Y.-L.; Sa, B.; Zhan, H.; Zhu, Q. Switchable Two-Dimensional Electrides: A First-Principles Study. Phys. Rev. B 2021, 103, 125103,  DOI: 10.1103/PhysRevB.103.125103
  22. 22
    Garcia-Borràs, M.; Solà, M.; Luis, J. M.; Kirtman, B. Electronic and Vibrational Nonlinear Optical Properties of Five Representative Electrides. J. Chem. Theory Comput. 2012, 8, 26882697,  DOI: 10.1021/ct300433q
  23. 23
    Ahsan, A.; Khan, S.; Gilani, M. A.; Ayub, K. Endohedral Metallofullerene Electrides of Ca12O12 with Remarkable Nonlinear Optical Response. RSC Adv. 2021, 11, 15691580,  DOI: 10.1039/D0RA08571E
  24. 24
    Zhang, X.; Yang, G. Recent Advances and Applications of Inorganic Electrides. J. Phys. Chem. Lett. 2020, 11, 38413852,  DOI: 10.1021/acs.jpclett.0c00671
  25. 25
    Bai, X.; Zha, X.-H.; Qiao, Y.; Qiu, N.; Zhang, Y.; Luo, K.; He, J.; Li, Q.; Huang, Q.; Francisco, J. S.; Lin, C.-T.; Du, S. Two-Dimensional Semiconducting Lu2CT2 (T = F, OH) MXene with Low Work Function and High Carrier Mobility. Nanoscale 2020, 12, 37953802,  DOI: 10.1039/C9NR10806H
  26. 26
    Cao, Y.-D.; Sun, Y.-H.; Shi, S.-F.; Wang, R.-M. Anisotropy of Two-Dimensional ReS2 and Advances in Its Device Application. Rare Met. 2021, 40, 33573374,  DOI: 10.1007/s12598-021-01781-6
  27. 27
    Weber, S.; Schäfer, S.; Saccoccio, M.; Seidel, K.; Kohlmann, H.; Gläser, R.; Schunk, S. A. Mayenite-Based Electride C12A7e- : An Innovative Synthetic Method via Plasma Arc Melting. Mater. Chem. Front. 2021, 5, 13011314,  DOI: 10.1039/D0QM00688B
  28. 28
    Nie, S.; Qian, Y.; Gao, J.; Fang, Z.; Weng, H.; Wang, Z. Application of Topological Quantum Chemistry in Electrides. Phys. Rev. B 2021, 103, 205133,  DOI: 10.1103/PhysRevB.103.205133
  29. 29
    Ellaboudy, A.; Dye, J. L.; Smith, P. B. Cesium 18-Crown-6 Compounds. A Crystalline Ceside and a Crystalline Electride. J. Am. Chem. Soc. 1983, 105, 64906491,  DOI: 10.1021/ja00359a022
  30. 30
    Khaliq, F.; Mahmood, T.; Ayub, K.; Tabassum, S.; Gilani, M. A. Exploring Li4N and Li4O Superalkalis as Efficient Dopants for the Al12N12 Nanocage to Design High Performance Nonlinear Optical Materials with High Thermodynamic Stability. Polyhedron 2021, 200, 115145,  DOI: 10.1016/j.poly.2021.115145
  31. 31
    Hu, Q.; Tan, R.; Li, J.; Song, W. Highly Conductive C12A7:E- Electride Nanoparticles as an Electron Donor Type Promoter to P25 for Enhancing Photocatalytic Hydrogen Evolution. J. Phys. Chem. Solids 2021, 149, 109810,  DOI: 10.1016/j.jpcs.2020.109810
  32. 32
    Das, P.; Chattaraj, P. K. Comparison Between Electride Characteristics of Li3@B40 and [email protected]. Front. Chem. 2021, 9. DOI:  DOI: 10.3389/fchem.2021.638581 .
  33. 33
    Xiao, Y.; Zhang, X.; Li, R. [Ca24Al28O64 ]4+(4e ) Are Directly and Quickly Synthesized by Self-reduction of C12H10Ca3O14 + Al2O3 without Any Reducing Agent. J. Am. Ceram. Soc. 2021, 104, 16411648,  DOI: 10.1111/jace.17558
  34. 34
    Dale, S. G.; Otero-de-la-Roza, A.; Johnson, E. R. Density-Functional Description of Electrides. Phys. Chem. Chem. Phys. 2014, 16, 1458414593,  DOI: 10.1039/C3CP55533J
  35. 35
    Kim, T. J.; Yoon, H.; Han, M. J. Calculating Magnetic Interactions in Organic Electrides. Phys. Rev. B 2018, 97, 214431,  DOI: 10.1103/PhysRevB.97.214431
  36. 36
    Saha, R.; Das, P.; Chattaraj, P. K. A Complex Containing Four Magnesium Atoms and Two Mg-Mg Bonds Behaving as an Electride. Eur. J. Inorg. Chem. 2019, 41054111,  DOI: 10.1002/ejic.201900813
  37. 37
    Dale, S. G.; Johnson, E. R. The Explicit Examination of the Magnetic States of Electrides. Phys. Chem. Chem. Phys. 2016, 18, 2732627335,  DOI: 10.1039/C6CP05345A
  38. 38
    Khan, K.; Tareen, A. k.; Khan, U.; Nairan, A.; Elshahat, S.; Muhammad, N.; Saeed, M.; Yadav, A.; Bibbò, L.; Ouyang, Z. Single Step Synthesis of Highly Conductive Room-Temperature Stable Cation-Substituted Mayenite Electride Target and Thin Film. Sci. Rep. 2019, 9, 4967,  DOI: 10.1038/s41598-019-41512-7
  39. 39
    Lee, S. Y.; Hwang, J.-Y.; Park, J.; Nandadasa, C. N.; Kim, Y.; Bang, J.; Lee, K.; Lee, K. H.; Zhang, Y.; Ma, Y.; Hosono, H.; Lee, Y. H.; Kim, S.-G.; Kim, S. W. Ferromagnetic Quasi-Atomic Electrons in Two-Dimensional Electride. Nat. Commun. 2020, 11, 1526,  DOI: 10.1038/s41467-020-15253-5
  40. 40
    Matsuishi, S.; Toda, Y.; Miyakawa, M.; Hayashi, K.; Kamiya, T.; Hirano, M.; Tanaka, I.; Hosono, H. High-Density Electron Anions in a Nanoporous Single Crystal: [Ca24Al28O64]4+(4e-). Science 2003, 301, 626629,  DOI: 10.1126/science.1083842
  41. 41
    Hayashi, F.; Tomota, Y.; Kitano, M.; Toda, Y.; Yokoyama, T.; Hosono, H. NH2– Dianion Entrapped in a Nanoporous 12CaO·7Al2O3 Crystal by Ammonothermal Treatment: Reaction Pathways, Dynamics, and Chemical Stability. J. Am. Chem. Soc. 2014, 136, 1169811706,  DOI: 10.1021/ja504185m
  42. 42
    Hosono, H.; Kim, J.; Toda, Y.; Kamiya, T.; Watanabe, S. Transparent Amorphous Oxide Semiconductors for Organic Electronics: Application to Inverted OLEDs. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 233238,  DOI: 10.1073/pnas.1617186114
  43. 43
    Zhang, Y.; Wang, H.; Wang, Y.; Zhang, L.; Ma, Y. Computer-Assisted Inverse Design of Inorganic Electrides. Phys. Rev. X 2017, 7, 011017,  DOI: 10.1103/PhysRevX.7.011017
  44. 44
    Kulichenko, M.; Fedik, N.; Bozhenko, K. V.; Boldyrev, A. I. Inorganic Molecular Electride Mg4O3 : Structure, Bonding, and Nonlinear Optical Properties. Chem.─Eur. J. 2019, 25, 53115315,  DOI: 10.1002/chem.201806372
