ACS Publications. Most Trusted. Most Cited. Most Read
Regio- and Diastereoselective 1,3-Dipolar Cycloadditions of 1,2,4-Triazin-1-ium Ylides: a Straightforward Synthetic Route to Polysubstituted Pyrrolo[2,1-f][1,2,4]triazines
My Activity
  • Open Access
Article

Regio- and Diastereoselective 1,3-Dipolar Cycloadditions of 1,2,4-Triazin-1-ium Ylides: a Straightforward Synthetic Route to Polysubstituted Pyrrolo[2,1-f][1,2,4]triazines
Click to copy article linkArticle link copied!

  • Juraj Galeta
    Juraj Galeta
    Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 16000, Czech Republic
    More by Juraj Galeta
  • Veronika Šlachtová
    Veronika Šlachtová
    Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 16000, Czech Republic
  • Martin Dračínský
    Martin Dračínský
    Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 16000, Czech Republic
  • Milan Vrabel*
    Milan Vrabel
    Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 16000, Czech Republic
    *Email: [email protected]
    More by Milan Vrabel
Open PDFSupporting Information (1)

ACS Omega

Cite this: ACS Omega 2022, 7, 24, 21233–21238
Click to copy citationCitation copied!
https://doi.org/10.1021/acsomega.2c02276
Published June 10, 2022

Copyright © 2022 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY-NC-ND 4.0 .

Abstract

Click to copy section linkSection link copied!

A synthetic strategy to pyrrolo[2,1-f][1,2,4]triazines is reported. We show that various synthetically easily accessible 1,2,4-triazines can be efficiently alkylated under mild conditions to provide the corresponding 1-alkyl-1,2,4-triazinium salts. These bench-stable salts serve as precursors to triazinium ylides, which react in 1,3-dipolar cycloadditions with electron-poor dipolarophiles to yield polysubstituted pyrrolotriazines in a single step.

This publication is licensed under

CC-BY-NC-ND 4.0 .
  • cc licence
  • by licence
  • nc licence
  • nd licence
Copyright © 2022 The Authors. Published by American Chemical Society

Introduction

Click to copy section linkSection link copied!

The bridgehead pyrrolo[2,1-f][1,2,4]triazine heterocycle is a privileged scaffold found in numerous pharmaceutically important substances. The biological activities of compounds containing the pyrrolotriazine core include inhibition of kinases, anticancer activities, and potent antiviral effects. (1−8)
The first synthesis of the heterocycle based on addition/fragmentation of 1,2,4-triazines (hereafter denoted as triazines) with dimethyl acetylenedicarboxylate (DMAD) was reported by Neuenhoeffer in 1977. (9) Two years later, Migliara and co-workers reported synthesis of the pyrrolotriazine core via an acid-mediated cyclization of semicarbazone onto a pendant α-ketoester, followed by a base-promoted cyclization and decarboxylation. (10) These pioneering studies paved the way for later re-emergence of the heterocycle as a ‘purine-like’ scaffold introduced into a series of C-nucleoside analogues. (11−13) The discovery that C-4-substituted pyrrolotriazines are potent ATP-competitive kinase inhibitors (14) further fueled the research interest in these compounds and led to numerous candidates in late stages of clinical development and to approved drugs (Figure 1). (1,7,15−20)

Figure 1

Figure 1. Examples of biologically active pyrrolo[2,1-f][1,2,4]triazines (and their respective targets).

A typical synthetic route leading to pyrrolotriazines follows a number of steps depicted in Scheme 1A. Variations in these steps and late-stage modification of the heterocycle by, for example, cross-coupling reactions can provide access to diverse derivatives with a wide range of potential biological activities. (21−23)

Scheme 1

Scheme 1. (A) Example of a Typical Synthetic Route to Pyrrolo[2,1-f][1,2,4]triazines. (B) Single-Step Construction of Pyrrolotriazines via 1,3-Dipolar Cycloadditions
Despite the pharmacological importance of pyrrolotriazines reflected in numerous literature reports and patent applications, virtually no alternative synthetic procedures to the scaffold exist. Even the most recent examples exploit reactions that have been originally developed decades ago. (24) To the best of our knowledge, the only alternative route to pyrrolotriazines, briefly examined in the early 90s, was based on cycloadditions of 1-alkyl-1,2,4-triazinium ylides generated in situ from the respective triazinium precursors under basic conditions. (25) Despite its great synthetic potential, this methodology has remained largely unexplored and neglected.
Herein, we show that various, previously unknown pyrrolotriazines can be prepared in a single step from readily accessible 1-alkyl-1,2,4-triazinium salts via 1,3-dipolar cycloaddition (DCA) of the in situ generated triazinium ylides with electron-poor dipolarophiles (Scheme 1B).

Results and Discussion

Click to copy section linkSection link copied!

Substituted 1,2,4-triazines are synthetically readily accessible heterocycles. Depending on the substitution pattern, their preparation typically includes a single and usually high-yielding condensation step starting from various commercial glyoxal hydrates and S-alkyl isothiosemicarbazides in the presence of sodium bicarbonate. More recent synthetic routes include regioselective reactions of N-tosyl hydrazones with aziridines, (26) carbene N–H insertion of hydrazides, (27) O–H insertion of rhodium-azavinylcarbenes, (28) Zn-catalyzed hydrohydrazination of propargylamides, (29) cycloaddition of tetrazines, (30) or domino annulation reactions. (31) There are numerous possibilities to further derivatize and decorate the basic heterocyclic core. For example, simple 3-substituted triazines are susceptible to an easy nucleophilic attack at position 5 followed by position 6. (32,33) The S-alkyl substituents can be utilized in cross-coupling reactions (33,34) or after oxidation, used in nucleophilic substitutions. (35,36) Therefore, the substrate scope of the starting triazines is immense, opening an easy access to diverse 1-alkyl-1,2,4-triazinium salts.
The first goal of our study was to optimize the alkylation of the triazine core. For this purpose, we used 3-phenyltriazine 1a (34) and the commercial 3-methylthiotriazine and explored different alkylating agents and reaction conditions (Table S1). These experiments revealed that the alkylation with benzyl bromide and dimethyl sulfate is sluggish, while methyl iodide proved unreactive. In contrast, the use of Meerwein’s salt (Me3O+BF4) led to clean formation of the N1-alkylated product. (25) Due to difficulties in handling this sensitive compound, we decided to explore triflates as more convenient alkylating agents. To our delight, the alkylation with methyl or ethyl triflate was successful. Interestingly, the simple 3-aryltriazines are alkylated exclusively at position 1, while electronically richer derivatives, such as the commercial 3-methylthiotriazine, led under the same conditions to the formation of products alkylated at both, N1 and N2, as determined by heteronuclear multiple bond correlation nuclear magnetic resonance (NMR) experiments.
The observed differences in the preferred position for the alkylation can be explained, at least in part, by differences in the electrostatic potential of differently substituted triazines in combination with steric effects of the substituent at position 3 (Figure S1).
We also studied the influence of various solvents on the alkylation reaction. Anhydrous toluene was found superior over other solvents with the minor N2 isomer being formed in 15% yield using the methyl triflate and in only 10% using the ethyl triflate. We found that the two N-alkylated isomers can be separated by reversed phase column chromatography. However, the N2 isomer does not interfere with the subsequent DCA step and can be easily removed during purification of the final cycloaddition product. Therefore, we used the crude mixture of the triazinium isomers in all subsequent experiments. Under the optimized conditions, we next prepared a series of triazinium triflates 2a-o-Me(Et) in excellent yields (Scheme 2).

Scheme 2

Scheme 2. Scope of Triazinium Compoundsa

aStandard conditions: triazine 1a–1o (2 mmol), triflate (2.4 mmol), anhydrous toluene (20 mL), 0 °C to RT, under argon. Note: all compounds are triflate salts.

The alkylation is basically quantitative, and the formed triazinium salt simply precipitates from the reaction mixture in most cases. The reaction can be conveniently performed on a larger scale (hundreds of milligrams), and the 1-alkyltriazinium triflates are surprisingly stable when stored in the crystalline form and even in solution (Figure S2).
With the set of triaziniums in hand, we proceeded to optimize the 1,3-dipolar cycloaddition reaction using DMAD as the dipolarophile and 3-phenyltriazinium methyl triflates 2a-Me and 2b-Me as model substrates. We experimented with different bases, solvents, temperatures, and orders of reagent addition. Unfortunately, all these efforts led only to decomposition of the starting materials and formation of the cycloaddition product in less than 10% yield in the best case.
In contrast to these initial results, we found that the cycloaddition of compounds bearing additional substituents at position 5 is viable. In this case, the reaction with DMAD performed in tetrahydrofuran (THF) in the presence of N,N-diisopropylethylamine (DIPEA) afforded the desired cycloaddition products 3d-m-H(Me) in good to very good yields (up to 84%). The reaction proceeded smoothly, and a wide range of triaziniums bearing various aryl substituents at position 5 were tolerated (Scheme 3). In general, cycloadditions of ethyl triazinium ylides gave higher yields when compared to the methylated analogues. The final pyrrolotriazines form in the reaction as the fully oxidized products especially from the methyl triaziniums. If this was not the case, the dihydro intermediates were converted to the oxidized products by simply opening the reaction flask to the air. By following the reaction progress on high-performance liquid chromatography mass spectrometry, we observed that a small portion of the triazinium compounds undergoes dequarternization at the nitrogen atom to yield the starting triazine. Although the exact mechanism remains unclear, similar dealkylation of N-alkyl triazinium salts has been observed previously. (37) Interestingly, the pyrrolotriazines are fluorescent compounds when irradiated at 365 nm using a standard handheld UV lamp. This property could be potentially exploited in preparation of new fluorophores based on this heterocyclic core.

Scheme 3

Scheme 3. 1,3-Dipolar Cycloaddition of Triazinium Ylides with DMADa

aStandard conditions: triazinium (0.5 mmol), DMAD (2 mmol), THF (10 mL), DIPEA (1.5 mmol), 0 °C to RT, 5 h.

Encouraged by these results, we decided to explore the possibility of using other dipolarophiles in the reaction (Scheme 4).

Scheme 4

Scheme 4. Scope of Dipolarophiles
Hence, reaction of 1-methyl-5-phenyl-1,2,4-triazinium triflate 2g-Me with methyl propiolate performed in THF using DIPEA as the base yielded after optimization the desired pyrrolotriazine 4g-H as a single regioisomer in 38% yield. The observed formation of the single regioisomer in the reaction is substantiated by the 5.0 kcal/mol lower energy of the corresponding transition state as evident from density functional theory (DFT) calculations (Figure S3). Even though the cycloaddition was in this case complicated by the competing reaction of the DIPEA base with the electron-poor triple bond, (38) this approach opens the possibility to generate additional pyrrolotriazines in a regioselective manner.
To further expand the scope of dipolarophiles, we performed the reaction with acrylonitrile, N-ethylmaleimide, and N-propargylmaleimide. The reaction with acrylonitrile yielded two diastereomers of a single regioisomer 5g-H in a 2 to 1 ratio and in 54% overall yield. The reaction with maleimide proceeded smoothly and afforded two diastereomeric products 6g-H in an 8 to 1 ratio and 88% overall yield. Based on DFT calculations, the transition state structure leading to the major product has lower calculated energy by 0.9 kcal/mol (Figure S4). Interestingly, only the minor isomer slowly oxidizes to the corresponding pyrrolotriazine. Cycloaddition experiments with N-propargylmaleimide and triaziniums 2g-Me and 2j-Me confirmed the diastereoselectivity of the transformation and yielded pyrrolotriazines 7g-H and 7j-H in 59% (significant dequarternization) and 95% overall yield, respectively.
Finally, to demonstrate the possibility of further derivatization of the pyrrolotriazine scaffold, we performed pilot coupling experiments with cycloadduct 3i-Me (Scheme 5). The thiomethyl substituent at position 3 was successfully utilized in the Liebeskind–Srogl cross-coupling reaction with phenylboronic acid under standard conditions. The corresponding 3-phenyl pyrrolotriazine isolated in 54% yield was used in the next Suzuki–Miyaura cross-coupling reaction, which gave the desired heterocyclic product 8i-Me in excellent 90% isolated yield.

Scheme 5

Scheme 5. Cross-Coupling Modificationsa

aConditions: 1. Phenylboronic acid (2.5 equiv), copper(I) thiophene-2-carboxylate (2.2 equiv), Pd(PPh3)4 (10 mol %), 1,4-dioxane, 95 °C. 2. Phenylboronic acid (2.0 equiv), PdCl2(dppf)·DCM (10 mol %), K2CO3 (2.0 equiv), 1,4-dioxane/H2O = 3/1, 100 °C.

Conclusions

Click to copy section linkSection link copied!

In conclusion, we show that 1,3-dipolar cycloadditions of electron-poor dipolarophiles with triazinium ylides generated in situ from 1-alkyl-1,2,4-triazinium salts provide a facile access to various pyrrolo[2,1-f][1,2,4]triazines in a single step. The reaction gives differently substituted pyrrolotriazines in good yields, and the resulting compounds can be further elaborated by selective cross-coupling reactions. Our experimental data complemented by DFT calculations demonstrate that the reactions can be regio- and diastereoselective. We believe that the presented methodology will provide an efficient synthetic route to medicinally relevant pyrrolotriazines from readily available starting materials.