  45. 45
    Wang, Y.-F.; Qin, T.; Tang, J.-M.; Liu, Y.-J.; Xie, M.; Li, J.; Huang, J.; Li, Z.-R. Novel inorganic aromatic mixed-valent superalkali electride CaN3Ca: an alkaline-earth-based high-sensitivity multi-state nonlinear optical molecular switch. Phys. Chem. Chem. Phys. 2020, 22, 59855994,  DOI: 10.1039/C9CP06848A
  46. 46
    Liyanage, P. S.; de Silva, R. M.; de Silva, K. M. N. Nonlinear Optical (NLO) Properties of Novel Organometallic Complexes: High Accuracy Density Functional Theory (DFT) Calculations. J. Mol. Struct.: THEOCHEM 2003, 639, 195201,  DOI: 10.1016/j.theochem.2003.08.009
  47. 47
    de Silva, I. C.; de Silva, R. M.; Nalin de Silva, K. M. Investigations of Nonlinear Optical (NLO) Properties of Fe, Ru and Os Organometallic Complexes Using High Accuracy Density Functional Theory (DFT) Calculations. J. Mol. Struct.: THEOCHEM 2005, 728, 141145,  DOI: 10.1016/j.theochem.2005.02.092
  48. 48
    Dairi, M.; Elhorri, A. M.; Tchouar, N.; Boumedel, H.; Azizi, S. Theoretical Study by DFT of Organometallic Complexes Based on Metallocenes Active in NLO. J. Mol. Model. 2021, 27, 179,  DOI: 10.1007/s00894-021-04797-y
  49. 49
    Taboukhat, S.; Kichou, N.; Fillaut, J.-L.; Alévêque, O.; Waszkowska, K.; Zawadzka, A.; El-Ghayoury, A.; Migalska-Zalas, A.; Sahraoui, B. Transition Metals Induce Control of Enhanced NLO Properties of Functionalized Organometallic Complexes under Laser Modulations. Sci. Rep. 2020, 10, 15292,  DOI: 10.1038/s41598-020-71769-2
  50. 50
    Zhong, R.-L.; Xu, H.-L.; Li, Z.-R.; Su, Z.-M. Role of Excess Electrons in Nonlinear Optical Response. J. Phys. Chem. Lett. 2015, 6, 612619,  DOI: 10.1021/jz502588x
  51. 51
    Irshad, S.; Ullah, F.; Khan, S.; Ludwig, R.; Mahmood, T.; Ayub, K. First Row Transition Metals Decorated Boron Phosphide Nanoclusters as Nonlinear Optical Materials with High Thermodynamic Stability and Enhanced Electronic Properties; A Detailed Quantum Chemical Study. Opt. Laser Technol. 2021, 134, 106570,  DOI: 10.1016/j.optlastec.2020.106570
  52. 52
    Mallah, R. R.; Mohbiya, D. R.; Sreenath, M. C.; Chitrambalam, S.; Joe, I. H.; Sekar, N. Fluorescent Meso-Benzyl Curcuminoid Boron Complex: Synthesis, Photophysics, DFT and NLO Study. Opt. Mater. 2018, 84, 786794,  DOI: 10.1016/j.optmat.2018.08.012
  53. 53
    Mejía-Hernández, F. G.; Hernández-Ortíz, O. J.; Muñoz-Pérez, F. M.; Martínez-Pérez, A. I.; Vázquez-García, R. A.; Vera-Cárdenas, E. E.; Ortega-Mendoza, J. G.; Veloz-Rodríguez, M. A.; Rueda-Soriano, E.; Alemán-Ayala, K. Mechanochemical Synthesis, Linear and Nonlinear Optical Properties of a New Oligophenyleneimine with Indole Terminal Moiety for Optoelectronic Application. J. Mater. Sci.: Mater. Electron. 2021, 32, 62836295,  DOI: 10.1007/s10854-021-05344-4
  54. 54
    Ahsin, A.; Ayub, K. Oxacarbon superalkali C3X3Y3 (X = O, S and Y = Li, Na, K) clusters as excess electron compounds for remarkable static and dynamic NLO response. J. Mol. Graphics Modell. 2021, 106, 107922,  DOI: 10.1016/j.jmgm.2021.107922
  55. 55
    Nazeer, U.; Rasool, N.; Mujahid, A.; Mansha, A.; Zubair, M.; Kosar, N.; Mahmood, T.; Raza Shah, A.; Shah, S. A. A.; Zakaria, Z. A.; Akhtar, M. N. Selective Arylation of 2-Bromo-4-Chlorophenyl-2-Bromobutanoate via a Pd-Catalyzed Suzuki Cross-Coupling Reaction and Its Electronic and Non-Linear Optical (NLO) Properties via DFT Studies. Molecules 2020, 25, 3521,  DOI: 10.3390/molecules25153521
  56. 56
    Savithiri, S.; Bharanidharan, S.; Sugumar, P.; Rajeevgandhi, C.; Indhira, M. Synthesis, spectral, stereochemical, biological, molecular docking and DFT studies of 3-alkyl/3,5-dialkyl-2r,6c-di(naphthyl)piperidin-4-one picrates derivatives. J. Mol. Struct. 2021, 1234, 130145,  DOI: 10.1016/j.molstruc.2021.130145
  57. 57
    Liu, Y.; Merinov, B. V.; Goddard, W. A. Origin of Low Sodium Capacity in Graphite and Generally Weak Substrate Binding of Na and Mg among Alkali and Alkaline Earth Metals. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 37353739,  DOI: 10.1073/pnas.1602473113
  58. 58
    Sohail, M.; Khaliq, F.; Mahmood, T.; Ayub, K.; Tabassum, S.; Gilani, M. A. Influence of Bi-Alkali Metals Doping over Al12N12 Nanocage on Stability and Optoelectronic Properties: A DFT Investigation. Radiat. Phys. Chem. 2021, 184, 109457,  DOI: 10.1016/j.radphyschem.2021.109457
  59. 59
    Hou, N.; Wu, Y.; Wu, H. The Influence of Alkali Metals Interaction with Al/P-Substituted BN Nanosheets on Their Electronic and Nonlinear Optical Properties: A DFT Theoretical Study. ChemistrySelect 2019, 4, 14411447,  DOI: 10.1002/slct.201803193
  60. 60
    Ayub, K. Are Phosphide Nano-Cages Better than Nitride Nano-Cages? A Kinetic, Thermodynamic and Non-Linear Optical Properties Study of Alkali Metal Encapsulated X 12 Y 12 Nano-Cages. J. Mater. Chem. C 2016, 4, 1091910934,  DOI: 10.1039/C6TC04456E
  61. 61
    Shehzad, R. A.; Iqbal, J.; Ayub, K.; Nawaz, F.; Muhammad, S.; Ayub, A. R.; Iqbal, S. Enhanced Linear and Nonlinear Optical Response of Superhalogen (Al7) Doped Graphitic Carbon Nitride (g-C3N4). Optik 2021, 226, 165923,  DOI: 10.1016/j.ijleo.2020.165923
  62. 62
    Xu, H.-L.; Wang, F.-F.; Chen, W.; Yu, G.-T. The Complexant Shape Effect on First (Hyper)Polarizability of Alkalides Li+(NH2CH3)4 M – (M = Li, Na, and K). Int. J. Quantum Chem. 2011, 111, 31743183,  DOI: 10.1002/qua.22613
  63. 63