Supporting Information

Click to copy section linkSection link copied!

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.2c02276.

  • General synthetic procedures, optimization details, 1H, 13C NMR and HRMS, and computational details (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
  • Authors
    • Juraj Galeta - Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 16000, Czech Republic
    • Veronika Šlachtová - Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 16000, Czech Republic
    • Martin Dračínský - Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 16000, Czech RepublicOrcidhttps://orcid.org/0000-0002-4495-0070
  • Author Contributions

    J.G. and V S. performed the synthetic work and isolated, purified, and characterized the compounds. M.D. performed all computational work and detailed NMR measurements of some compounds. M.V. supervised the work. The manuscript was written through contributions of all authors, and all authors have given approval to the final version of the manuscript.

  • Notes
    The authors declare no competing financial interest.

Acknowledgments

Click to copy section linkSection link copied!

This work was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 677465), by the Czech Science Foundation (20-30494L), and by the Academy of Sciences of the Czech Republic (RVO: 61388963). We also appreciate support from the IOCB fellowship for VS.

References

Click to copy section linkSection link copied!

This article references 38 other publications.

  1. 1
    Dzierba Carolyn, D.; Dasgupta, B.; Macor John, E.; Bronson Joanne, J.; Rajamani, R.; Karageorge George, N. Pyrrolotriazine Kinase Inhibitors. WO 2015054358 A1, 2014/10/08, 2015.
  2. 2
    Kim In, W. O. O.; Yoo Ja, K.; Kim Ji, D.; Jun Sun, A. H.; Lee Jun, H. E. Pyrrolotriazine Derivatives As Kinase Inhibitor. WO 2018169373 A1, 2018/03/19, 2018.
  3. 3
    Liang, C.; Jia, M.; Tian, D.; Sun, H. A. N. Synthesis And Medical Application Of Pyrrolo-[2,1-f] [1,2,4] Triazine Mother Nucleus Compound. CN 106432249 A, 2016/09/30, 2017.
  4. 4
    Ott, G. R.; Favor, D. A. Pyrrolo[2,1-f][1,2,4] triazines: From C-nucleosides to kinases and back again, the remarkable journey of a versatile nitrogen heterocycle. Bioorg. Med. Chem. Lett. 2017, 27, 42384246,  DOI: 10.1016/j.bmcl.2017.07.073
  5. 5
    Yang, C.; Meng, L.; Chen, Y.; Wang, X.; Tan, C. U. N.; Li, J.; Ding, J.; Chen, Y. I. Pyrrolo[2,1-f[1,2,4]Triazine Compounds, Preparation Methods And Applications Thereof. U.S. Patent 9,724,352 B2, 2016/09/19, 2017.
  6. 6
    Tyndall, E. M.; Draffan, A. G.; Frey, B.; Pool, B.; Halim, R.; Jahangiri, S.; Bond, S.; Wirth, V.; Luttick, A.; Tilmanis, D.; Thomas, J.; Porter, K.; Tucker, S. P. Prodrugs of imidazotriazine and pyrrolotriazine C-nucleosides can increase anti-HCV activity and enhance nucleotide triphosphate concentrations in vitro. Bioorg. Med. Chem. Lett. 2015, 25, 869873,  DOI: 10.1016/j.bmcl.2014.12.069
  7. 7
    Mesaros, E. F.; Angeles, T. S.; Albom, M. S.; Wagner, J. C.; Aimone, L. D.; Wan, W.; Lu, L.; Huang, Z.; Olsen, M.; Kordwitz, E.; Haltiwanger, R. C.; Landis, A. J.; Cheng, M.; Ruggeri, B. A.; Ator, M. A.; Dorsey, B. D.; Ott, G. R. Piperidine-3,4-diol and piperidine-3-ol derivatives of pyrrolo[2,1-f][1,2,4]triazine as inhibitors of anaplastic lymphoma kinase. Bioorg. Med. Chem. Lett. 2015, 25, 10471052,  DOI: 10.1016/j.bmcl.2015.01.019
  8. 8
    Lim, J.; Altman, M. D.; Baker, J.; Brubaker, J. D.; Chen, H.; Chen, Y.; Kleinschek, M. A.; Li, C.; Liu, D.; Maclean, J. K. F.; Mulrooney, E. F.; Presland, J.; Rakhilina, L.; Smith, G. F.; Yang, R. Identification of N-(1H-pyrazol-4-yl)carboxamide inhibitors of interleukin-1 receptor associated kinase 4: Bicyclic core modifications. Bioorg. Med. Chem. Lett. 2015, 25, 53845388,  DOI: 10.1016/j.bmcl.2015.09.028
  9. 9
    Neunhoeffer, H.; Lehmann, B. Cycloadditionen mit Azabenzolen, XI. Cycloadditionen mit Methoxy- und Dialkylamino-1,2,4-triazinen. Justus Liebigs Ann. Chem. 1977, 1977, 14131420,  DOI: 10.1002/jlac.197719770902
  10. 10
    Migliara, O.; Petruso, S.; Sprio, V. Synthesis of a new bridgehead nitrogen heterocyclic system. Pyrrolo [2,1-f]-[1,2,4]-triazine derivatives. J. Heterocycl. Chem. 1979, 16, 833834,  DOI: 10.1002/jhet.5570160501
  11. 11
    Maeba, I.; Hayashi, M.; Araki, A. C-Nucleosides A Synthesis of 2-Substituted 7-(β-D-Ribofuranosyl)pyrrolo[2,1-f]-[1,2,4]-triazines. A New Type of “Purine Like” C-Nucleoside. Heterocycles 1992, 34, 569574,  DOI: 10.3987/COM-91-5946
  12. 12
    Patil, S. A.; Otter, B. A.; Klein, R. S. Synthesis of pyrrolo[2,1-f][1,2,4]triazine congeners of nucleic acid purines via the N-amination of 2-substituted pyrroles. J. Heterocycl. Chem. 1994, 31, 781786,  DOI: 10.1002/jhet.5570310415
  13. 13
    Patil, S. A.; Otter, B. A.; Klein, R. S. 4-aza-7,9-dideazaadenosine, a new cytotoxic synthetic C-nucleoside analogue of adenosine. Tetrahedron Lett. 1994, 35, 53395342,  DOI: 10.1016/s0040-4039(00)73494-0
  14. 14
    Hunt, J. T.; Mitt, T.; Borzilleri, R.; Gullo-Brown, J.; Fargnoli, J.; Fink, B.; Han, W.-C.; Mortillo, S.; Vite, G.; Wautlet, B.; Wong, T.; Yu, C.; Zheng, X.; Bhide, R. Discovery of the Pyrrolo[2,1-f][1,2,4]triazine Nucleus as a New Kinase Inhibitor Template. J. Med. Chem. 2004, 47, 40544059,  DOI: 10.1021/jm049892u
  15. 15
    Borzilleri, R. M.; Cai, Z.-w.; Ellis, C.; Fargnoli, J.; Fura, A.; Gerhardt, T.; Goyal, B.; Hunt, J. T.; Mortillo, S.; Qian, L.; Tokarski, J.; Vyas, V.; Wautlet, B.; Zheng, X.; Bhide, R. S. Synthesis and SAR of 4-(3-hydroxyphenylamino)pyrrolo[2,1-f][1,2,4]triazine based VEGFR-2 kinase inhibitors. Bioorg. Med. Chem. Lett. 2005, 15, 14291433,  DOI: 10.1016/j.bmcl.2004.12.079
  16. 16
    Cai, Z.-w.; Wei, D.; Borzilleri, R. M.; Qian, L.; Kamath, A.; Mortillo, S.; Wautlet, B.; Henley, B. J.; Jeyaseelan, R.; Tokarski, J.; Hunt, J. T.; Bhide, R. S.; Fargnoli, J.; Lombardo, L. J. Synthesis, SAR, and Evaluation of 4-[2,4-Difluoro-5-(cyclopropylcarbamoyl)phenylamino]pyrrolo[2,1-f][1,2,4]triazine-based VEGFR-2 kinase inhibitors. Bioorg. Med. Chem. Lett. 2008, 18, 13541358,  DOI: 10.1016/j.bmcl.2008.01.012
  17. 17
    Gavai, A. V.; Fink, B. E.; Fairfax, D. J.; Martin, G. S.; Rossiter, L. M.; Holst, C. L.; Kim, S.-H.; Leavitt, K. J.; Mastalerz, H.; Han, W.-C.; Norris, D.; Goyal, B.; Swaminathan, S.; Patel, B.; Mathur, A.; Vyas, D. M.; Tokarski, J. S.; Yu, C.; Oppenheimer, S.; Zhang, H.; Marathe, P.; Fargnoli, J.; Lee, F. Y.; Wong, T. W.; Vite, G. D. Discovery and Preclinical Evaluation of [4-[[1-(3-fluorophenyl)methyl]-1H-indazol-5-ylamino]-5-methylpyrrolo[2,1-f][1,2,4]triazin-6-yl]carbamic Acid, (3S)-3-Morpholinylmethyl Ester (BMS-599626), a Selective and Orally Efficacious Inhibitor of Human Epidermal Growth Factor Receptor 1 and 2 Kinases. J. Med. Chem. 2009, 52, 65276530,  DOI: 10.1021/jm9010065
  18. 18
    Schroeder, G. M.; Chen, X.-T.; Williams, D. K.; Nirschl, D. S.; Cai, Z.-W.; Wei, D.; Tokarski, J. S.; An, Y.; Sack, J.; Chen, Z.; Huynh, T.; Vaccaro, W.; Poss, M.; Wautlet, B.; Gullo-Brown, J.; Kellar, K.; Manne, V.; Hunt, J. T.; Wong, T. W.; Lombardo, L. J.; Fargnoli, J.; Borzilleri, R. M. Identification of pyrrolo[2,1-f][1,2,4]triazine-based inhibitors of Met kinase. Bioorg. Med. Chem. Lett. 2008, 18, 19451951,  DOI: 10.1016/j.bmcl.2008.01.121
  19. 19
    Thieu, T.; Sclafani, J. A.; Levy, D. V.; McLean, A.; Breslin, H. J.; Ott, G. R.; Bakale, R. P.; Dorsey, B. D. Discovery and Process Synthesis of Novel 2,7-Pyrrolo[2,1-f][1,2,4]triazines. Org. Lett. 2011, 13, 42044207,  DOI: 10.1021/ol2015237
  20. 20
    Hodous Brian, L.; Wilson Kevin, J.; Zhang, Y. Compositions Useful For Treating Disorders Related To Kit And Pdfgr. U.S. Patent 20,170,022,206 A1, 2016/07/22, 2017.
  21. 21
    Cascioferro, S.; Parrino, B.; Spanò, V.; Carbone, A.; Montalbano, A.; Barraja, P.; Diana, P.; Cirrincione, G. An overview on the recent developments of 1,2,4-triazine derivatives as anticancer compounds. Eur. J. Med. Chem. 2017, 142, 328375,  DOI: 10.1016/j.ejmech.2017.08.009
  22. 22
    Xin, M.; Zhang, L.; Tang, F.; Tu, C.; Wen, J.; Zhao, X.; Liu, Z.; Cheng, L.; Shen, H. Design, synthesis, and evaluation of pyrrolo[2,1-f][1,2,4]triazine derivatives as novel hedgehog signaling pathway inhibitors. Bioorg. Med. Chem. 2014, 22, 14291440,  DOI: 10.1016/j.bmc.2013.12.055
  23. 23
    Song, Y. n.; Zhan, P.; Zhang, Q.; Liu, X. Privileged scaffolds or promiscuous binders: a glance of pyrrolo[2,1-f][1,2,4]triazines and related bridgehead nitrogen heterocycles in medicinal chemistry. Curr. Pharm. Des. 2013, 19, 15281548,  DOI: 10.2174/1381612811319080020
  24. 24
    Paymode, D. J.; Cardoso, F. S. P.; Agrawal, T.; Tomlin, J. W.; Cook, D. W.; Burns, J. M.; Stringham, R. W.; Sieber, J. D.; Gupton, B. F.; Snead, D. R. Expanding Access to Remdesivir via an Improved Pyrrolotriazine Synthesis: Supply Centered Synthesis. Org. Lett. 2020, 22, 76567661,  DOI: 10.1021/acs.orglett.0c02848
  25. 25
    Chupakhin, O. N.; Rudakov, B. V.; Alexeev, S. G.; Shorshnev, S. V.; Charushin, V. N. 1-Alkyl-1,2,4-triazinium Ylides as 1,3-Dipoles in a Cycloaddition Reaction with Diethyl Acetylenedicarboxylate. Mendeleev Commun. 1992, 2, 8586,  DOI: 10.1070/mc1992v002n03abeh000144
  26. 26
    Crespin, L.; Biancalana, L.; Morack, T.; Blakemore, D. C.; Ley, S. V. One-Pot Acid-Catalyzed Ring-Opening/Cyclization/Oxidation of Aziridines with N-Tosylhydrazones: Access to 1,2,4-Triazines. Org. Lett. 2017, 19, 10841087,  DOI: 10.1021/acs.orglett.7b00101
  27. 27
    Shi, B.; Lewis, W.; Campbell, I. B.; Moody, C. J. A Concise Route to Pyridines from Hydrazides by Metal Carbene N–H Insertion, 1,2,4-Triazine Formation, and Diels–Alder Reaction. Org. Lett. 2009, 11, 36863688,  DOI: 10.1021/ol901502u
  28. 28
    Meng, J.; Wen, M.; Zhang, S.; Pan, P.; Yu, X.; Deng, W.-P. Unexpected O–H Insertion of Rhodium-Azavinylcarbenes with N-Acylhydrazones: Divergent Synthesis of 3,6-Disubstituted- and 3,5,6-Trisubstituted-1,2,4-Triazines. J. Org. Chem. 2017, 82, 16761687,  DOI: 10.1021/acs.joc.6b02846
  29. 29
    Lukin, A.; Vedekhina, T.; Tovpeko, D.; Zhurilo, N.; Krasavin, M. Zn-catalyzed hydrohydrazination of propargylamides with BocNHNH2: a novel entry into the 1,2,4-triazine core. RSC Adv. 2016, 6, 5795657959,  DOI: 10.1039/c6ra12664b
  30. 30
    Zhu, Z.; Glinkerman, C. M.; Boger, D. L. Selective N1/N4 1,4-Cycloaddition of 1,2,4,5-Tetrazines Enabled by Solvent Hydrogen Bonding. J. Am. Chem. Soc. 2020, 142, 2077820787,  DOI: 10.1021/jacs.0c09775
  31. 31
    Tang, D.; Wang, J.; Wu, P.; Guo, X.; Li, J.-H.; Yang, S.; Chen, B.-H. Synthesis of 1,2,4-triazine derivatives via [4 + 2] domino annulation reactions in one pot. RSC Adv. 2016, 6, 1251412518,  DOI: 10.1039/c5ra26638f
  32. 32
    Yamanaka, H; Konno, S.; Sagi, M.; Yoshida, N.; Yamanaka, H. Studies on as-Triazine Derivatives .X. Addition-Reaction of Phenylmagnesium Bromide with 1,2,4-Triazines. Heterocycles 1987, 26, 31113114,  DOI: 10.3987/R-1987-12-3111
  33. 33
    Alphonse, F.-A.; Suzenet, F.; Keromnes, A.; Lebret, B.; Guillaumet, G. A General Approach to Selective Functionalization of 1,2,4-Triazines Using Organometallics in Palladium-Catalyzed Cross-Coupling and Addition Reactions. Synthesis 2004, 28932899,  DOI: 10.1055/s-2004-834868
  34. 34
    Alphonse, F.-A.; Suzenet, F.; Keromnes, A.; Lebret, B.; Guillaumet, G. Copper(I)-Promoted Palladium-Catalyzed Cross-Coupling of Unsaturated Tri-n-butylstannane with Heteroaromatic Thioether. Org. Lett. 2003, 5, 803805,  DOI: 10.1021/ol027453o
  35. 35
    Finlay, M. R. V.; Anderton, M.; Bailey, A.; Boyd, S.; Brookfield, J.; Cairnduff, C.; Charles, M.; Cheasty, A.; Critchlow, S. E.; Culshaw, J.; Ekwuru, T.; Hollingsworth, I.; Jones, N.; Leroux, F.; Littleson, M.; McCarron, H.; McKelvie, J.; Mooney, L.; Nissink, J. W. M.; Perkins, D.; Powell, S.; Quesada, M. J.; Raubo, P.; Sabin, V.; Smith, J.; Smith, P. D.; Stark, A.; Ting, A.; Wang, P.; Wilson, Z.; Winter-Holt, J. J.; Wood, J. M.; Wrigley, G. L.; Yu, G.; Zhang, P. Discovery of a Thiadiazole–Pyridazine-Based Allosteric Glutaminase 1 Inhibitor Series That Demonstrates Oral Bioavailability and Activity in Tumor Xenograft Models. J. Med. Chem. 2019, 62, 65406560,  DOI: 10.1021/acs.jmedchem.9b00260
  36. 36
    Shi, D.-H.; Harjani, J. R.; Gable, R. W.; Baell, J. B. Synthesis of 3-(Alkylamino)-, 3-(Alkoxy)-, 3-(Aryloxy)-, 3-(Alkylthio)-, and 3-(Arylthio)-1,2,4-triazines by Using a Unified Route with 3-(Methylsulfonyl)-1,2,4-triazine. Eur. J. Org. Chem. 2016, 2016, 28422850,  DOI: 10.1002/ejoc.201600267
  37. 37
    Chupakhin, O. N.; Rudakov, B. V.; McDermott, P.; Alexeev, S. G.; Charushin, V. N.; Hegarty, F. An Unusually Easy Oxidative Dequaternization of N-Alkyl-1,2,4-triazinium Salts. Mendeleev Commun. 1995, 5, 104105,  DOI: 10.1070/mc1995v005n03abeh000478
  38. 38
    McCulloch, A. W.; McInnes, A. G. The Reaction of Propiolic Acid Esters with Tertiary Amines. Formation of Betaines. Can. J. Chem. 1974, 52, 35693576,  DOI: 10.1139/v74-534