    Song, Y.-D.; Wang, L.; Wu, L.-M. How the Alkali Metal Atoms Affect Electronic Structure and the Nonlinear Optical Properties of C24N24 Nanocage. Optik 2017, 135, 139152,  DOI: 10.1016/j.ijleo.2017.01.096
  64. 64
    Teng, Y.; Sheng, Q.; Weng, H.; Zhou, Z.; Huang, X.; Li, Z.; Zhang, T. Theoretical Study of a Novel Organic Electride with Large Nonlinear Optical Responses. Int. J. Quantum Chem. 2020, 120, e26235  DOI: 10.1002/qua.26235
  65. 65
    Ullah, F.; Ayub, K.; Mahmood, T. Remarkable Second and Third Order Nonlinear Optical Properties of Organometallic C6Li6 −M3O Electrides. New J. Chem. 2020, 44, 98229829,  DOI: 10.1039/D0NJ01670E
  66. 66
    Kosar, N.; Tahir, H.; Ayub, K.; Mahmood, T. DFT Studies of Single and Multiple Alkali Metals Doped C24 Fullerene for Electronics and Nonlinear Optical Applications. J. Mol. Graphics Modell. 2021, 105, 107867,  DOI: 10.1016/j.jmgm.2021.107867
  67. 67
    Kosar, N.; Mahmood, T.; Ayub, K.; Tabassum, S.; Arshad, M.; Gilani, M. A. Doping Superalkali on Zn12O12 Nanocage Constitutes a Superior Approach to Fabricate Stable and High-Performance Nonlinear Optical Materials. Opt. Laser Technol. 2019, 120, 105753,  DOI: 10.1016/j.optlastec.2019.105753
  68. 68
    Chandiramouli, R.; Srivastava, A.; Nagarajan, V. NO Adsorption Studies on Silicene Nanosheet: DFT Investigation. Appl. Surf. Sci. 2015, 351, 662672,  DOI: 10.1016/j.apsusc.2015.05.166
  69. 69
    Morisawa, Y.; Tachibana, S.; Ikehata, A.; Yang, T.; Ehara, M.; Ozaki, Y. Changes in the Electronic States of Low-Temperature Solid n-Tetradecane: Decrease in the HOMO-LUMO Gap. ACS Omega 2017, 2, 618625,  DOI: 10.1021/acsomega.6b00539
  70. 70
    He, H.-M.; Luis, J. M.; Chen, W.-H.; Yu, D.; Li, Y.; Wu, D.; Sun, W.-M.; Li, Z.-R. Nonlinear Optical Response of Endohedral All-Metal Electride Cages 2e Mg2+ ([email protected]12 ) 2–Ca2+ (M = Ni, Pd, and Pt; E = Ge, Sn, and Pb). J. Mater. Chem. C 2019, 7, 645653,  DOI: 10.1039/C8TC05647A
  71. 71
    Ullah, F.; Kosar, N.; Ayub, K.; Mahmood, T. Superalkalis as a Source of Diffuse Excess Electrons in Newly Designed Inorganic Electrides with Remarkable Nonlinear Response and Deep Ultraviolet Transparency: A DFT Study. Appl. Surf. Sci. 2019, 483, 11181128,  DOI: 10.1016/j.apsusc.2019.04.042
  72. 72
    Bae, S.; Espinosa-García, W.; Kang, Y. G.; Egawa, N.; Lee, J.; Kuwahata, K.; Khazaei, M.; Ohno, K.; Kim, Y. H.; Han, M. J.; Hosono, H.; Dalpian, G. M.; Raebiger, H. MXene Phase with C 3 Structure Unit: A Family of 2D Electrides. Adv. Funct. Mater. 2021, 31, 2100009,  DOI: 10.1002/adfm.202100009
  73. 73
    Tahmasebi, E.; Shakerzadeh, E.; Biglari, Z. Theoretical Assessment of the Electro-Optical Features of the Group III Nitrides (B12N12, Al12N12 and Ga12N12) and Group IV Carbides (C24, Si12C12 and Ge12C12) Nanoclusters Encapsulated with Alkali Metals (Li, Na and K). Appl. Surf. Sci. 2016, 363, 197208,  DOI: 10.1016/j.apsusc.2015.12.001
  74. 74
    Buldakov, M. A.; Koryukina, E. V.; Cherepanov, V. N.; Kalugina, Y. N. A Dipole-Moment Function of MeH Molecules (Me = Li, Na, K)). Russ. Phys. J. 2007, 50, 532537,  DOI: 10.1007/s11182-007-0080-x
  75. 75
    Li, X.; Zhang, Y.; Lu, J. Remarkably Enhanced First Hyperpolarizability and Nonlinear Refractive Index of Novel Graphdiyne-Based Materials for Promising Optoelectronic Applications: A First-Principles Study. Appl. Surf. Sci. 2020, 512, 145544,  DOI: 10.1016/j.apsusc.2020.145544
  76. 76
    Mondal, A.; Hatua, K.; Nandi, P. K. Why Lithiation Results Large Enhancement of Second Hyperpolarizability of Delta Shaped Complexes M-C2H2 (M = Be, Mg and Ca)?. Chem. Phys. Lett. 2019, 720, 3641,  DOI: 10.1016/j.cplett.2019.01.055
  77. 77
    Li, Z.-J.; Wang, F.-F.; Li, Z.-R.; Xu, H.-L.; Huang, X.-R.; Wu, D.; Chen, W.; Yu, G.-T.; Gu, F. L.; Aoki, Y. Large Static First and Second Hyperpolarizabilities Dominated by Excess Electron Transition for Radical Ion Pair Salts M 2* + TCNQ*– (M = Li, Na, K). Phys. Chem. Chem. Phys. 2009, 11, 402408,  DOI: 10.1039/B809161G
  78. 78
    Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580592,  DOI: 10.1002/jcc.22885
  79. 79
    Souza, T. E.; Rosa, I. M. L.; Legendre, A. O.; Paschoal, D.; Maia, L. J. Q.; Dos Santos, H. F.; Martins, F. T.; Doriguetto, A. C. Non-centrosymmetric crystals of newN-benzylideneaniline derivatives as potential materials for non-linear optics. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2015, 71, 416426,  DOI: 10.1107/S2052520615008859
  80. 80
    Campo, J.; Wenseleers, W.; Goovaerts, E.; Szablewski, M.; Cross, G. H. Accurate Determination and Modeling of the Dispersion of the First Hyperpolarizability of an Efficient Zwitterionic Nonlinear Optical Chromophore by Tunable Wavelength Hyper-Rayleigh Scattering. J. Phys. Chem. C 2008, 112, 287296,  DOI: 10.1021/jp0758824
  81. 81
    Arun Kumar, R.; Arivanandhan, M.; Hayakawa, Y. Recent Advances in Rare Earth-Based Borate Single Crystals: Potential Materials for Nonlinear Optical and Laser Applications. Prog. Cryst. Growth Charact. Mater. 2013, 59, 113132,  DOI: 10.1016/j.pcrysgrow.2013.07.001
  82. 82
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg; ; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Normand, R. K. J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J. Gaussian 09, Revision D.01; Gaussian, Inc: Wallingford CT, 2009.
  83. 83
    Dennington, R.; Keith, T.; Millam, J. GaussView, Version 5, 2009.