Cited By

Click to copy section linkSection link copied!
Citation Statements
Explore this article's citation statements on scite.ai

This article is cited by 5 publications.

  1. Veronika Šlachtová, Simona Bellová, Milan Vrabel. Synthesis of C3-Substituted N1-tert-Butyl 1,2,4-Triazinium Salts via the Liebeskind–Srogl Reaction for Fluorogenic Labeling of Live Cells. The Journal of Organic Chemistry 2024, 89 (20) , 14634-14640. https://doi.org/10.1021/acs.joc.3c02454
  2. Ankur Maji, Aditya Yadav, Shubham Sharma, Rajat Saini, Anshu Singh, Aurobinda Mohanty, Chayan K. Nandi, Kaushik Ghosh. One‐Pot Synthesis of 1, 2‐Dihydro [1,2,4] Triazinium Salt by Copper‐Assisted Unprecedented Cyclization Reaction: Applications in DNA and Protein Interaction Studies. ChemPlusChem 2024, 89 (12) https://doi.org/10.1002/cplu.202400219
  3. Veronika Šlachtová, Simona Bellová, Agustina La‐Venia, Juraj Galeta, Martin Dračínský, Karel Chalupský, Alexandra Dvořáková, Helena Mertlíková‐Kaiserová, Peter Rukovanský, Rastislav Dzijak, Milan Vrabel. Triazinium Ligation: Bioorthogonal Reaction of N 1‐Alkyl 1,2,4‐Triazinium Salts**. Angewandte Chemie 2023, 135 (36) https://doi.org/10.1002/ange.202306828
  4. Veronika Šlachtová, Simona Bellová, Agustina La‐Venia, Juraj Galeta, Martin Dračínský, Karel Chalupský, Alexandra Dvořáková, Helena Mertlíková‐Kaiserová, Peter Rukovanský, Rastislav Dzijak, Milan Vrabel. Triazinium Ligation: Bioorthogonal Reaction of N 1‐Alkyl 1,2,4‐Triazinium Salts**. Angewandte Chemie International Edition 2023, 62 (36) https://doi.org/10.1002/anie.202306828
  5. Pierre Audebert, Vincent Sol. Triazines, tetrazines and fused ring polyaza systems. 2023, 471-491. https://doi.org/10.1016/B978-0-443-21936-8.00013-6

ACS Omega

Cite this: ACS Omega 2022, 7, 24, 21233–21238
Click to copy citationCitation copied!
https://doi.org/10.1021/acsomega.2c02276
Published June 10, 2022

Copyright © 2022 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY-NC-ND 4.0 .

Article Views

984

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. Examples of biologically active pyrrolo[2,1-f][1,2,4]triazines (and their respective targets).

    Scheme 1

    Scheme 1. (A) Example of a Typical Synthetic Route to Pyrrolo[2,1-f][1,2,4]triazines. (B) Single-Step Construction of Pyrrolotriazines via 1,3-Dipolar Cycloadditions

    Scheme 2

    Scheme 2. Scope of Triazinium Compoundsa

    aStandard conditions: triazine 1a–1o (2 mmol), triflate (2.4 mmol), anhydrous toluene (20 mL), 0 °C to RT, under argon. Note: all compounds are triflate salts.

    Scheme 3

    Scheme 3. 1,3-Dipolar Cycloaddition of Triazinium Ylides with DMADa

    aStandard conditions: triazinium (0.5 mmol), DMAD (2 mmol), THF (10 mL), DIPEA (1.5 mmol), 0 °C to RT, 5 h.

    Scheme 4

    Scheme 4. Scope of Dipolarophiles

    Scheme 5

    Scheme 5. Cross-Coupling Modificationsa

    aConditions: 1. Phenylboronic acid (2.5 equiv), copper(I) thiophene-2-carboxylate (2.2 equiv), Pd(PPh3)4 (10 mol %), 1,4-dioxane, 95 °C. 2. Phenylboronic acid (2.0 equiv), PdCl2(dppf)·DCM (10 mol %), K2CO3 (2.0 equiv), 1,4-dioxane/H2O = 3/1, 100 °C.

  • References


    This article references 38 other publications.