  84. 84
    Sajid, H.; Khan, S.; Ayub, K.; Mahmood, T. Effective Adsorption of A-Series Chemical Warfare Agents on Graphdiyne Nanoflake: A DFT Study. J. Mol. Model. 2021, 27, 117,  DOI: 10.1007/s00894-021-04730-3
  85. 85
    Kosar, N.; Ayub, K.; Mahmood, T. Surface Functionalization of Twisted Graphene C32H15 and C104H52 Derivatives with Alkalis and Superalkalis for NLO Response; a DFT Study. J. Mol. Graphics Modell. 2021, 102, 107794,  DOI: 10.1016/j.jmgm.2020.107794
  86. 86
    Kosar, N.; Tahir, H.; Ayub, K.; Gilani, M. A.; Mahmood, T. Theoretical Modification of C24 Fullerene with Single and Multiple Alkaline Earth Metal Atoms for Their Potential Use as NLO Materials. J. Phys. Chem. Solids 2021, 152, 109972,  DOI: 10.1016/j.jpcs.2021.109972
  87. 87
    Sajid, H.; Ullah, F.; Khan, S.; Ayub, K.; Arshad, M.; Mahmood, T. Remarkable Static and Dynamic NLO Response of Alkali and Superalkali Doped Macrocyclic [Hexa-]Thiophene Complexes; a DFT Approach. RSC Adv. 2021, 11, 41184128,  DOI: 10.1039/D0RA08099C
  88. 88
    Khan, P.; Mahmood, T.; Ayub, K.; Tabassum, S.; Amjad Gilani, M. Turning Diamondoids into Nonlinear Optical Materials by Alkali Metal Substitution: A DFT Investigation. Opt. Laser Technol. 2021, 142, 107231,  DOI: 10.1016/j.optlastec.2021.107231
  89. 89
    Oviedo, M. B.; Ilawe, N. V.; Wong, B. M. Polarizabilities of π-Conjugated Chains Revisited: Improved Results from Broken-Symmetry Range-Separated DFT and New CCSD(T) Benchmarks. J. Chem. Theory Comput. 2016, 12, 35933602,  DOI: 10.1021/acs.jctc.6b00360
  90. 90
    Xu, L.; Kumar, A.; Wong, B. M. Linear polarizabilities and second hyperpolarizabilities of streptocyanines: Results from broken-Symmetry DFT and new CCSD(T) benchmarks. J. Comput. Chem. 2018, 39, 23502359,  DOI: 10.1002/jcc.25519
  91. 91
    Khan, S.; Gilani, M. A.; Munsif, S.; Muhammad, S.; Ludwig, R.; Ayub, K. Inorganic Electrides of Alkali Metal Doped Zn12O12 Nanocage with Excellent Nonlinear Optical Response. J. Mol. Graphics Modell. 2021, 106, 107935,  DOI: 10.1016/j.jmgm.2021.107935
  92. 92
    Ahsan, A.; Ayub, K. Extremely Large Nonlinear Optical Response and Excellent Electronic Stability of True Alkaline Earthides Based on Hexaammine Complexant. J. Mol. Liq. 2020, 297, 111899,  DOI: 10.1016/j.molliq.2019.111899
  93. 93
    Ahsan, A.; Ayub, K. Adamanzane Based Alkaline Earthides with Excellent Nonlinear Optical Response and Ultraviolet Transparency. Opt. Laser Technol. 2020, 129, 106298,  DOI: 10.1016/j.optlastec.2020.106298
  94. 94
    Torrent-Sucarrat, M.; Solà, M.; Duran, M.; Luis, J. M.; Kirtman, B. Basis Set and Electron Correlation Effects on Initial Convergence for Vibrational Nonlinear Optical Properties of Conjugated Organic Molecules. J. Chem. Phys. 2004, 120, 63466355,  DOI: 10.1063/1.1667465

Cited By


This article has not yet been cited by other publications.

  • Abstract

    Figure 1

    Figure 1. Side and top views of the optimized geometry of pristine C6O6Li6 and alkali metal (Li, Na, and K)-doped C6O6Li6 organometallics calculated at the ωB97XD/6-31+G(d,p) level.

    Figure 2

    Figure 2. Graphical representation of HOMO of pristine C6O6Li6 and alkali metal-doped C6O6Li6 organometallics (isovalue = 0.05).

    Figure 3

    Figure 3. UV–vis spectra of pure and metal-doped [email protected]6O6Li6 (M = Li, Na, and K) organometallics.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 94 other publications.

    1. 1
      Cruzeiro, E. Z.; Tiranov, A.; Lavoie, J.; Ferrier, A.; Goldner, P.; Gisin, N.; Afzelius, M. Efficient Optical Pumping Using Hyperfine Levels in 145 Nd3+ :Y2SiO5 and Its Application to Optical Storage. New J. Phys. 2018, 20, 053013,  DOI: 10.1088/1367-2630/aabe3b
    2. 2
      Mande, P.; Mathew, E.; Chitrambalam, S.; Joe, I. H.; Sekar, N. NLO Properties of 1, 4-Naphthoquinone, Juglone and Lawsone by DFT and Z-Scan Technique – A Detailed Study. Opt. Mater. 2017, 72, 549558,  DOI: 10.1016/j.optmat.2017.06.058
    3. 3
      Demkov, A. A.; Bajaj, C.; Ekerdt, J. G.; Palmstrøm, C. J.; Ben Yoo, S. J. Materials for Emergent Silicon-Integrated Optical Computing. J. Appl. Phys. 2021, 130, 070907,  DOI: 10.1063/5.0056441
    4. 4
      Karothu, D. P.; Dushaq, G.; Ahmed, E.; Catalano, L.; Polavaram, S.; Ferreira, R.; Li, L.; Mohamed, S.; Rasras, M.; Naumov, P. Mechanically Robust Amino Acid Crystals as Fiber-Optic Transducers and Wide Bandpass Filters for Optical Communication in the near-Infrared. Nat. Commun. 2021, 12, 1326,  DOI: 10.1038/s41467-021-21324-y
    5. 5
      Wada, O. Femtosecond All-Optical Devices for Ultrafast Communication and Signal Processing. New J. Phys. 2004, 6, 183,  DOI: 10.1088/1367-2630/6/1/183
    6. 6
      Hu, X.; Jiang, P.; Ding, C.; Yang, H.; Gong, Q. Picosecond and Low-Power All-Optical Switching Based on an Organic Photonic-Bandgap Microcavity. Nat. Photonics 2008, 2, 185189,  DOI: 10.1038/nphoton.2007.299
    7. 7
      Hu, Y.; Tong, M.; Cheng, X. a.; Zhang, J.; Hao, H.; You, J.; Zheng, X.; Jiang, T. Bi2Se3 -Functionalized Metasurfaces for Ultrafast All-Optical Switching and Efficient Modulation of Terahertz Waves. ACS Photonics 2021, 8, 771780,  DOI: 10.1021/acsphotonics.0c01194
    8. 8
      Janjua, M. R. S. A. Structure–Property Relationship and Systematic Study of a Series of Terpyridine Based Nonlinear Optical Compounds: DFT Computation of Interactive Design. J. Cluster Sci. 2019, 30, 4551,  DOI: 10.1007/s10876-018-1458-3
    9. 9