    1. 1
      Dzierba Carolyn, D.; Dasgupta, B.; Macor John, E.; Bronson Joanne, J.; Rajamani, R.; Karageorge George, N. Pyrrolotriazine Kinase Inhibitors. WO 2015054358 A1, 2014/10/08, 2015.
    2. 2
      Kim In, W. O. O.; Yoo Ja, K.; Kim Ji, D.; Jun Sun, A. H.; Lee Jun, H. E. Pyrrolotriazine Derivatives As Kinase Inhibitor. WO 2018169373 A1, 2018/03/19, 2018.
    3. 3
      Liang, C.; Jia, M.; Tian, D.; Sun, H. A. N. Synthesis And Medical Application Of Pyrrolo-[2,1-f] [1,2,4] Triazine Mother Nucleus Compound. CN 106432249 A, 2016/09/30, 2017.
    4. 4
      Ott, G. R.; Favor, D. A. Pyrrolo[2,1-f][1,2,4] triazines: From C-nucleosides to kinases and back again, the remarkable journey of a versatile nitrogen heterocycle. Bioorg. Med. Chem. Lett. 2017, 27, 42384246,  DOI: 10.1016/j.bmcl.2017.07.073
    5. 5
      Yang, C.; Meng, L.; Chen, Y.; Wang, X.; Tan, C. U. N.; Li, J.; Ding, J.; Chen, Y. I. Pyrrolo[2,1-f[1,2,4]Triazine Compounds, Preparation Methods And Applications Thereof. U.S. Patent 9,724,352 B2, 2016/09/19, 2017.
    6. 6
      Tyndall, E. M.; Draffan, A. G.; Frey, B.; Pool, B.; Halim, R.; Jahangiri, S.; Bond, S.; Wirth, V.; Luttick, A.; Tilmanis, D.; Thomas, J.; Porter, K.; Tucker, S. P. Prodrugs of imidazotriazine and pyrrolotriazine C-nucleosides can increase anti-HCV activity and enhance nucleotide triphosphate concentrations in vitro. Bioorg. Med. Chem. Lett. 2015, 25, 869873,  DOI: 10.1016/j.bmcl.2014.12.069
    7. 7
      Mesaros, E. F.; Angeles, T. S.; Albom, M. S.; Wagner, J. C.; Aimone, L. D.; Wan, W.; Lu, L.; Huang, Z.; Olsen, M.; Kordwitz, E.; Haltiwanger, R. C.; Landis, A. J.; Cheng, M.; Ruggeri, B. A.; Ator, M. A.; Dorsey, B. D.; Ott, G. R. Piperidine-3,4-diol and piperidine-3-ol derivatives of pyrrolo[2,1-f][1,2,4]triazine as inhibitors of anaplastic lymphoma kinase. Bioorg. Med. Chem. Lett. 2015, 25, 10471052,  DOI: 10.1016/j.bmcl.2015.01.019
    8. 8
      Lim, J.; Altman, M. D.; Baker, J.; Brubaker, J. D.; Chen, H.; Chen, Y.; Kleinschek, M. A.; Li, C.; Liu, D.; Maclean, J. K. F.; Mulrooney, E. F.; Presland, J.; Rakhilina, L.; Smith, G. F.; Yang, R. Identification of N-(1H-pyrazol-4-yl)carboxamide inhibitors of interleukin-1 receptor associated kinase 4: Bicyclic core modifications. Bioorg. Med. Chem. Lett. 2015, 25, 53845388,  DOI: 10.1016/j.bmcl.2015.09.028
    9. 9
      Neunhoeffer, H.; Lehmann, B. Cycloadditionen mit Azabenzolen, XI. Cycloadditionen mit Methoxy- und Dialkylamino-1,2,4-triazinen. Justus Liebigs Ann. Chem. 1977, 1977, 14131420,  DOI: 10.1002/jlac.197719770902
    10. 10
      Migliara, O.; Petruso, S.; Sprio, V. Synthesis of a new bridgehead nitrogen heterocyclic system. Pyrrolo [2,1-f]-[1,2,4]-triazine derivatives. J. Heterocycl. Chem. 1979, 16, 833834,  DOI: 10.1002/jhet.5570160501
    11. 11
      Maeba, I.; Hayashi, M.; Araki, A. C-Nucleosides A Synthesis of 2-Substituted 7-(β-D-Ribofuranosyl)pyrrolo[2,1-f]-[1,2,4]-triazines. A New Type of “Purine Like” C-Nucleoside. Heterocycles 1992, 34, 569574,  DOI: 10.3987/COM-91-5946
    12. 12
      Patil, S. A.; Otter, B. A.; Klein, R. S. Synthesis of pyrrolo[2,1-f][1,2,4]triazine congeners of nucleic acid purines via the N-amination of 2-substituted pyrroles. J. Heterocycl. Chem. 1994, 31, 781786,  DOI: 10.1002/jhet.5570310415
    13. 13
      Patil, S. A.; Otter, B. A.; Klein, R. S. 4-aza-7,9-dideazaadenosine, a new cytotoxic synthetic C-nucleoside analogue of adenosine. Tetrahedron Lett. 1994, 35, 53395342,  DOI: 10.1016/s0040-4039(00)73494-0
    14. 14
      Hunt, J. T.; Mitt, T.; Borzilleri, R.; Gullo-Brown, J.; Fargnoli, J.; Fink, B.; Han, W.-C.; Mortillo, S.; Vite, G.; Wautlet, B.; Wong, T.; Yu, C.; Zheng, X.; Bhide, R. Discovery of the Pyrrolo[2,1-f][1,2,4]triazine Nucleus as a New Kinase Inhibitor Template. J. Med. Chem. 2004, 47, 40544059,  DOI: 10.1021/jm049892u
    15. 15
      Borzilleri, R. M.; Cai, Z.-w.; Ellis, C.; Fargnoli, J.; Fura, A.; Gerhardt, T.; Goyal, B.; Hunt, J. T.; Mortillo, S.; Qian, L.; Tokarski, J.; Vyas, V.; Wautlet, B.; Zheng, X.; Bhide, R. S. Synthesis and SAR of 4-(3-hydroxyphenylamino)pyrrolo[2,1-f][1,2,4]triazine based VEGFR-2 kinase inhibitors. Bioorg. Med. Chem. Lett. 2005, 15, 14291433,  DOI: 10.1016/j.bmcl.2004.12.079
    16. 16
      Cai, Z.-w.; Wei, D.; Borzilleri, R. M.; Qian, L.; Kamath, A.; Mortillo, S.; Wautlet, B.; Henley, B. J.; Jeyaseelan, R.; Tokarski, J.; Hunt, J. T.; Bhide, R. S.; Fargnoli, J.; Lombardo, L. J. Synthesis, SAR, and Evaluation of 4-[2,4-Difluoro-5-(cyclopropylcarbamoyl)phenylamino]pyrrolo[2,1-f][1,2,4]triazine-based VEGFR-2 kinase inhibitors. Bioorg. Med. Chem. Lett. 2008, 18, 13541358,  DOI: 10.1016/j.bmcl.2008.01.012
    17. 17
      Gavai, A. V.; Fink, B. E.; Fairfax, D. J.; Martin, G. S.; Rossiter, L. M.; Holst, C. L.; Kim, S.-H.; Leavitt, K. J.; Mastalerz, H.; Han, W.-C.; Norris, D.; Goyal, B.; Swaminathan, S.; Patel, B.; Mathur, A.; Vyas, D. M.; Tokarski, J. S.; Yu, C.; Oppenheimer, S.; Zhang, H.; Marathe, P.; Fargnoli, J.; Lee, F. Y.; Wong, T. W.; Vite, G. D. Discovery and Preclinical Evaluation of [4-[[1-(3-fluorophenyl)methyl]-1H-indazol-5-ylamino]-5-methylpyrrolo[2,1-f][1,2,4]triazin-6-yl]carbamic Acid, (3S)-3-Morpholinylmethyl Ester (BMS-599626), a Selective and Orally Efficacious Inhibitor of Human Epidermal Growth Factor Receptor 1 and 2 Kinases. J. Med. Chem. 2009, 52, 65276530,  DOI: 10.1021/jm9010065
    18. 18
      Schroeder, G. M.; Chen, X.-T.; Williams, D. K.; Nirschl, D. S.; Cai, Z.-W.; Wei, D.; Tokarski, J. S.; An, Y.; Sack, J.; Chen, Z.; Huynh, T.; Vaccaro, W.; Poss, M.; Wautlet, B.; Gullo-Brown, J.; Kellar, K.; Manne, V.; Hunt, J. T.; Wong, T. W.; Lombardo, L. J.; Fargnoli, J.; Borzilleri, R. M. Identification of pyrrolo[2,1-f][1,2,4]triazine-based inhibitors of Met kinase. Bioorg. Med. Chem. Lett. 2008, 18, 19451951,  DOI: 10.1016/j.bmcl.2008.01.121
    19. 19
      Thieu, T.; Sclafani, J. A.; Levy, D. V.; McLean, A.; Breslin, H. J.; Ott, G. R.; Bakale, R. P.; Dorsey, B. D. Discovery and Process Synthesis of Novel 2,7-Pyrrolo[2,1-f][1,2,4]triazines. Org. Lett. 2011, 13, 42044207,  DOI: 10.1021/ol2015237
    20. 20
      Hodous Brian, L.; Wilson Kevin, J.; Zhang, Y. Compositions Useful For Treating Disorders Related To Kit And Pdfgr. U.S. Patent 20,170,022,206 A1, 2016/07/22, 2017.
    21. 21
      Cascioferro, S.; Parrino, B.; Spanò, V.; Carbone, A.; Montalbano, A.; Barraja, P.; Diana, P.; Cirrincione, G. An overview on the recent developments of 1,2,4-triazine derivatives as anticancer compounds. Eur. J. Med. Chem. 2017, 142, 328375,  DOI: 10.1016/j.ejmech.2017.08.009
    22. 22
      Xin, M.; Zhang, L.; Tang, F.; Tu, C.; Wen, J.; Zhao, X.; Liu, Z.; Cheng, L.; Shen, H. Design, synthesis, and evaluation of pyrrolo[2,1-f][1,2,4]triazine derivatives as novel hedgehog signaling pathway inhibitors. Bioorg. Med. Chem. 2014, 22, 14291440,  DOI: 10.1016/j.bmc.2013.12.055
    23. 23
      Song, Y. n.; Zhan, P.; Zhang, Q.; Liu, X. Privileged scaffolds or promiscuous binders: a glance of pyrrolo[2,1-f][1,2,4]triazines and related bridgehead nitrogen heterocycles in medicinal chemistry. Curr. Pharm. Des. 2013, 19, 15281548,  DOI: 10.2174/1381612811319080020
    24. 24
      Paymode, D. J.; Cardoso, F. S. P.; Agrawal, T.; Tomlin, J. W.; Cook, D. W.; Burns, J. M.; Stringham, R. W.; Sieber, J. D.; Gupton, B. F.; Snead, D. R. Expanding Access to Remdesivir via an Improved Pyrrolotriazine Synthesis: Supply Centered Synthesis. Org. Lett. 2020, 22, 76567661,  DOI: 10.1021/acs.orglett.0c02848
    25. 25
      Chupakhin, O. N.; Rudakov, B. V.; Alexeev, S. G.; Shorshnev, S. V.; Charushin, V. N. 1-Alkyl-1,2,4-triazinium Ylides as 1,3-Dipoles in a Cycloaddition Reaction with Diethyl Acetylenedicarboxylate. Mendeleev Commun. 1992, 2, 8586,  DOI: 10.1070/mc1992v002n03abeh000144
    26. 26
      Crespin, L.; Biancalana, L.; Morack, T.; Blakemore, D. C.; Ley, S. V. One-Pot Acid-Catalyzed Ring-Opening/Cyclization/Oxidation of Aziridines with N-Tosylhydrazones: Access to 1,2,4-Triazines. Org. Lett. 2017, 19, 10841087,  DOI: 10.1021/acs.orglett.7b00101
    27. 27
      Shi, B.; Lewis, W.; Campbell, I. B.; Moody, C. J. A Concise Route to Pyridines from Hydrazides by Metal Carbene N–H Insertion, 1,2,4-Triazine Formation, and Diels–Alder Reaction. Org. Lett. 2009, 11, 36863688,  DOI: 10.1021/ol901502u
    28. 28
      Meng, J.; Wen, M.; Zhang, S.; Pan, P.; Yu, X.; Deng, W.-P. Unexpected O–H Insertion of Rhodium-Azavinylcarbenes with N-Acylhydrazones: Divergent Synthesis of 3,6-Disubstituted- and 3,5,6-Trisubstituted-1,2,4-Triazines. J. Org. Chem. 2017, 82, 16761687,  DOI: 10.1021/acs.joc.6b02846
    29. 29
      Lukin, A.; Vedekhina, T.; Tovpeko, D.; Zhurilo, N.; Krasavin, M. Zn-catalyzed hydrohydrazination of propargylamides with BocNHNH2: a novel entry into the 1,2,4-triazine core. RSC Adv. 2016, 6, 5795657959,  DOI: 10.1039/c6ra12664b
    30. 30
      Zhu, Z.; Glinkerman, C. M.; Boger, D. L. Selective N1/N4 1,4-Cycloaddition of 1,2,4,5-Tetrazines Enabled by Solvent Hydrogen Bonding. J. Am. Chem. Soc. 2020, 142, 2077820787,  DOI: 10.1021/jacs.0c09775
    31. 31
      Tang, D.; Wang, J.; Wu, P.; Guo, X.; Li, J.-H.; Yang, S.; Chen, B.-H. Synthesis of 1,2,4-triazine derivatives via [4 + 2] domino annulation reactions in one pot. RSC Adv. 2016, 6, 1251412518,  DOI: 10.1039/c5ra26638f
    32. 32
      Yamanaka, H; Konno, S.; Sagi, M.; Yoshida, N.; Yamanaka, H. Studies on as-Triazine Derivatives .X. Addition-Reaction of Phenylmagnesium Bromide with 1,2,4-Triazines. Heterocycles 1987, 26, 31113114,  DOI: 10.3987/R-1987-12-3111
    33. 33
      Alphonse, F.-A.; Suzenet, F.; Keromnes, A.; Lebret, B.; Guillaumet, G. A General Approach to Selective Functionalization of 1,2,4-Triazines Using Organometallics in Palladium-Catalyzed Cross-Coupling and Addition Reactions. Synthesis 2004, 28932899,  DOI: 10.1055/s-2004-834868
    34. 34
      Alphonse, F.-A.; Suzenet, F.; Keromnes, A.; Lebret, B.; Guillaumet, G. Copper(I)-Promoted Palladium-Catalyzed Cross-Coupling of Unsaturated Tri-n-butylstannane with Heteroaromatic Thioether. Org. Lett. 2003, 5, 803805,  DOI: 10.1021/ol027453o
    35. 35
      Finlay, M. R. V.; Anderton, M.; Bailey, A.; Boyd, S.; Brookfield, J.; Cairnduff, C.; Charles, M.; Cheasty, A.; Critchlow, S. E.; Culshaw, J.; Ekwuru, T.; Hollingsworth, I.; Jones, N.; Leroux, F.; Littleson, M.; McCarron, H.; McKelvie, J.; Mooney, L.; Nissink, J. W. M.; Perkins, D.; Powell, S.; Quesada, M. J.; Raubo, P.; Sabin, V.; Smith, J.; Smith, P. D.; Stark, A.; Ting, A.; Wang, P.; Wilson, Z.; Winter-Holt, J. J.; Wood, J. M.; Wrigley, G. L.; Yu, G.; Zhang, P. Discovery of a Thiadiazole–Pyridazine-Based Allosteric Glutaminase 1 Inhibitor Series That Demonstrates Oral Bioavailability and Activity in Tumor Xenograft Models. J. Med. Chem. 2019, 62, 65406560,  DOI: 10.1021/acs.jmedchem.9b00260
    36. 36
      Shi, D.-H.; Harjani, J. R.; Gable, R. W.; Baell, J. B. Synthesis of 3-(Alkylamino)-, 3-(Alkoxy)-, 3-(Aryloxy)-, 3-(Alkylthio)-, and 3-(Arylthio)-1,2,4-triazines by Using a Unified Route with 3-(Methylsulfonyl)-1,2,4-triazine. Eur. J. Org. Chem. 2016, 2016, 28422850,  DOI: 10.1002/ejoc.201600267
    37. 37
      Chupakhin, O. N.; Rudakov, B. V.; McDermott, P.; Alexeev, S. G.; Charushin, V. N.; Hegarty, F. An Unusually Easy Oxidative Dequaternization of N-Alkyl-1,2,4-triazinium Salts. Mendeleev Commun. 1995, 5, 104105,  DOI: 10.1070/mc1995v005n03abeh000478
    38. 38
      McCulloch, A. W.; McInnes, A. G. The Reaction of Propiolic Acid Esters with Tertiary Amines. Formation of Betaines. Can. J. Chem. 1974, 52, 35693576,  DOI: 10.1139/v74-534
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.2c02276.

    • General synthetic procedures, optimization details, 1H, 13C NMR and HRMS, and computational details (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.