      Singh, L.; Zhu, G.; Mohan Kumar, G.; Revathi, D.; Pareek, P. Numerical Simulation of All-Optical Logic Functions at Micrometer Scale by Using Plasmonic Metal-Insulator-Metal (MIM) Waveguides. Opt. Laser Technol. 2021, 135, 106697,  DOI: 10.1016/j.optlastec.2020.106697
    10. 10
      Sathiya, S.; Senthilkumar, M.; Ramachandra Raja, C. Crystal Growth, Hirshfeld Surface Analysis, DFT Study and Third Order NLO Studies of Thiourea 4 Dimethyl Aminobenzaldehyde. J. Mol. Struct. 2019, 1180, 8188,  DOI: 10.1016/j.molstruc.2018.11.067
    11. 11
      Wang, N.; Zhang, Y.; Zhang, L. Dynamic Selection Network for Image Inpainting. IEEE Trans. Image Process. 2021, 30, 1784,  DOI: 10.1109/TIP.2020.3048629
    12. 12
      Sreedharan, R.; Ravi, S.; Raghi, K. R.; Kumar, T. K. M.; Naseema, K. Growth, Linear- Nonlinear Optical Studies and Quantum Chemistry Formalism on an Organic NLO Crystal for Opto-Electronic Applications: Experimental and Theoretical Approach. SN Appl. Sci. 2020, 2, 578,  DOI: 10.1007/s42452-020-2360-9
    13. 13
      Dong, J.-X.; Zhang, H.-L. Azulene-Based Organic Functional Molecules for Optoelectronics. Chin. Chem. Lett. 2016, 27, 10971104,  DOI: 10.1016/j.cclet.2016.05.005
    14. 14
      Islam, N.; Pandith, A. H. Optoelectronic and Nonlinear Optical Properties of Triarylamine Helicenes: A DFT Study. J. Mol. Model. 2014, 20, 2535,  DOI: 10.1007/s00894-014-2535-7
    15. 15
      Hazim, A.; Abduljalil, H. M.; Hashim, A. First Principles Calculations of Electronic, Structural and Optical Properties of (PMMA–ZrO2–Au) and (PMMA–Al2O3–Au) Nanocomposites for Optoelectronics Applications. Trans. Electr. Electron. Mater. 2021, 22, 185203,  DOI: 10.1007/s42341-020-00224-w
    16. 16
      Lay-Ekuakille, A.; Massaro, A.; Singh, S. P.; Jablonski, I.; Rahman, M. Z. U.; Spano, F. Optoelectronic and Nanosensors Detection Systems: A Review. IEEE Sens. J. 2021, 21, 1264512653,  DOI: 10.1109/JSEN.2021.3055750
    17. 17
      Ghosh, D.; Sarkar, K.; Devi, P.; Kim, K.-H.; Kumar, P. Current and Future Perspectives of Carbon and Graphene Quantum Dots: From Synthesis to Strategy for Building Optoelectronic and Energy Devices. Renewable Sustainable Energy Rev. 2021, 135, 110391,  DOI: 10.1016/j.rser.2020.110391
    18. 18
      Dale, S. G.; Johnson, E. R. Theoretical Descriptors of Electrides. J. Phys. Chem. A 2018, 122, 93719391,  DOI: 10.1021/acs.jpca.8b08548
    19. 19
      Hosono, H.; Kitano, M. Advances in Materials and Applications of Inorganic Electrides. Chem. Rev. 2021, 121, 31213185,  DOI: 10.1021/acs.chemrev.0c01071
    20. 20
      Nie, S.; Bernevig, B. A.; Wang, Z. Sixfold Excitations in Electrides. Phys. Rev. Res. 2021, 3, L012028,  DOI: 10.1103/PhysRevResearch.3.L012028
    21. 21
      Yang, X.; Parrish, K.; Li, Y.-L.; Sa, B.; Zhan, H.; Zhu, Q. Switchable Two-Dimensional Electrides: A First-Principles Study. Phys. Rev. B 2021, 103, 125103,  DOI: 10.1103/PhysRevB.103.125103
    22. 22
      Garcia-Borràs, M.; Solà, M.; Luis, J. M.; Kirtman, B. Electronic and Vibrational Nonlinear Optical Properties of Five Representative Electrides. J. Chem. Theory Comput. 2012, 8, 26882697,  DOI: 10.1021/ct300433q
    23. 23
      Ahsan, A.; Khan, S.; Gilani, M. A.; Ayub, K. Endohedral Metallofullerene Electrides of Ca12O12 with Remarkable Nonlinear Optical Response. RSC Adv. 2021, 11, 15691580,  DOI: 10.1039/D0RA08571E
    24. 24
      Zhang, X.; Yang, G. Recent Advances and Applications of Inorganic Electrides. J. Phys. Chem. Lett. 2020, 11, 38413852,  DOI: 10.1021/acs.jpclett.0c00671
    25. 25
      Bai, X.; Zha, X.-H.; Qiao, Y.; Qiu, N.; Zhang, Y.; Luo, K.; He, J.; Li, Q.; Huang, Q.; Francisco, J. S.; Lin, C.-T.; Du, S. Two-Dimensional Semiconducting Lu2CT2 (T = F, OH) MXene with Low Work Function and High Carrier Mobility. Nanoscale 2020, 12, 37953802,  DOI: 10.1039/C9NR10806H
    26. 26
      Cao, Y.-D.; Sun, Y.-H.; Shi, S.-F.; Wang, R.-M. Anisotropy of Two-Dimensional ReS2 and Advances in Its Device Application. Rare Met. 2021, 40, 33573374,  DOI: 10.1007/s12598-021-01781-6
    27. 27
      Weber, S.; Schäfer, S.; Saccoccio, M.; Seidel, K.; Kohlmann, H.; Gläser, R.; Schunk, S. A. Mayenite-Based Electride C12A7e- : An Innovative Synthetic Method via Plasma Arc Melting. Mater. Chem. Front. 2021, 5, 13011314,  DOI: 10.1039/D0QM00688B
    28. 28
      Nie, S.; Qian, Y.; Gao, J.; Fang, Z.; Weng, H.; Wang, Z. Application of Topological Quantum Chemistry in Electrides. Phys. Rev. B 2021, 103, 205133,  DOI: 10.1103/PhysRevB.103.205133
    29. 29
      Ellaboudy, A.; Dye, J. L.; Smith, P. B. Cesium 18-Crown-6 Compounds. A Crystalline Ceside and a Crystalline Electride. J. Am. Chem. Soc. 1983, 105, 64906491,  DOI: 10.1021/ja00359a022
    30. 30
      Khaliq, F.; Mahmood, T.; Ayub, K.; Tabassum, S.; Gilani, M. A. Exploring Li4N and Li4O Superalkalis as Efficient Dopants for the Al12N12 Nanocage to Design High Performance Nonlinear Optical Materials with High Thermodynamic Stability. Polyhedron 2021, 200, 115145,  DOI: 10.1016/j.poly.2021.115145
    31. 31
      Hu, Q.; Tan, R.; Li, J.; Song, W. Highly Conductive C12A7:E- Electride Nanoparticles as an Electron Donor Type Promoter to P25 for Enhancing Photocatalytic Hydrogen Evolution. J. Phys. Chem. Solids 2021, 149, 109810,  DOI: 10.1016/j.jpcs.2020.109810
    32. 32
      Das, P.; Chattaraj, P. K. Comparison Between Electride Characteristics of Li3@B40 and [email protected]. Front. Chem. 2021, 9. DOI:  DOI: 10.3389/fchem.2021.638581 .
    33. 33
      Xiao, Y.; Zhang, X.; Li, R. [Ca24Al28O64 ]4+(4e ) Are Directly and Quickly Synthesized by Self-reduction of C12H10Ca3O14 + Al2O3 without Any Reducing Agent. J. Am. Ceram. Soc. 2021, 104, 16411648,  DOI: 10.1111/jace.17558
    34. 34
      Dale, S. G.; Otero-de-la-Roza, A.; Johnson, E. R. Density-Functional Description of Electrides. Phys. Chem. Chem. Phys. 2014, 16, 1458414593,  DOI: 10.1039/C3CP55533J
    35. 35
      Kim, T. J.; Yoon, H.; Han, M. J. Calculating Magnetic Interactions in Organic Electrides. Phys. Rev. B 2018, 97, 214431,  DOI: 10.1103/PhysRevB.97.214431
    36. 36
      Saha, R.; Das, P.; Chattaraj, P. K. A Complex Containing Four Magnesium Atoms and Two Mg-Mg Bonds Behaving as an Electride. Eur. J. Inorg. Chem. 2019, 41054111,  DOI: 10.1002/ejic.201900813
    37. 37
      Dale, S. G.; Johnson, E. R. The Explicit Examination of the Magnetic States of Electrides. Phys. Chem. Chem. Phys. 2016, 18, 2732627335,  DOI: 10.1039/C6CP05345A
    38. 38
      Khan, K.; Tareen, A. k.; Khan, U.; Nairan, A.; Elshahat, S.; Muhammad, N.; Saeed, M.; Yadav, A.; Bibbò, L.; Ouyang, Z. Single Step Synthesis of Highly Conductive Room-Temperature Stable Cation-Substituted Mayenite Electride Target and Thin Film. Sci. Rep. 2019, 9, 4967,  DOI: 10.1038/s41598-019-41512-7
    39. 39
      Lee, S. Y.; Hwang, J.-Y.; Park, J.; Nandadasa, C. N.; Kim, Y.; Bang, J.; Lee, K.; Lee, K. H.; Zhang, Y.; Ma, Y.; Hosono, H.; Lee, Y. H.; Kim, S.-G.; Kim, S. W. Ferromagnetic Quasi-Atomic Electrons in Two-Dimensional Electride. Nat. Commun. 2020, 11, 1526,  DOI: 10.1038/s41467-020-15253-5
    40. 40
      Matsuishi, S.; Toda, Y.; Miyakawa, M.; Hayashi, K.; Kamiya, T.; Hirano, M.; Tanaka, I.; Hosono, H. High-Density Electron Anions in a Nanoporous Single Crystal: [Ca24Al28O64]4+(4e-). Science 2003, 301, 626629,  DOI: 10.1126/science.1083842
    41. 41
      Hayashi, F.; Tomota, Y.; Kitano, M.; Toda, Y.; Yokoyama, T.; Hosono, H. NH2– Dianion Entrapped in a Nanoporous 12CaO·7Al2O3 Crystal by Ammonothermal Treatment: Reaction Pathways, Dynamics, and Chemical Stability. J. Am. Chem. Soc. 2014, 136, 1169811706,  DOI: 10.1021/ja504185m
    42. 42
      Hosono, H.; Kim, J.; Toda, Y.; Kamiya, T.; Watanabe, S. Transparent Amorphous Oxide Semiconductors for Organic Electronics: Application to Inverted OLEDs. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 233238,  DOI: 10.1073/pnas.1617186114
    43. 43
      Zhang, Y.; Wang, H.; Wang, Y.; Zhang, L.; Ma, Y. Computer-Assisted Inverse Design of Inorganic Electrides. Phys. Rev. X 2017, 7, 011017,  DOI: 10.1103/PhysRevX.7.011017
    44. 44
      Kulichenko, M.; Fedik, N.; Bozhenko, K. V.; Boldyrev, A. I. Inorganic Molecular Electride Mg4O3 : Structure, Bonding, and Nonlinear Optical Properties. Chem.─Eur. J. 2019, 25, 53115315,  DOI: 10.1002/chem.201806372
    45. 45
      Wang, Y.-F.; Qin, T.; Tang, J.-M.; Liu, Y.-J.; Xie, M.; Li, J.; Huang, J.; Li, Z.-R. Novel inorganic aromatic mixed-valent superalkali electride CaN3Ca: an alkaline-earth-based high-sensitivity multi-state nonlinear optical molecular switch. Phys. Chem. Chem. Phys. 2020, 22, 59855994,  DOI: 10.1039/C9CP06848A
    46. 46
      Liyanage, P. S.; de Silva, R. M.; de Silva, K. M. N. Nonlinear Optical (NLO) Properties of Novel Organometallic Complexes: High Accuracy Density Functional Theory (DFT) Calculations. J. Mol. Struct.: THEOCHEM 2003, 639, 195201,  DOI: 10.1016/j.theochem.2003.08.009
    47. 47
      de Silva, I. C.; de Silva, R. M.; Nalin de Silva, K. M. Investigations of Nonlinear Optical (NLO) Properties of Fe, Ru and Os Organometallic Complexes Using High Accuracy Density Functional Theory (DFT) Calculations. J. Mol. Struct.: THEOCHEM 2005, 728, 141145,  DOI: 10.1016/j.theochem.2005.02.092
    48. 48
      Dairi, M.; Elhorri, A. M.; Tchouar, N.; Boumedel, H.; Azizi, S. Theoretical Study by DFT of Organometallic Complexes Based on Metallocenes Active in NLO. J. Mol. Model. 2021, 27, 179,  DOI: 10.1007/s00894-021-04797-y
    49. 49
      Taboukhat, S.; Kichou, N.; Fillaut, J.-L.; Alévêque, O.; Waszkowska, K.; Zawadzka, A.; El-Ghayoury, A.; Migalska-Zalas, A.; Sahraoui, B. Transition Metals Induce Control of Enhanced NLO Properties of Functionalized Organometallic Complexes under Laser Modulations. Sci. Rep. 2020, 10, 15292,  DOI: 10.1038/s41598-020-71769-2
    50. 50
      Zhong, R.-L.; Xu, H.-L.; Li, Z.-R.; Su, Z.-M. Role of Excess Electrons in Nonlinear Optical Response. J. Phys. Chem. Lett. 2015, 6, 612619,  DOI: 10.1021/jz502588x
    51. 51
      Irshad, S.; Ullah, F.; Khan, S.; Ludwig, R.; Mahmood, T.; Ayub, K. First Row Transition Metals Decorated Boron Phosphide Nanoclusters as Nonlinear Optical Materials with High Thermodynamic Stability and Enhanced Electronic Properties; A Detailed Quantum Chemical Study. Opt. Laser Technol. 2021, 134, 106570,  DOI: 10.1016/j.optlastec.2020.106570
    52. 52
      Mallah, R. R.; Mohbiya, D. R.; Sreenath, M. C.; Chitrambalam, S.; Joe, I. H.; Sekar, N. Fluorescent Meso-Benzyl Curcuminoid Boron Complex: Synthesis, Photophysics, DFT and NLO Study. Opt. Mater. 2018, 84, 786794,  DOI: 10.1016/j.optmat.2018.08.012
    53. 53
      Mejía-Hernández, F. G.; Hernández-Ortíz, O. J.; Muñoz-Pérez, F. M.; Martínez-Pérez, A. I.; Vázquez-García, R. A.; Vera-Cárdenas, E. E.; Ortega-Mendoza, J. G.; Veloz-Rodríguez, M. A.; Rueda-Soriano, E.; Alemán-Ayala, K. Mechanochemical Synthesis, Linear and Nonlinear Optical Properties of a New Oligophenyleneimine with Indole Terminal Moiety for Optoelectronic Application. J. Mater. Sci.: Mater. Electron. 2021, 32, 62836295,  DOI: 10.1007/s10854-021-05344-4
    54. 54
      Ahsin, A.; Ayub, K. Oxacarbon superalkali C3X3Y3 (X = O, S and Y = Li, Na, K) clusters as excess electron compounds for remarkable static and dynamic NLO response. J. Mol. Graphics Modell. 2021, 106, 107922,  DOI: 10.1016/j.jmgm.2021.107922
    55. 55
      Nazeer, U.; Rasool, N.; Mujahid, A.; Mansha, A.; Zubair, M.; Kosar, N.; Mahmood, T.; Raza Shah, A.; Shah, S. A. A.; Zakaria, Z. A.; Akhtar, M. N. Selective Arylation of 2-Bromo-4-Chlorophenyl-2-Bromobutanoate via a Pd-Catalyzed Suzuki Cross-Coupling Reaction and Its Electronic and Non-Linear Optical (NLO) Properties via DFT Studies. Molecules 2020, 25, 3521,  DOI: 10.3390/molecules25153521
    56. 56
      Savithiri, S.; Bharanidharan, S.; Sugumar, P.; Rajeevgandhi, C.; Indhira, M. Synthesis, spectral, stereochemical, biological, molecular docking and DFT studies of 3-alkyl/3,5-dialkyl-2r,6c-di(naphthyl)piperidin-4-one picrates derivatives. J. Mol. Struct. 2021, 1234, 130145,  DOI: 10.1016/j.molstruc.2021.130145
    57. 57
      Liu, Y.; Merinov, B. V.; Goddard, W. A. Origin of Low Sodium Capacity in Graphite and Generally Weak Substrate Binding of Na and Mg among Alkali and Alkaline Earth Metals. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 37353739,  DOI: 10.1073/pnas.1602473113
    58. 58
      Sohail, M.; Khaliq, F.; Mahmood, T.; Ayub, K.; Tabassum, S.; Gilani, M. A. Influence of Bi-Alkali Metals Doping over Al12N12 Nanocage on Stability and Optoelectronic Properties: A DFT Investigation. Radiat. Phys. Chem. 2021, 184, 109457,  DOI: 10.1016/j.radphyschem.2021.109457
    59. 59
      Hou, N.; Wu, Y.; Wu, H. The Influence of Alkali Metals Interaction with Al/P-Substituted BN Nanosheets on Their Electronic and Nonlinear Optical Properties: A DFT Theoretical Study. ChemistrySelect 2019, 4, 14411447,  DOI: 10.1002/slct.201803193
    60. 60
      Ayub, K. Are Phosphide Nano-Cages Better than Nitride Nano-Cages? A Kinetic, Thermodynamic and Non-Linear Optical Properties Study of Alkali Metal Encapsulated X 12 Y 12 Nano-Cages. J. Mater. Chem. C 2016, 4, 1091910934,  DOI: 10.1039/C6TC04456E
    61. 61
      Shehzad, R. A.; Iqbal, J.; Ayub, K.; Nawaz, F.; Muhammad, S.; Ayub, A. R.; Iqbal, S. Enhanced Linear and Nonlinear Optical Response of Superhalogen (Al7) Doped Graphitic Carbon Nitride (g-C3N4). Optik 2021, 226, 165923,  DOI: 10.1016/j.ijleo.2020.165923
    62. 62
      Xu, H.-L.; Wang, F.-F.; Chen, W.; Yu, G.-T. The Complexant Shape Effect on First (Hyper)Polarizability of Alkalides Li+(NH2CH3)4 M – (M = Li, Na, and K). Int. J. Quantum Chem. 2011, 111, 31743183,  DOI: 10.1002/qua.22613
    63. 63
      Song, Y.-D.; Wang, L.; Wu, L.-M. How the Alkali Metal Atoms Affect Electronic Structure and the Nonlinear Optical Properties of C24N24 Nanocage. Optik 2017, 135, 139152,  DOI: 10.1016/j.ijleo.2017.01.096
    64. 64
      Teng, Y.; Sheng, Q.; Weng, H.; Zhou, Z.; Huang, X.; Li, Z.; Zhang, T. Theoretical Study of a Novel Organic Electride with Large Nonlinear Optical Responses. Int. J. Quantum Chem. 2020, 120, e26235  DOI: 10.1002/qua.26235
    65. 65
      Ullah, F.; Ayub, K.; Mahmood, T. Remarkable Second and Third Order Nonlinear Optical Properties of Organometallic C6Li6 −M3O Electrides. New J. Chem. 2020, 44, 98229829,  DOI: 10.1039/D0NJ01670E
    66. 66
      Kosar, N.; Tahir, H.; Ayub, K.; Mahmood, T. DFT Studies of Single and Multiple Alkali Metals Doped C24 Fullerene for Electronics and Nonlinear Optical Applications. J. Mol. Graphics Modell. 2021, 105, 107867,  DOI: 10.1016/j.jmgm.2021.107867
    67. 67
      Kosar, N.; Mahmood, T.; Ayub, K.; Tabassum, S.; Arshad, M.; Gilani, M. A. Doping Superalkali on Zn12O12 Nanocage Constitutes a Superior Approach to Fabricate Stable and High-Performance Nonlinear Optical Materials. Opt. Laser Technol. 2019, 120, 105753,  DOI: 10.1016/j.optlastec.2019.105753
    68. 68
      Chandiramouli, R.; Srivastava, A.; Nagarajan, V. NO Adsorption Studies on Silicene Nanosheet: DFT Investigation. Appl. Surf. Sci. 2015, 351, 662672,  DOI: 10.1016/j.apsusc.2015.05.166
    69. 69
      Morisawa, Y.; Tachibana, S.; Ikehata, A.; Yang, T.; Ehara, M.; Ozaki, Y. Changes in the Electronic States of Low-Temperature Solid n-Tetradecane: Decrease in the HOMO-LUMO Gap. ACS Omega 2017, 2, 618625,  DOI: 10.1021/acsomega.6b00539
    70. 70
      He, H.-M.; Luis, J. M.; Chen, W.-H.; Yu, D.; Li, Y.; Wu, D.; Sun, W.-M.; Li, Z.-R. Nonlinear Optical Response of Endohedral All-Metal Electride Cages 2e Mg2+ ([email protected]12 ) 2–Ca2+ (M = Ni, Pd, and Pt; E = Ge, Sn, and Pb). J. Mater. Chem. C 2019, 7, 645653,  DOI: 10.1039/C8TC05647A
    71. 71
      Ullah, F.; Kosar, N.; Ayub, K.; Mahmood, T. Superalkalis as a Source of Diffuse Excess Electrons in Newly Designed Inorganic Electrides with Remarkable Nonlinear Response and Deep Ultraviolet Transparency: A DFT Study. Appl. Surf. Sci. 2019, 483, 11181128,  DOI: 10.1016/j.apsusc.2019.04.042
    72. 72
      Bae, S.; Espinosa-García, W.; Kang, Y. G.; Egawa, N.; Lee, J.; Kuwahata, K.; Khazaei, M.; Ohno, K.; Kim, Y. H.; Han, M. J.; Hosono, H.; Dalpian, G. M.; Raebiger, H. MXene Phase with C 3 Structure Unit: A Family of 2D Electrides. Adv. Funct. Mater. 2021, 31, 2100009,  DOI: 10.1002/adfm.202100009
    73. 73
      Tahmasebi, E.; Shakerzadeh, E.; Biglari, Z. Theoretical Assessment of the Electro-Optical Features of the Group III Nitrides (B12N12, Al12N12 and Ga12N12) and Group IV Carbides (C24, Si12C12 and Ge12C12) Nanoclusters Encapsulated with Alkali Metals (Li, Na and K). Appl. Surf. Sci. 2016, 363, 197208,  DOI: 10.1016/j.apsusc.2015.12.001
    74. 74
      Buldakov, M. A.; Koryukina, E. V.; Cherepanov, V. N.; Kalugina, Y. N. A Dipole-Moment Function of MeH Molecules (Me = Li, Na, K)). Russ. Phys. J. 2007, 50, 532537,  DOI: 10.1007/s11182-007-0080-x
    75. 75
      Li, X.; Zhang, Y.; Lu, J. Remarkably Enhanced First Hyperpolarizability and Nonlinear Refractive Index of Novel Graphdiyne-Based Materials for Promising Optoelectronic Applications: A First-Principles Study. Appl. Surf. Sci. 2020, 512, 145544,  DOI: 10.1016/j.apsusc.2020.145544
    76. 76
      Mondal, A.; Hatua, K.; Nandi, P. K. Why Lithiation Results Large Enhancement of Second Hyperpolarizability of Delta Shaped Complexes M-C2H2 (M = Be, Mg and Ca)?. Chem. Phys. Lett. 2019, 720, 3641,  DOI: 10.1016/j.cplett.2019.01.055
    77. 77
      Li, Z.-J.; Wang, F.-F.; Li, Z.-R.; Xu, H.-L.; Huang, X.-R.; Wu, D.; Chen, W.; Yu, G.-T.; Gu, F. L.; Aoki, Y. Large Static First and Second Hyperpolarizabilities Dominated by Excess Electron Transition for Radical Ion Pair Salts M 2* + TCNQ*– (M = Li, Na, K). Phys. Chem. Chem. Phys. 2009, 11, 402408,  DOI: 10.1039/B809161G
    78. 78
      Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580592,  DOI: 10.1002/jcc.22885
    79. 79
      Souza, T. E.; Rosa, I. M. L.; Legendre, A. O.; Paschoal, D.; Maia, L. J. Q.; Dos Santos, H. F.; Martins, F. T.; Doriguetto, A. C. Non-centrosymmetric crystals of newN-benzylideneaniline derivatives as potential materials for non-linear optics. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2015, 71, 416426,  DOI: 10.1107/S2052520615008859
    80. 80
      Campo, J.; Wenseleers, W.; Goovaerts, E.; Szablewski, M.; Cross, G. H. Accurate Determination and Modeling of the Dispersion of the First Hyperpolarizability of an Efficient Zwitterionic Nonlinear Optical Chromophore by Tunable Wavelength Hyper-Rayleigh Scattering. J. Phys. Chem. C 2008, 112, 287296,  DOI: 10.1021/jp0758824
    81. 81
      Arun Kumar, R.; Arivanandhan, M.; Hayakawa, Y. Recent Advances in Rare Earth-Based Borate Single Crystals: Potential Materials for Nonlinear Optical and Laser Applications. Prog. Cryst. Growth Charact. Mater. 2013, 59, 113132,  DOI: 10.1016/j.pcrysgrow.2013.07.001
    82. 82
      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg; ; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Normand, R. K. J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J. Gaussian 09, Revision D.01; Gaussian, Inc: Wallingford CT, 2009.
    83. 83
      Dennington, R.; Keith, T.; Millam, J. GaussView, Version 5, 2009.
    84. 84
      Sajid, H.; Khan, S.; Ayub, K.; Mahmood, T. Effective Adsorption of A-Series Chemical Warfare Agents on Graphdiyne Nanoflake: A DFT Study. J. Mol. Model. 2021, 27, 117,  DOI: 10.1007/s00894-021-04730-3
    85. 85
      Kosar, N.; Ayub, K.; Mahmood, T. Surface Functionalization of Twisted Graphene C32H15 and C104H52 Derivatives with Alkalis and Superalkalis for NLO Response; a DFT Study. J. Mol. Graphics Modell. 2021, 102, 107794,  DOI: 10.1016/j.jmgm.2020.107794
    86. 86
      Kosar, N.; Tahir, H.; Ayub, K.; Gilani, M. A.; Mahmood, T. Theoretical Modification of C24 Fullerene with Single and Multiple Alkaline Earth Metal Atoms for Their Potential Use as NLO Materials. J. Phys. Chem. Solids 2021, 152, 109972,  DOI: 10.1016/j.jpcs.2021.109972
    87. 87
      Sajid, H.; Ullah, F.; Khan, S.; Ayub, K.; Arshad, M.; Mahmood, T. Remarkable Static and Dynamic NLO Response of Alkali and Superalkali Doped Macrocyclic [Hexa-]Thiophene Complexes; a DFT Approach. RSC Adv. 2021, 11, 41184128,  DOI: 10.1039/D0RA08099C
    88. 88
      Khan, P.; Mahmood, T.; Ayub, K.; Tabassum, S.; Amjad Gilani, M. Turning Diamondoids into Nonlinear Optical Materials by Alkali Metal Substitution: A DFT Investigation. Opt. Laser Technol. 2021, 142, 107231,  DOI: 10.1016/j.optlastec.2021.107231
    89. 89
      Oviedo, M. B.; Ilawe, N. V.; Wong, B. M. Polarizabilities of π-Conjugated Chains Revisited: Improved Results from Broken-Symmetry Range-Separated DFT and New CCSD(T) Benchmarks. J. Chem. Theory Comput. 2016, 12, 35933602,  DOI: 10.1021/acs.jctc.6b00360
    90. 90
      Xu, L.; Kumar, A.; Wong, B. M. Linear polarizabilities and second hyperpolarizabilities of streptocyanines: Results from broken-Symmetry DFT and new CCSD(T) benchmarks. J. Comput. Chem. 2018, 39, 23502359,  DOI: 10.1002/jcc.25519
    91. 91
      Khan, S.; Gilani, M. A.; Munsif, S.; Muhammad, S.; Ludwig, R.; Ayub, K. Inorganic Electrides of Alkali Metal Doped Zn12O12 Nanocage with Excellent Nonlinear Optical Response. J. Mol. Graphics Modell. 2021, 106, 107935,  DOI: 10.1016/j.jmgm.2021.107935
    92. 92
      Ahsan, A.; Ayub, K. Extremely Large Nonlinear Optical Response and Excellent Electronic Stability of True Alkaline Earthides Based on Hexaammine Complexant. J. Mol. Liq. 2020, 297, 111899,  DOI: 10.1016/j.molliq.2019.111899
    93. 93
      Ahsan, A.; Ayub, K. Adamanzane Based Alkaline Earthides with Excellent Nonlinear Optical Response and Ultraviolet Transparency. Opt. Laser Technol. 2020, 129, 106298,  DOI: 10.1016/j.optlastec.2020.106298
    94. 94
      Torrent-Sucarrat, M.; Solà, M.; Duran, M.; Luis, J. M.; Kirtman, B. Basis Set and Electron Correlation Effects on Initial Convergence for Vibrational Nonlinear Optical Properties of Conjugated Organic Molecules. J. Chem. Phys. 2004, 120, 63466355,  DOI: 10.1063/1.1667465

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE