Design, Synthesis, Biological Evaluation, and Molecular Docking Studies of Novel 1,3,4-Thiadiazole Derivatives Targeting Both Aldose Reductase and α-Glucosidase for Diabetes MellitusClick to copy article linkArticle link copied!
- Betül KayaBetül KayaDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Zonguldak Bulent Ecevit University, 67600 Zonguldak, TurkeyMore by Betül Kaya
- Ulviye Acar Çevik*Ulviye Acar Çevik*Email: [email protected]. Tel. +90-222-335-0580/3775.Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, TurkeyMore by Ulviye Acar Çevik
- Adem NecipAdem NecipDepartment of Pharmacy Services, Vocational School of Health Services, Harran University, 63300 Şanlıurfa, TurkeyMore by Adem Necip
- Hatice Esra DuranHatice Esra DuranDepartment of Medical Biochemistry, Faculty of Medicine, Kafkas University, 36100 Kars, TurkeyMore by Hatice Esra Duran
- Bilge ÇiftçiBilge ÇiftçiVocational School of Health Services, Bilecik Şeyh Edebali University, 11230 Bilecik, TurkeyMore by Bilge Çiftçi
- Mesut IşıkMesut IşıkDepartment of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University, 11230 Bilecik, TurkeyMore by Mesut Işık
- Pervin SoyerPervin SoyerDepartment of Pharmaceutical Microbiology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, TurkeyMore by Pervin Soyer
- Hayrani Eren BostancıHayrani Eren BostancıDepartment of Biochemistry, Faculty of Pharmacy, Cumhuriyet University, 58140 Sivas, TurkeyMore by Hayrani Eren Bostancı
- Zafer Asım KaplancıklıZafer Asım KaplancıklıDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, TurkeyThe Rectorate of Bilecik Şeyh Edebali University, 11230 Bilecik, TurkeyMore by Zafer Asım Kaplancıklı
- Şükrü BeydemirŞükrü BeydemirDepartment of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, TurkeyMore by Şükrü Beydemir
Abstract
We have developed new 1,3,4-thiadiazole derivatives and examined their ability to inhibit aldose reductase and α-glucosidase. All of the members of the series showed a higher potential of aldose reductase inhibition (KI: 15.39 ± 1.61–176.50 ± 10.69 nM and IC50: 20.16 ± 1.07–175.40 ± 6.97 nM) compared to the reference inhibitor epalrestat (KI: 837.70 ± 53.87 nM, IC50: 265.00 ± 2.26 nM). Furthermore, compounds 6a, 6g, 6h, 6j, 6o, 6p, and 6q showed significantly higher inhibitory activity (KI: 4.48 ± 0.25 μM–15.86 ± 0.92 μM and IC50: 4.68 ± 0.23 μM–34.65 ± 1.78 μM) toward α-glucosidase compared to the reference acarbose (KI: 21.52 ± 2.72 μM, IC50: 132.51 ± 9.86 μM). Molecular docking studies confirmed that the most potent inhibitor of α-GLY, compound 6h (KI: 4.48 ± 0.25 μM), interacts with the target protein 5NN8 through hydrogen bonds as in acarbose. On the other hand, compounds 6o (KI: 15.39 ± 1.61 nM) and 6p (KI: 23.86 ± 2.41 nM), the most potent inhibitors for AR, establish hydrogen bonds with the target protein 4JIR like epalrestat. In silico ADME/T analysis was performed to predict their drug-like properties. A cytotoxicity study was carried out with the L929 fibroblast cell line in vitro, revealing that all of the synthesized compounds were noncytotoxic. Furthermore, AMES test has been added to show the low mutagenic potential of the compounds 6h and 6o.
This publication is licensed under
License Summary*
You are free to share(copy and redistribute) this article in any medium or format and to adapt(remix, transform, and build upon) the material for any purpose, even commercially within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format and to adapt(remix, transform, and build upon) the material for any purpose, even commercially within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format and to adapt(remix, transform, and build upon) the material for any purpose, even commercially within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
1. Introduction
Scheme 1
aGlucose is converted to sorbitol via the enzyme aldose reductase, consuming NADPH, which leads to a decrease in the antioxidant capacity of the cell. Sorbitol is oxidized to fructose via the enzyme sorbitol dehydrogenase, and NADH accumulates during this reaction. The accumulation of NADH leads to the formation of ROS via the enzyme NADH oxidase. The increase in ROS and the formation of AGEs by fructose contribute to diabetic complications such as retinopathy, nephropathy and neuropathy. Glucosidase inhibitors prevent the conversion of complex carbohydrates into glucose, while aldose reductase inhibitors help prevent complications by limiting the activity of polyol metabolism. (23,24) (NADPH: Nicotinamide adenine dinucleotide phosphate, NADH: Nicotinamide adenine dinucleotide, ROS: Reactive oxygen species, AGE: Advanced glycation end products).
Figure 1
Figure 1. Structures of the designed compounds (6a–6q).
2. Results and Discussion
2.1. Chemistry
Scheme 2
aReagents and conditions; i: hydrazine hydrate, ethanol, rt; 4 h ii: (1) carbon disulfide, potassium hydroxide, ethanol, reflux, 10 h (2) hydrochloric acid, pH 4–5; iii: acetic acid, ethanol, reflux, 8 h; iv: sodium borohydride, methanol, rt; 10 h; v: chloroacetyl chloride, triethylamine, tetrahydrofuran, ice-bath, 5 h; vi: potassium hydroxide, acetone, rt, 8 h.
2.2. Biological Activity

Aldose reductase.
α-Glycosidase.
Not determined. Quantitative values of compounds with IC50 values of 500 and below are given in the Table.
Figure 2
Figure 2. SAR study of compounds 6a–6q.
2.3. Molecular Docking Study
Figure 3
Figure 3. Protein–ligand interaction (3D and 2D). α-GLY, represented by 5NN8, was subjected to molecular docking studies with compound 6h, 6p, and acarbose.
Figure 4
Figure 4. Protein–ligand interaction (3D and 2D). AR, represented by 4JIR, was subjected to molecular docking studies with compound 6o, 6p and epalrestat.
2.4. ADME/T Analysis

* Rejected; ** Accepted.
Figure 5
Figure 5. Radar graph showing the chemical structure and physicochemical properties of compounds (6h, 6o, and 6p) and acarbose, epalrestat.
2.5. Cytotoxicity Test
Figure 6
Figure 6. Cell viability of the synthesized compounds (6a–6q) at maximum dose (100 μM) for 24 h.
2.6. Ames II Test
Figure 7
Figure 7. Average number of positive wells at effective concentrations.
mutagenicity | |||||
---|---|---|---|---|---|
compounds | TA 98 | TA Mix | |||
S9+ | S9– | S9+ | S9– | ||
comp. 6h | DMSO | 0 | 0 | 0 | 0 |
75 μM | 0 | 0 | 8 | 5 | |
37.5 μM | 0 | 0 | 0 | 0 | |
18.75 μM | 0 | 0 | 0 | 0 | |
9.4 μM | 0 | 0 | 0 | 0 | |
4.7 μM | 0 | 0 | 0 | 0 | |
control 4-NQO/2-NF | 26 | 26 | 26 | 26 | |
control 2-AA | 16 | 16 | 16 | 16 | |
no dose | 0 | 0 | 0 | 0 | |
comp. 6o | DMSO | 0 | 0 | 0 | 0 |
50 nM | 0 | 0 | 15.3 | 15.3 | |
25 nM | 0 | 0 | 0 | 0 | |
12.5 nM | 0 | 0 | 0 | 0 | |
6.25 nM | 0 | 0 | 0 | 0 | |
3.125 nM | 0 | 0 | 0 | 0 | |
control 4-NQO/2-NF | 26 | 26 | 26 | 26 | |
control 2-AA | 16 | 16 | 16 | 16 | |
no dose | 0 | 0 | 0 | 0 |
mutagenicity | |||||
---|---|---|---|---|---|
compounds | TA 98 | TA Mix | |||
S9+ | S9– | S9+ | S9– | ||
comp. 6h | DMSO | 1 | 1 | 1 | 1 |
75 μM | 1 | 1 | 2 | 2 | |
37.5 μM | 1 | 1 | 1 | 1 | |
18.75 μM | 1 | 1 | 1 | 1 | |
9.4 μM | 1 | 1 | 1 | 1 | |
4.7 μM | 1 | 1 | 1 | 1 | |
control 4-NQO/2-NF | 1 | 1 | 1 | 1 | |
control 2-AA | 1 | 1 | 1 | 1 | |
no dose | 1 | 1 | 1 | 1 | |
comp. 6o | DMSO | 1 | 1 | 1 | 1 |
50 nM | 1 | 1 | 3.055 | 3.055 | |
25 nM | 1 | 1 | 1 | 1 | |
12.5 nM | 1 | 1 | 1 | 1 | |
6.25 nM | 1 | 1 | 1 | 1 | |
3.125 nM | 1 | 1 | 1 | 1 | |
control 4-NQO/2-NF | 1 | 1 | 1 | 1 | |
control 2-AA | 1 | 1 | 1 | 1 | |
no dose | 1 | 1 | 1 | 1 |
3. Materials and Methods
3.1. Chemistry
3.1.1. Synthesis of 4-Substitutedthiosemicarbazides (1a–1i)
3.1.2. Synthesis of 5-Substitutedamino-1,3,4-thiadiazole-2(3H)-thione (2a–2i)
3.1.3. Synthesis of 4-Substituted-N-(4-nitrobenzylidene)aniline (3a,3b)
3.1.4. Synthesis of 4-Substituted-N-(4-nitrobenzyl)aniline (4a,4b)
3.1.5. Synthesis of 2-Chloro-N-(4-substitutedphenyl)-N-(4-nitrobenzyl)acetamide (5a,5b)
3.1.6. Synthesis of N-(4-substitutedphenyl)-2-[(5-substitutedamino-1,3,4-thiadiazol-2-yl)thio]-N-(4-nitrobenzyl)acetamide derivatives (6a–6q)
3.1.6.1. N-(4-Chlororophenyl)-2-[(5-(ethylamino)-1,3,4-thiadiazol-2-yl)thio]-N-(4-nitrobenzyl) Acetamide (6a)
3.1.6.2. N-(4-Chlororophenyl)-2-[(5-((2-methoxyethyl)amino)-1,3,4-thiadiazol-2-yl)thio]-N-(4-nitrobenzyl)acetamide (6b)
3.1.6.3. N-(4-Chlororophenyl)-2-[(5-(isopropylamino)-1,3,4-thiadiazol-2-yl)thio]-N-(4-nitrobenzyl) acetamide (6c)
3.1.6.4. N-(4-Chlororophenyl)-2-[(5-(butylamino)-1,3,4-thiadiazol-2-yl)thio]-N-(4-nitrobenzyl) acetamide (6d)
3.1.6.5. N-(4-Chlororophenyl)-2-[(5-(isobutylamino)-1,3,4-thiadiazol-2-yl)thio]-N-(4-nitrobenzyl) Acetamide (6e)
3.1.6.6. N-(4-Chlororophenyl)-2-[(5-(cyclohexylamino)-1,3,4-thiadiazol-2-yl)thio]-N-(4-nitrobenzyl) Acetamide (6f)
3.1.6.7. N-(4-Chlororophenyl)-2-[(5-(phenylamino)-1,3,4-thiadiazol-2-yl)thio]-N-(4-nitrobenzyl) Acetamide (6g)
3.1.6.8. N-(4-Chlororophenyl)-2-[(5-(4-methylphenylamino)-1,3,4-thiadiazol-2-yl)thio]-N-(4-nitrobenzyl) Acetamide (6h)
3.1.6.9. N-(4-Fluorophenyl)-2-[(5-(ethylamino)-1,3,4-thiadiazol-2-yl)thio]-N-(4-nitrobenzyl)acetamide (6i)
3.1.6.10. N-(4-Fluorophenyl)-2-[(5-((2-methoxyethyl)amino)-1,3,4-thiadiazol-2-yl)thio]-N-(4-nitrobenzyl) Acetamide (6j)
3.1.6.11. N-(4-Fluorophenyl)-2-[(5-(propylamino)-1,3,4-thiadiazol-2-yl)thio]-N-(4-nitrobenzyl) Acetamide (6k)
3.1.6.12. N-(4-Fluorophenyl)-2-[(5-(isopropylamino)-1,3,4-thiadiazol-2-yl)thio]-N-(4-nitrobenzyl)acetamide (6l)
3.1.6.13. N-(4-Fluorophenyl)-2-[(5-(butylamino)-1,3,4-thiadiazol-2-yl)thio]-N-(4-nitrobenzyl) Acetamide (6m)
3.1.6.14. N-(4-Fluorophenyl)-2-[(5-(isobutylamino)-1,3,4-thiadiazol-2-yl)thio]-N-(4-nitrobenzyl) Acetamide (6n)
3.1.6.15. N-(4-Fluorophenyl)-2-[(5-(cyclohexylamino)-1,3,4-thiadiazol-2-yl)thio]-N-(4-nitrobenzyl)acetamide (6o)
3.1.6.16. N-(4-Fluorophenyl)-2-[(5-(phenylamino)-1,3,4-thiadiazol-2-yl)thio]-N-(4-nitrobenzyl)acetamide (6p)
3.1.6.17. N-(4-Fluorophenyl)-2-[(5-(4-methylphenylamino)-1,3,4-thiadiazol-2-yl)thio]-N-(4-nitrobenzyl) Acetamide (6q)
3.2. Biological Activity
3.2.1. Aldose Reductase Assay
3.2.2. α-Glycosidase Assay
3.2.3. In Vitro Inhibition Studies
3.3. Molecular Docking Study
3.4. ADME Analysis
3.5. Statistical Studies
3.6. Cell Culture
3.6.1. Cell Viability Assay
3.7. Ames II Test
4. Conclusions
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.5c00566.
1H NMR, 13C NMR, and HRMS spectra of compounds 6a–6q (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
Acknowledgments
This study was financially supported by Zonguldak Bulent Ecevit University Scientific Projects Fund, Project No: 2024-74509460-01.
References
This article references 72 other publications.
- 1Yu, M. G.; Gordin, D.; Fu, J.; Park, K.; Li, Q.; King, G. L. Protective factors and the pathogenesis of complications in diabetes. Endocr. Rev. 2024, 45, 227– 252, DOI: 10.1210/endrev/bnad030Google ScholarThere is no corresponding record for this reference.
- 2Min, X.; Guo, S.; Lu, Y.; Xu, X. Investigation on the inhibition mechanism and binding behavior of cryptolepine to α-glucosidase and its hypoglycemic activity by multi-spectroscopic method. J. Lumin. 2024, 269, 120437 DOI: 10.1016/j.jlumin.2024.120437Google ScholarThere is no corresponding record for this reference.
- 3Chen, L.; Magliano, D. J.; Zimmet, P. Z. The worldwide epidemiology of type 2 diabetes mellitus-present and future perspectives. Nat. Rev. Endocrinol. 2012, 8, 228– 236, DOI: 10.1038/nrendo.2011.183Google ScholarThere is no corresponding record for this reference.
- 4Wu, X. Z.; Zhu, W. J.; Lu, L.; Hu, C. M.; Zheng, Y. Y.; Zhang, X.; Lin, J.; Wu, J. Y.; Xiong; Zhang, K.; Xu, X. T. Synthesis and anti-α-glucosidase activity evaluation of betulinic acid derivatives. Arab. J. Chem. 2023, 16 (5), 104659 DOI: 10.1016/j.arabjc.2023.104659Google ScholarThere is no corresponding record for this reference.
- 5Available online: https://www.statista.com/topics/1723/diabetes/ (accessed Jan 6, 2025).Google ScholarThere is no corresponding record for this reference.
- 6Li, W.; Liu, X.; Liu, Z.; Xing, Q.; Liu, R.; Wu, Q.; Hu, Y.; Zhang, J. The signaling pathways of selected traditional Chinese medicine prescriptions and their metabolites in the treatment of diabetic cardiomyopathy: a review. Front. Pharmacol. 2024, 15, 1416403 DOI: 10.3389/fphar.2024.1416403Google ScholarThere is no corresponding record for this reference.
- 7Dai, B.; Wu, Q.; Zeng, C.; Zhang, J.; Cao, L.; Xiao, Z.; Yang, M. The effect of Liuwei Dihuang decoction on PI3K/Akt signaling pathway in liver of type 2 diabetes mellitus (T2DM) rats with insulin resistance. J. Ethnopharmacol. 2016, 192, 382– 389, DOI: 10.1016/j.jep.2016.07.024Google ScholarThere is no corresponding record for this reference.
- 8Zahoor, T.; Khan, S.; Chinnam, S.; Iqbal, T.; Hussain, R.; Khan, Y.; Ullah, H.; Daud, S.; Rahman, R.; Iqbal, R.; Aljowaie, R. M.; Aghayeva, S. A combined in vitro and in silico approach of thiadiazole based Schiff base derivatives as multipotent inhibitor: Synthesis, spectral analysis, antidiabetic and antimicrobial activity. Results Chem. 2024, 9, 101671 DOI: 10.1016/j.rechem.2024.101671Google ScholarThere is no corresponding record for this reference.
- 9Ören, E.; Tuncay, S.; Toprak, Y. E.; Fırat, M.; Toptancı, İ.; Karasakal, Ö. F.; Işık, M.; Karahan, M. Antioxidant, antidiabetic effects and polyphenolic contents of propolis from Siirt, Turkey. Food Sci. Nutr. 2024, 12, 2772– 2782, DOI: 10.1002/fsn3.3958Google ScholarThere is no corresponding record for this reference.
- 10Kazmi, M.; Zaib, S.; Ibrar, A.; Amjad, S. T.; Shafique, Z.; Mehsud, S.; Saeed, A.; Iqbal, J.; Khan, I. A new entry into the portfolio of α-glucosidase inhibitors as potent therapeutics for type 2 diabetes: Design, bioevaluation and one-pot multi-component synthesis of diamine-bridged coumarinyl oxadiazole conjugates. Bioorg. Chem. 2018, 77, 190– 202, DOI: 10.1016/j.bioorg.2017.12.022Google ScholarThere is no corresponding record for this reference.
- 11Javid, M. T.; Rahim, F.; Taha, M.; Rehman, H. U.; Nawaz, M.; Wadood, A.; Imran, S.; Uddin, I.; Mosaddik, A.; Khan, K. M. Synthesis, in vitro α-glucosidase inhibitory potential and molecular docking study of thiadiazole analogs. Bioorg. Chem. 2018, 78, 201– 209, DOI: 10.1016/j.bioorg.2018.03.022Google ScholarThere is no corresponding record for this reference.
- 12Kaya, B.; Acar Çevik, U.; Çiftçi, B.; Duran, H. E.; Türkeş, C.; Işık, M.; Bostancı, H. E.; Kaplancıklı, Z. A.; Beydemir, S. Synthesis, α-glucosidase, α-amylase, and aldol reductase inhibitory activity with molecular docking study of novel imidazo [1, 2-a] pyridine derivatives. ACS Omega 2024, 9, 42905– 42914, DOI: 10.1021/acsomega.4c05619Google ScholarThere is no corresponding record for this reference.
- 13Kashtoh, H.; Hussain, S.; Khan, A.; Saad, S. M.; Khan, J. A.; Khan, K. M.; Perveen, S.; Choudhary, M. I. Oxadiazoles and thiadiazoles: novel α-glucosidase inhibitors. Bioorg. Med. Chem. 2014, 22, 5454– 5465, DOI: 10.1016/j.bmc.2014.07.032Google ScholarThere is no corresponding record for this reference.
- 14Zhao, X.; Zhan, X.; Zhang, H.; Wan, Y.; Yang, H.; Wang, Y.; Chen, Y.; Xie, W. Synthesis and biological evaluation of isatin derivatives containing 1, 3, 4-thiadiazole as potent a-glucosidase inhibitors. Bioorg. Med. Chem. Lett. 2021, 54, 128447 DOI: 10.1016/j.bmcl.2021.128447Google ScholarThere is no corresponding record for this reference.
- 15Hollander, P. Safety profile of acarbose, an α-glucosidase inhibitor. Drugs 1992, 44, 47– 53, DOI: 10.2165/00003495-199200443-00007Google ScholarThere is no corresponding record for this reference.
- 16Liu, S.; Meng, F.; Guo, S.; Yuan, M.; Wang, H.; Chang, X. Inhibition of α-amylase digestion by a Lonicera caerulea berry polyphenol starch complex revealed via multi-spectroscopic and molecular dynamics analyses. Int. J. Biol. Macromol. 2024, 260, 129573 DOI: 10.1016/j.ijbiomac.2024.129573Google ScholarThere is no corresponding record for this reference.
- 17Liang, B.; Xiao, D.; Wang, S. H.; Xu, X. Novel thiosemicarbazide-based β-carboline derivatives as α-glucosidase inhibitors: synthesis and biological evaluation. Eur. J. Med. Chem. 2024, 275, 116595 DOI: 10.1016/j.ejmech.2024.116595Google ScholarThere is no corresponding record for this reference.
- 18Hu, C.; Liang, B.; Sun, J.; Li, J.; Xiong, Z.; Wang, S. H.; Xuetao, X. Synthesis and biological evaluation of indole derivatives containing thiazolidine-2, 4-dione as α-glucosidase inhibitors with antidiabetic activity. Eur. J. Med. Chem. 2024, 264, 115957 DOI: 10.1016/j.ejmech.2023.115957Google ScholarThere is no corresponding record for this reference.
- 19Srivastava, S. K.; Ramana, K. V.; Bhatnagar, A. Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options. Endocr. Rev. 2005, 26 (3), 380– 392, DOI: 10.1210/er.2004-0028Google ScholarThere is no corresponding record for this reference.
- 20Patnam, N.; Chevula, K.; Chennamsetti, P.; Kramadhati, S.; Alaparthi, M. D.; Manga, V. Novel thiazolidinedione (TZD) scaffolds as aldose reductase inhibitors, synthesis and molecular docking studies. Chem. Data Collect. 2023, 46, 101045 DOI: 10.1016/j.cdc.2023.101045Google ScholarThere is no corresponding record for this reference.
- 21Sever, B.; Altıntop, M. D.; Demir, Y.; Çiftçi, G. A.; Beydemir, Ş.; Özdemir, A. Design, synthesis, in vitro and in silico investigation of aldose reductase inhibitory effects of new thiazole-based compounds. Bioorg. Chem. 2020, 102, 104110 DOI: 10.1016/j.bioorg.2020.104110Google ScholarThere is no corresponding record for this reference.
- 22Tang, W. H.; Martin, K. A.; Hwa, J. Aldose reductase, oxidative stress, and diabetic mellitus. Front. Pharmacol. 2012, 3, 87, DOI: 10.3389/fphar.2012.00087Google ScholarThere is no corresponding record for this reference.
- 23Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001, 414, 813– 820, DOI: 10.1038/414813aGoogle ScholarThere is no corresponding record for this reference.
- 24Singh, M.; Kapoor, A.; Bhatnagar, A. Physiological and pathological roles of aldose reductase. Metabolites 2021, 11, 655, DOI: 10.3390/metabo11100655Google ScholarThere is no corresponding record for this reference.
- 25Siddiqui, N.; Ahuja, P.; Malik, S.; Arya, S. K. Design of benzothiazole-1, 3, 4-thiadiazole conjugates: synthesis and anticonvulsant evaluation. Arch. Pharm. Chem. 2013, 346, 819– 831, DOI: 10.1002/ardp.201300083Google ScholarThere is no corresponding record for this reference.
- 26Li, P.; Shi, L.; Yang, X.; Yang, L.; Chen, X. W.; Wu, F.; Shi, Q. C.; Xu, W. M.; He, M.; Hu, D. Y.; Song, B. A. Design, synthesis, and antibacterial activity against rice bacterial leaf blight and leaf streak of 2, 5-substituted-1, 3, 4-oxadiazole/thiadiazole sulfone derivative. Bioorg. Med. Chem. Lett. 2014, 24, 1677– 1680, DOI: 10.1016/j.bmcl.2014.02.060Google ScholarThere is no corresponding record for this reference.
- 27Liu, F.; Luo, X. Q.; Song, B. A.; Bhadury, P. S.; Yang, S.; Jin, L. H.; Xue, W.; Hu, D. Y. Synthesis and antifungal activity of novel sulfoxide derivatives containing trimethoxyphenyl substituted 1, 3, 4- thiadiazole and 1, 3, 4-oxadiazole moiety. Bioorg. Med. Chem. 2008, 16, 3632– 3640, DOI: 10.1016/j.bmc.2008.02.006Google ScholarThere is no corresponding record for this reference.
- 28Yusuf, M.; Khan, R. A.; Ahmed, B. Syntheses and anti-depressant activity of 5-amino-1, 3, 4- thiadiazole-2-thiol imines and thiobenzyl derivatives. Bioorg. Med. Chem. 2008, 16, 8029– 8034, DOI: 10.1016/j.bmc.2008.07.056Google ScholarThere is no corresponding record for this reference.
- 29Moshafi, M. H.; Sorkhi, M.; Emami, S.; Nakhjiri, M.; Yahya-Meymandi, A.; Negahbani, A. S.; Siavoshi, F.; Omrani, M.; Alipour, E.; Vosooghi, M.; Shafiee, A.; Foroumadi, A. 5-nitroimidazole-based 1, 3, 4-thiadiazoles: heterocyclic analogs of metronidazole as anti-helicobacter pylori agents. Arch. Pharm. Chem. Life Sci. 2011, 11, 178– 183, DOI: 10.1002/ardp.201000013Google ScholarThere is no corresponding record for this reference.
- 30Khan, I.; Ali, S.; Hameed, S.; Rama, N. H.; Hussain, M. T.; Wadood, A.; Uddin, R.; Ul-Haq, Z.; Khan, A.; Ali, S.; Choudhary, M. I. Synthesis, antioxidant activities and urease inhibition of some new 1, 2, 4-triazole and 1, 3, 4- thiadiazole derivatives. Eur. J. Med. Chem. 2010, 45, 5200– 5207, DOI: 10.1016/j.ejmech.2010.08.034Google ScholarThere is no corresponding record for this reference.
- 31Anthwal, T.; Paliwal, S.; Nain, S. Diverse biological activities of 1, 3, 4-thiadiazole scaffold. Chemistry 2022, 4, 1654– 1671, DOI: 10.3390/chemistry4040107Google ScholarThere is no corresponding record for this reference.
- 32Li, M.; Li, H.; Min, X.; Sun, J.; Liang, B.; Xu, L.; Li, J.; Wang, S. H.; Xu, X. Identification of 1, 3, 4-thiadiazolyl-containing thiazolidine-2, 4-dione derivatives as novel PTP1B inhibitors with antidiabetic activity. J. Med. Chem. 2024, 67 (10), 8406– 8419, DOI: 10.1021/acs.jmedchem.4c00676Google ScholarThere is no corresponding record for this reference.
- 33Kumar, H.; Dhameja, M.; Kurella, S.; Uma, A.; Gupta, P. Synthesis, in-vitro α-glucosidase inhibition and molecular docking studies of 1, 3, 4-thiadiazole-5, 6-diphenyl-1, 2, 4-triazine hybrids: potential leads in the search of new antidiabetic drugs. J. Mol. Struct. 2023, 1273, 134339 DOI: 10.1016/j.molstruc.2022.134339Google ScholarThere is no corresponding record for this reference.
- 34Ali, Z.; Rehman, W.; Rasheed, L.; Alzahrani, A. Y.; Ali, N.; Hussain, R.; Emwas, A. H.; Jaremko, M.; Abdellattif, M. H. New 1, 3, 4-thiadiazole derivatives as α-glucosidase inhibitors: design, synthesis, DFT, ADME, and in vitro enzymatic studies. ACS Omega 2024, 9, 7480– 7490Google ScholarThere is no corresponding record for this reference.
- 35Menteşe, E.; Ülker, S.; Kahveci, B. Synthesis and study of α-glucosidase inhibitory, antimicrobial and antioxidant activities of some benzimidazole derivatives containing triazole, thiadiazole, oxadiazole, and morpholine rings. Chem. Heterocycl. Compd. 2015, 50, 1671– 1682, DOI: 10.1007/s10593-015-1637-1Google ScholarThere is no corresponding record for this reference.
- 36Palamarchuk, I. V.; Shulgau, Z. T.; Dautov, A. Y.; Sergazy, S. D.; Kulakov, I. V. Design, synthesis, spectroscopic characterization, computational analysis, and in vitro α-amylase and α-glucosidase evaluation of 3-aminopyridin-2 (1 H)-one based novel monothiooxamides and 1, 3, 4-thiadiazoles. Org. Biomol. Chem. 2022, 20, 8962– 8976, DOI: 10.1039/D2OB01772EGoogle ScholarThere is no corresponding record for this reference.
- 37Saeedi, M.; Eslami, A.; Mirfazli, S. S.; Zardkanlou, M.; Faramarzi, M. A.; Mahdavi, M.; Akbarzadeh, T. Design and synthesis of novel 5-arylisoxazole-1, 3, 4-thiadiazole hybrids as α-glucosidase inhibitors. Lett. Drug Des. Discovery 2021, 18, 436– 444, DOI: 10.2174/1570180817999201104125018Google ScholarThere is no corresponding record for this reference.
- 38Gummidi, L.; Kerru, N.; Ebenezer, O.; Awolade, P.; Sanni, O.; Islam, M. S.; Singh, P. Multicomponent reaction for the synthesis of new 1, 3, 4-thiadiazole-thiazolidine-4-one molecular hybrids as promising antidiabetic agents through α-glucosidase and α-amylase inhibition. Bioorg. Chem. 2021, 115, 105210 DOI: 10.1016/j.bioorg.2021.105210Google ScholarThere is no corresponding record for this reference.
- 39Shulgau, Z.; Palamarchuk, I. V.; Sergazy, S.; Urazbayeva, A.; Ramankulov, Y.; Kulakov, I. V. Synthesis, computational study, and in vitro α-glucosidase inhibitory action of 1, 3, 4-thiadiazole derivatives of 3-aminopyridin-2 (1H)-ones. Pharmaceuticals 2024, 17, 377, DOI: 10.3390/ph17030377Google ScholarThere is no corresponding record for this reference.
- 40Ullah, A.; Aleem, U.; Shaheen Siddiqui, B.; Haider, S.; Khan, M.; Anjum, S.; Jahan, H.; Rigano, D.; Choudhary, M. I.; Atta-ur-Rahman; Ul-Haq, Z.; Begum, S. Synthesis of new indole-based thiazole derivatives as potential antiglycation and anti α-glucosidase agents: in vitro and in silico studies. ChemistrySelect 2023, 8, e202301884 DOI: 10.1002/slct.202301884Google ScholarThere is no corresponding record for this reference.
- 41Hussain, R.; Iqbal, S.; Shah, M.; Rehman, W.; Khan, S.; Rasheed, L.; Rahim, F.; Dera, A. A.; Kehili, S.; Elkaeed, E. B.; Awwad, N. S.; Bajaber, M. A.; Alahmdi, M. I.; Alrbyawi, H.; Alsaab, H. O. Synthesis of novel benzimidazole-based thiazole derivatives as multipotent inhibitors of α-amylase and α-glucosidase: in vitro evaluation along with molecular docking study. Molecules 2022, 27, 6457, DOI: 10.3390/molecules27196457Google ScholarThere is no corresponding record for this reference.
- 42Khan, S.; Iqbal, S.; Khan, M.; Rehman, W.; Shah, M.; Hussain, R.; Rasheed, L.; Khan, Y.; Dera, A. A.; Pashameah, R. A.; Alzahrani, E.; Farouk, A.-E. Design, synthesis, in silico testing, and in vitro evaluation of thiazolidinone-based benzothiazole derivatives as inhibitors of α-amylase and α-glucosidase. Pharmaceuticals 2022, 15, 1164, DOI: 10.3390/ph15101164Google ScholarThere is no corresponding record for this reference.
- 43Shehzad, M. T.; Imran, A.; Hameed, A.; Rashida, M. A.; Bibi, M.; Uroos, M.; Asari, A.; Iftikhar, S.; Mohamad, H.; Tahir, M. N.; Shafiq, Z.; Iqbal, J. Exploring synthetic and therapeutic prospects of new thiazoline derivatives as aldose reductase (ALR2) inhibitors. RSC Adv. 2021, 11, 17259– 17282, DOI: 10.1039/D1RA01716KGoogle ScholarThere is no corresponding record for this reference.
- 44Andleeb, H.; Tehseen, Y.; Ali Shah, S. J.; Khan, I.; Iqbal, J.; Hameed, S. Identification of novel pyrazole–rhodanine hybrid scaffolds as potent inhibitors of aldose reductase: design, synthesis, biological evaluation and molecular docking analysis. RSC Adv. 2016, 6, 77688– 77700, DOI: 10.1039/C6RA14531KGoogle ScholarThere is no corresponding record for this reference.
- 45Metwally, K.; Pratsinis, H.; Kletsas, D.; Quattrini, L.; Coviello, V.; Motta, C. L.; El-Rashedy, A. A.; Soliman, M. E. S. Novel quinazolinone-based 2,4-thiazolidinedione-3-acetic acid derivatives as potent aldose reductase inhibitors. Future Med. Chem. 2017, 9, 2147– 2166, DOI: 10.4155/fmc-2017-0149Google ScholarThere is no corresponding record for this reference.
- 46Yildirim, M.; Kilic, A.; Cimentepe, M.; Necip, A.; Turedi, S. Synthesis of bioactive quercetin-boronate esters as a novel biological agent: enzyme inhibition, anti-microbial properties, computational insights and anti-cancer activity. J. Mol. Struct. 2025, 1321, 140216 DOI: 10.1016/j.molstruc.2024.140216Google ScholarThere is no corresponding record for this reference.
- 47Yildirim, M.; Dogan, K.; Necip, A.; Cimentepe, M. Naringenin-loaded pHEMA cryogel membrane: preparation, characterization, antibacterial activity and in silico studies. Chem. Pap. 2024, 79, 211– 220Google ScholarThere is no corresponding record for this reference.
- 48Yildirim, M.; Cimentepe, M.; Dogan, K.; Necip, A.; Amangeldinova, M.; Dellal, Ö.; Poyraz, S. Thymoquinone-loaded pHEMA cryogel membranes for superior control of staphylococcus aureus infections. Russ. J. Gen. Chem. 2024, 94, 3079– 3089, DOI: 10.1134/S1070363224110318Google ScholarThere is no corresponding record for this reference.
- 49Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Delivery Rev. 1997, 23, 3– 25, DOI: 10.1016/S0169-409X(96)00423-1Google ScholarThere is no corresponding record for this reference.
- 50Clark, D. E. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood–brain barrier penetration. J. Pharm. Sci. 1999, 88, 815– 821, DOI: 10.1021/js980402tGoogle ScholarThere is no corresponding record for this reference.
- 51Kelder, J.; Grootenhuis, P. D.; Bayada, D. M.; Delbressine, L. P.; Ploemen, J. P. Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm. Res. 1999, 16, 1514– 1519, DOI: 10.1023/A:1015040217741Google ScholarThere is no corresponding record for this reference.
- 52Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Delivery Rev. 1997, 23 (1–3), 3– 25, DOI: 10.1016/S0169-409X(96)00423-1Google ScholarThere is no corresponding record for this reference.
- 53Williams, H. D.; Trevaskis, N. L.; Charman, S. A.; Shanker, R. M.; Charman, W. N.; Pouton, C. W.; Porter, C. J. Strategies to address low drug solubility in discovery and development. Pharmacol. Rev. 2013, 65 (1), 315– 499, DOI: 10.1124/pr.112.005660Google ScholarThere is no corresponding record for this reference.
- 54Veber, D. F.; Johnson, S. R.; Cheng, H. Y.; Myers, S. L.; Hickey, M. B.; Smith, B. R. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45 (12), 2615– 2623, DOI: 10.1021/jm020017nGoogle ScholarThere is no corresponding record for this reference.
- 55Anderson, A. C. The process of structure-based drug design. Chem. Biol. 2003, 10 (9), 787– 797, DOI: 10.1016/j.chembiol.2003.09.002Google ScholarThere is no corresponding record for this reference.
- 56Hopkins, A. L.; Groom, C. R. The druggable genome. Nat. Rev. Drug Discovery 2002, 1 (9), 727– 730, DOI: 10.1038/nrd892Google ScholarThere is no corresponding record for this reference.
- 57Demir, Y.; Işık, M.; Gülçin, İ.; Beydemir, Ş. Phenolic compounds inhibit the aldose reductase enzyme from the sheep kidney. J. Biochem. Mol. Toxicol. 2017, 31 (9), e21936 DOI: 10.1002/jbt.21935Google ScholarThere is no corresponding record for this reference.
- 58Celestina, S. K.; Sundaram, K.; Ravi, S. In vitro studies of potent aldose reductase inhibitors: Synthesis, characterization, biological evaluation and docking analysis of rhodanine-3-hippuric acid derivatives. Bioorg. Chem. 2020, 97, 103640 DOI: 10.1016/j.bioorg.2020.103640Google ScholarThere is no corresponding record for this reference.
- 59Yapar, G.; Duran, H. E.; Lolak, N.; Akocak, S.; Türkeş, C.; Durgun, M.; Işık, M.; Beydemir, Ş. Biological effects of bis-hydrazone compounds bearing isovanillin moiety on the aldose reductase. Bioorg. Chem. 2021, 117, 105473 DOI: 10.1016/j.bioorg.2021.105473Google ScholarThere is no corresponding record for this reference.
- 60Tao, Y.; Zhang, Y.; Cheng, Y.; Wang, Y. Rapid screening and identification of α-glucosidase inhibitors from mulberry leaves using enzyme-immobilized magnetic beads coupled with HPLC/MS and NMR. Biomed. Chromatogr. 2013, 27, 148– 155, DOI: 10.1002/bmc.2761Google ScholarThere is no corresponding record for this reference.
- 61Güleç, Ö.; Türkeş, C.; Arslan, M.; Işık, M.; Demir, Y.; Duran, H. E.; Fırat, M.; Küfrevioğlu, Ö. İ.; Beydemir, Ş. Dynamics of small molecule-enzyme interactions: Novel benzenesulfonamides as multi-target agents endowed with inhibitory effects against some metabolic enzymes. Arch. Biochem. Biophys. 2024, 759, 110099 DOI: 10.1016/j.abb.2024.110099Google ScholarThere is no corresponding record for this reference.
- 62Lineweaver, H.; Burk, D. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 1934, 56, 658– 666, DOI: 10.1021/ja01318a036Google ScholarThere is no corresponding record for this reference.
- 63Işık, M.; Akocak, S.; Lolak, N.; Taslimi, P.; Türkeş, C.; Gülçin, İ.; Durgun, M.; Beydemir, Ş. Synthesis, characterization, biological evaluation, and in silico studies of novel 1, 3-diaryltriazene-substituted sulfathiazole derivatives. Arch. Pharm. 2020, 353, 2000102 DOI: 10.1002/ardp.202000102Google ScholarThere is no corresponding record for this reference.
- 64Schrödinger Release 2021–3: Protein Preparation Wizard; Schrödinger, LLC, Epik, Schrödinger, LLC/Impact, Schrödinger, LLC/Prime, New York (NY)/New York (NY)/New York (NY), 2021.Google ScholarThere is no corresponding record for this reference.
- 65Yildirim, M.; Cimentepe, M.; Dogan, K.; Necip, A.; Karakoc, V. Development and molecular docking analysis of quercetin-loaded pHEMA cryogel membranes. J. Mol. Struct. 2025, 1319, 139271 DOI: 10.1016/j.molstruc.2024.139271Google ScholarThere is no corresponding record for this reference.
- 66Bostancı, H. E.; Bilgicli, A. T.; Güzel, E.; Günsel, A.; Hepokur, C.; Cimen, B.; Yarasir, M. N. Evaluation of the effects of newly synthesized metallophthalocyanines on breast cancer cell lines with photodynamic therapy. Dalton Trans. 2022, 51, 15996– 16008, DOI: 10.1039/D2DT01912DGoogle ScholarThere is no corresponding record for this reference.
- 67Bostancı, H. E.; Çevik, U. A.; Kapavarapu, R.; Güldiken, Y. C.; Inan, Z. Ş.; Güler, Ö. Ö.; Uysal, T. K.; Uytun, A.; Çetin, F. N.; Özkay, Y.; Kaplancıklı, Z. A. Synthesis, biological evaluation and in silico studies of novel thiadiazole-hydrazone derivatives for carbonic anhydrase inhibitory and anticancer activities. SAR QSAR Environ. Res. 2023, 34, 543– 567, DOI: 10.1080/1062936X.2023.2240698Google ScholarThere is no corresponding record for this reference.
- 68https://moltox.com/docs/manuals/Ames%20Instruction%20Manual%2031-100.pdf.Google ScholarThere is no corresponding record for this reference.
- 69Kamber, M.; Flückiger-Isler, S.; Engelhardt, G.; Jaeckh, R.; Zeiger, E. Comparison of the Ames II and traditional Ames test responses with respect to mutagenicity, strain specificities, need for metabolism and correlation with rodent carcinogenicity. Mutagenesis 2009, 24 (4), 359– 366, DOI: 10.1093/mutage/gep017Google ScholarThere is no corresponding record for this reference.
- 70Mondal, M. S.; Gabriels, J.; McGinnis, C.; Magnifico, M.; Marsilje, T. H.; Urban, L.; Collis, A.; Bojanic, D.; Biller, S. A.; Frieauff, W.; Martus, H. J.; Suter, W.; Bentley, P. High-content micronucleus assay in genotoxicity profiling: initial-stage development and some applications in the investigative/lead-finding studies in drug discovery. Toxicol. Sci. 2010, 118 (1), 71– 85, DOI: 10.1093/toxsci/kfq181Google ScholarThere is no corresponding record for this reference.
- 71Mortelmans, K.; Zeiger, E. The Ames Salmonella/microsome mutagenicity assay. Mutat. Res., Fundam. Mol. Mech. Mutagen. 2000, 455 (1–2), 29– 60, DOI: 10.1016/S0027-5107(00)00064-6Google ScholarThere is no corresponding record for this reference.
- 72Chandrasekaran, C. V.; Sundarajan, K.; David, K.; Agarwal, A. In vitro efficacy and safety of poly-herbal formulations. Toxicol. In Vitro. 2010, 24 (3), 885– 897, DOI: 10.1016/j.tiv.2009.11.021Google ScholarThere is no corresponding record for this reference.
Cited By
This article has not yet been cited by other publications.
Article Views
Altmetric
Citations
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
Recommended Articles
Abstract
Scheme 1
Scheme 1. Figure Shows the Metabolism of Glucose via the Polyol Pathway and Its Contribution to Diabetic ComplicationsaaGlucose is converted to sorbitol via the enzyme aldose reductase, consuming NADPH, which leads to a decrease in the antioxidant capacity of the cell. Sorbitol is oxidized to fructose via the enzyme sorbitol dehydrogenase, and NADH accumulates during this reaction. The accumulation of NADH leads to the formation of ROS via the enzyme NADH oxidase. The increase in ROS and the formation of AGEs by fructose contribute to diabetic complications such as retinopathy, nephropathy and neuropathy. Glucosidase inhibitors prevent the conversion of complex carbohydrates into glucose, while aldose reductase inhibitors help prevent complications by limiting the activity of polyol metabolism. (23,24) (NADPH: Nicotinamide adenine dinucleotide phosphate, NADH: Nicotinamide adenine dinucleotide, ROS: Reactive oxygen species, AGE: Advanced glycation end products).
Figure 1
Figure 1. Structures of the designed compounds (6a–6q).
Scheme 2
Scheme 2. Synthetic Routes for Preparing Title Compounds (6a–6q)aaReagents and conditions; i: hydrazine hydrate, ethanol, rt; 4 h ii: (1) carbon disulfide, potassium hydroxide, ethanol, reflux, 10 h (2) hydrochloric acid, pH 4–5; iii: acetic acid, ethanol, reflux, 8 h; iv: sodium borohydride, methanol, rt; 10 h; v: chloroacetyl chloride, triethylamine, tetrahydrofuran, ice-bath, 5 h; vi: potassium hydroxide, acetone, rt, 8 h.
Figure 2
Figure 2. SAR study of compounds 6a–6q.
Figure 3
Figure 3. Protein–ligand interaction (3D and 2D). α-GLY, represented by 5NN8, was subjected to molecular docking studies with compound 6h, 6p, and acarbose.
Figure 4
Figure 4. Protein–ligand interaction (3D and 2D). AR, represented by 4JIR, was subjected to molecular docking studies with compound 6o, 6p and epalrestat.
Figure 5
Figure 5. Radar graph showing the chemical structure and physicochemical properties of compounds (6h, 6o, and 6p) and acarbose, epalrestat.
Figure 6
Figure 6. Cell viability of the synthesized compounds (6a–6q) at maximum dose (100 μM) for 24 h.
Figure 7
Figure 7. Average number of positive wells at effective concentrations.
References
This article references 72 other publications.
- 1Yu, M. G.; Gordin, D.; Fu, J.; Park, K.; Li, Q.; King, G. L. Protective factors and the pathogenesis of complications in diabetes. Endocr. Rev. 2024, 45, 227– 252, DOI: 10.1210/endrev/bnad030There is no corresponding record for this reference.
- 2Min, X.; Guo, S.; Lu, Y.; Xu, X. Investigation on the inhibition mechanism and binding behavior of cryptolepine to α-glucosidase and its hypoglycemic activity by multi-spectroscopic method. J. Lumin. 2024, 269, 120437 DOI: 10.1016/j.jlumin.2024.120437There is no corresponding record for this reference.
- 3Chen, L.; Magliano, D. J.; Zimmet, P. Z. The worldwide epidemiology of type 2 diabetes mellitus-present and future perspectives. Nat. Rev. Endocrinol. 2012, 8, 228– 236, DOI: 10.1038/nrendo.2011.183There is no corresponding record for this reference.
- 4Wu, X. Z.; Zhu, W. J.; Lu, L.; Hu, C. M.; Zheng, Y. Y.; Zhang, X.; Lin, J.; Wu, J. Y.; Xiong; Zhang, K.; Xu, X. T. Synthesis and anti-α-glucosidase activity evaluation of betulinic acid derivatives. Arab. J. Chem. 2023, 16 (5), 104659 DOI: 10.1016/j.arabjc.2023.104659There is no corresponding record for this reference.
- 5Available online: https://www.statista.com/topics/1723/diabetes/ (accessed Jan 6, 2025).There is no corresponding record for this reference.
- 6Li, W.; Liu, X.; Liu, Z.; Xing, Q.; Liu, R.; Wu, Q.; Hu, Y.; Zhang, J. The signaling pathways of selected traditional Chinese medicine prescriptions and their metabolites in the treatment of diabetic cardiomyopathy: a review. Front. Pharmacol. 2024, 15, 1416403 DOI: 10.3389/fphar.2024.1416403There is no corresponding record for this reference.
- 7Dai, B.; Wu, Q.; Zeng, C.; Zhang, J.; Cao, L.; Xiao, Z.; Yang, M. The effect of Liuwei Dihuang decoction on PI3K/Akt signaling pathway in liver of type 2 diabetes mellitus (T2DM) rats with insulin resistance. J. Ethnopharmacol. 2016, 192, 382– 389, DOI: 10.1016/j.jep.2016.07.024There is no corresponding record for this reference.
- 8Zahoor, T.; Khan, S.; Chinnam, S.; Iqbal, T.; Hussain, R.; Khan, Y.; Ullah, H.; Daud, S.; Rahman, R.; Iqbal, R.; Aljowaie, R. M.; Aghayeva, S. A combined in vitro and in silico approach of thiadiazole based Schiff base derivatives as multipotent inhibitor: Synthesis, spectral analysis, antidiabetic and antimicrobial activity. Results Chem. 2024, 9, 101671 DOI: 10.1016/j.rechem.2024.101671There is no corresponding record for this reference.
- 9Ören, E.; Tuncay, S.; Toprak, Y. E.; Fırat, M.; Toptancı, İ.; Karasakal, Ö. F.; Işık, M.; Karahan, M. Antioxidant, antidiabetic effects and polyphenolic contents of propolis from Siirt, Turkey. Food Sci. Nutr. 2024, 12, 2772– 2782, DOI: 10.1002/fsn3.3958There is no corresponding record for this reference.
- 10Kazmi, M.; Zaib, S.; Ibrar, A.; Amjad, S. T.; Shafique, Z.; Mehsud, S.; Saeed, A.; Iqbal, J.; Khan, I. A new entry into the portfolio of α-glucosidase inhibitors as potent therapeutics for type 2 diabetes: Design, bioevaluation and one-pot multi-component synthesis of diamine-bridged coumarinyl oxadiazole conjugates. Bioorg. Chem. 2018, 77, 190– 202, DOI: 10.1016/j.bioorg.2017.12.022There is no corresponding record for this reference.
- 11Javid, M. T.; Rahim, F.; Taha, M.; Rehman, H. U.; Nawaz, M.; Wadood, A.; Imran, S.; Uddin, I.; Mosaddik, A.; Khan, K. M. Synthesis, in vitro α-glucosidase inhibitory potential and molecular docking study of thiadiazole analogs. Bioorg. Chem. 2018, 78, 201– 209, DOI: 10.1016/j.bioorg.2018.03.022There is no corresponding record for this reference.
- 12Kaya, B.; Acar Çevik, U.; Çiftçi, B.; Duran, H. E.; Türkeş, C.; Işık, M.; Bostancı, H. E.; Kaplancıklı, Z. A.; Beydemir, S. Synthesis, α-glucosidase, α-amylase, and aldol reductase inhibitory activity with molecular docking study of novel imidazo [1, 2-a] pyridine derivatives. ACS Omega 2024, 9, 42905– 42914, DOI: 10.1021/acsomega.4c05619There is no corresponding record for this reference.
- 13Kashtoh, H.; Hussain, S.; Khan, A.; Saad, S. M.; Khan, J. A.; Khan, K. M.; Perveen, S.; Choudhary, M. I. Oxadiazoles and thiadiazoles: novel α-glucosidase inhibitors. Bioorg. Med. Chem. 2014, 22, 5454– 5465, DOI: 10.1016/j.bmc.2014.07.032There is no corresponding record for this reference.
- 14Zhao, X.; Zhan, X.; Zhang, H.; Wan, Y.; Yang, H.; Wang, Y.; Chen, Y.; Xie, W. Synthesis and biological evaluation of isatin derivatives containing 1, 3, 4-thiadiazole as potent a-glucosidase inhibitors. Bioorg. Med. Chem. Lett. 2021, 54, 128447 DOI: 10.1016/j.bmcl.2021.128447There is no corresponding record for this reference.
- 15Hollander, P. Safety profile of acarbose, an α-glucosidase inhibitor. Drugs 1992, 44, 47– 53, DOI: 10.2165/00003495-199200443-00007There is no corresponding record for this reference.
- 16Liu, S.; Meng, F.; Guo, S.; Yuan, M.; Wang, H.; Chang, X. Inhibition of α-amylase digestion by a Lonicera caerulea berry polyphenol starch complex revealed via multi-spectroscopic and molecular dynamics analyses. Int. J. Biol. Macromol. 2024, 260, 129573 DOI: 10.1016/j.ijbiomac.2024.129573There is no corresponding record for this reference.
- 17Liang, B.; Xiao, D.; Wang, S. H.; Xu, X. Novel thiosemicarbazide-based β-carboline derivatives as α-glucosidase inhibitors: synthesis and biological evaluation. Eur. J. Med. Chem. 2024, 275, 116595 DOI: 10.1016/j.ejmech.2024.116595There is no corresponding record for this reference.
- 18Hu, C.; Liang, B.; Sun, J.; Li, J.; Xiong, Z.; Wang, S. H.; Xuetao, X. Synthesis and biological evaluation of indole derivatives containing thiazolidine-2, 4-dione as α-glucosidase inhibitors with antidiabetic activity. Eur. J. Med. Chem. 2024, 264, 115957 DOI: 10.1016/j.ejmech.2023.115957There is no corresponding record for this reference.
- 19Srivastava, S. K.; Ramana, K. V.; Bhatnagar, A. Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options. Endocr. Rev. 2005, 26 (3), 380– 392, DOI: 10.1210/er.2004-0028There is no corresponding record for this reference.
- 20Patnam, N.; Chevula, K.; Chennamsetti, P.; Kramadhati, S.; Alaparthi, M. D.; Manga, V. Novel thiazolidinedione (TZD) scaffolds as aldose reductase inhibitors, synthesis and molecular docking studies. Chem. Data Collect. 2023, 46, 101045 DOI: 10.1016/j.cdc.2023.101045There is no corresponding record for this reference.
- 21Sever, B.; Altıntop, M. D.; Demir, Y.; Çiftçi, G. A.; Beydemir, Ş.; Özdemir, A. Design, synthesis, in vitro and in silico investigation of aldose reductase inhibitory effects of new thiazole-based compounds. Bioorg. Chem. 2020, 102, 104110 DOI: 10.1016/j.bioorg.2020.104110There is no corresponding record for this reference.
- 22Tang, W. H.; Martin, K. A.; Hwa, J. Aldose reductase, oxidative stress, and diabetic mellitus. Front. Pharmacol. 2012, 3, 87, DOI: 10.3389/fphar.2012.00087There is no corresponding record for this reference.
- 23Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001, 414, 813– 820, DOI: 10.1038/414813aThere is no corresponding record for this reference.
- 24Singh, M.; Kapoor, A.; Bhatnagar, A. Physiological and pathological roles of aldose reductase. Metabolites 2021, 11, 655, DOI: 10.3390/metabo11100655There is no corresponding record for this reference.
- 25Siddiqui, N.; Ahuja, P.; Malik, S.; Arya, S. K. Design of benzothiazole-1, 3, 4-thiadiazole conjugates: synthesis and anticonvulsant evaluation. Arch. Pharm. Chem. 2013, 346, 819– 831, DOI: 10.1002/ardp.201300083There is no corresponding record for this reference.
- 26Li, P.; Shi, L.; Yang, X.; Yang, L.; Chen, X. W.; Wu, F.; Shi, Q. C.; Xu, W. M.; He, M.; Hu, D. Y.; Song, B. A. Design, synthesis, and antibacterial activity against rice bacterial leaf blight and leaf streak of 2, 5-substituted-1, 3, 4-oxadiazole/thiadiazole sulfone derivative. Bioorg. Med. Chem. Lett. 2014, 24, 1677– 1680, DOI: 10.1016/j.bmcl.2014.02.060There is no corresponding record for this reference.
- 27Liu, F.; Luo, X. Q.; Song, B. A.; Bhadury, P. S.; Yang, S.; Jin, L. H.; Xue, W.; Hu, D. Y. Synthesis and antifungal activity of novel sulfoxide derivatives containing trimethoxyphenyl substituted 1, 3, 4- thiadiazole and 1, 3, 4-oxadiazole moiety. Bioorg. Med. Chem. 2008, 16, 3632– 3640, DOI: 10.1016/j.bmc.2008.02.006There is no corresponding record for this reference.
- 28Yusuf, M.; Khan, R. A.; Ahmed, B. Syntheses and anti-depressant activity of 5-amino-1, 3, 4- thiadiazole-2-thiol imines and thiobenzyl derivatives. Bioorg. Med. Chem. 2008, 16, 8029– 8034, DOI: 10.1016/j.bmc.2008.07.056There is no corresponding record for this reference.
- 29Moshafi, M. H.; Sorkhi, M.; Emami, S.; Nakhjiri, M.; Yahya-Meymandi, A.; Negahbani, A. S.; Siavoshi, F.; Omrani, M.; Alipour, E.; Vosooghi, M.; Shafiee, A.; Foroumadi, A. 5-nitroimidazole-based 1, 3, 4-thiadiazoles: heterocyclic analogs of metronidazole as anti-helicobacter pylori agents. Arch. Pharm. Chem. Life Sci. 2011, 11, 178– 183, DOI: 10.1002/ardp.201000013There is no corresponding record for this reference.
- 30Khan, I.; Ali, S.; Hameed, S.; Rama, N. H.; Hussain, M. T.; Wadood, A.; Uddin, R.; Ul-Haq, Z.; Khan, A.; Ali, S.; Choudhary, M. I. Synthesis, antioxidant activities and urease inhibition of some new 1, 2, 4-triazole and 1, 3, 4- thiadiazole derivatives. Eur. J. Med. Chem. 2010, 45, 5200– 5207, DOI: 10.1016/j.ejmech.2010.08.034There is no corresponding record for this reference.
- 31Anthwal, T.; Paliwal, S.; Nain, S. Diverse biological activities of 1, 3, 4-thiadiazole scaffold. Chemistry 2022, 4, 1654– 1671, DOI: 10.3390/chemistry4040107There is no corresponding record for this reference.
- 32Li, M.; Li, H.; Min, X.; Sun, J.; Liang, B.; Xu, L.; Li, J.; Wang, S. H.; Xu, X. Identification of 1, 3, 4-thiadiazolyl-containing thiazolidine-2, 4-dione derivatives as novel PTP1B inhibitors with antidiabetic activity. J. Med. Chem. 2024, 67 (10), 8406– 8419, DOI: 10.1021/acs.jmedchem.4c00676There is no corresponding record for this reference.
- 33Kumar, H.; Dhameja, M.; Kurella, S.; Uma, A.; Gupta, P. Synthesis, in-vitro α-glucosidase inhibition and molecular docking studies of 1, 3, 4-thiadiazole-5, 6-diphenyl-1, 2, 4-triazine hybrids: potential leads in the search of new antidiabetic drugs. J. Mol. Struct. 2023, 1273, 134339 DOI: 10.1016/j.molstruc.2022.134339There is no corresponding record for this reference.
- 34Ali, Z.; Rehman, W.; Rasheed, L.; Alzahrani, A. Y.; Ali, N.; Hussain, R.; Emwas, A. H.; Jaremko, M.; Abdellattif, M. H. New 1, 3, 4-thiadiazole derivatives as α-glucosidase inhibitors: design, synthesis, DFT, ADME, and in vitro enzymatic studies. ACS Omega 2024, 9, 7480– 7490There is no corresponding record for this reference.
- 35Menteşe, E.; Ülker, S.; Kahveci, B. Synthesis and study of α-glucosidase inhibitory, antimicrobial and antioxidant activities of some benzimidazole derivatives containing triazole, thiadiazole, oxadiazole, and morpholine rings. Chem. Heterocycl. Compd. 2015, 50, 1671– 1682, DOI: 10.1007/s10593-015-1637-1There is no corresponding record for this reference.
- 36Palamarchuk, I. V.; Shulgau, Z. T.; Dautov, A. Y.; Sergazy, S. D.; Kulakov, I. V. Design, synthesis, spectroscopic characterization, computational analysis, and in vitro α-amylase and α-glucosidase evaluation of 3-aminopyridin-2 (1 H)-one based novel monothiooxamides and 1, 3, 4-thiadiazoles. Org. Biomol. Chem. 2022, 20, 8962– 8976, DOI: 10.1039/D2OB01772EThere is no corresponding record for this reference.
- 37Saeedi, M.; Eslami, A.; Mirfazli, S. S.; Zardkanlou, M.; Faramarzi, M. A.; Mahdavi, M.; Akbarzadeh, T. Design and synthesis of novel 5-arylisoxazole-1, 3, 4-thiadiazole hybrids as α-glucosidase inhibitors. Lett. Drug Des. Discovery 2021, 18, 436– 444, DOI: 10.2174/1570180817999201104125018There is no corresponding record for this reference.
- 38Gummidi, L.; Kerru, N.; Ebenezer, O.; Awolade, P.; Sanni, O.; Islam, M. S.; Singh, P. Multicomponent reaction for the synthesis of new 1, 3, 4-thiadiazole-thiazolidine-4-one molecular hybrids as promising antidiabetic agents through α-glucosidase and α-amylase inhibition. Bioorg. Chem. 2021, 115, 105210 DOI: 10.1016/j.bioorg.2021.105210There is no corresponding record for this reference.
- 39Shulgau, Z.; Palamarchuk, I. V.; Sergazy, S.; Urazbayeva, A.; Ramankulov, Y.; Kulakov, I. V. Synthesis, computational study, and in vitro α-glucosidase inhibitory action of 1, 3, 4-thiadiazole derivatives of 3-aminopyridin-2 (1H)-ones. Pharmaceuticals 2024, 17, 377, DOI: 10.3390/ph17030377There is no corresponding record for this reference.
- 40Ullah, A.; Aleem, U.; Shaheen Siddiqui, B.; Haider, S.; Khan, M.; Anjum, S.; Jahan, H.; Rigano, D.; Choudhary, M. I.; Atta-ur-Rahman; Ul-Haq, Z.; Begum, S. Synthesis of new indole-based thiazole derivatives as potential antiglycation and anti α-glucosidase agents: in vitro and in silico studies. ChemistrySelect 2023, 8, e202301884 DOI: 10.1002/slct.202301884There is no corresponding record for this reference.
- 41Hussain, R.; Iqbal, S.; Shah, M.; Rehman, W.; Khan, S.; Rasheed, L.; Rahim, F.; Dera, A. A.; Kehili, S.; Elkaeed, E. B.; Awwad, N. S.; Bajaber, M. A.; Alahmdi, M. I.; Alrbyawi, H.; Alsaab, H. O. Synthesis of novel benzimidazole-based thiazole derivatives as multipotent inhibitors of α-amylase and α-glucosidase: in vitro evaluation along with molecular docking study. Molecules 2022, 27, 6457, DOI: 10.3390/molecules27196457There is no corresponding record for this reference.
- 42Khan, S.; Iqbal, S.; Khan, M.; Rehman, W.; Shah, M.; Hussain, R.; Rasheed, L.; Khan, Y.; Dera, A. A.; Pashameah, R. A.; Alzahrani, E.; Farouk, A.-E. Design, synthesis, in silico testing, and in vitro evaluation of thiazolidinone-based benzothiazole derivatives as inhibitors of α-amylase and α-glucosidase. Pharmaceuticals 2022, 15, 1164, DOI: 10.3390/ph15101164There is no corresponding record for this reference.
- 43Shehzad, M. T.; Imran, A.; Hameed, A.; Rashida, M. A.; Bibi, M.; Uroos, M.; Asari, A.; Iftikhar, S.; Mohamad, H.; Tahir, M. N.; Shafiq, Z.; Iqbal, J. Exploring synthetic and therapeutic prospects of new thiazoline derivatives as aldose reductase (ALR2) inhibitors. RSC Adv. 2021, 11, 17259– 17282, DOI: 10.1039/D1RA01716KThere is no corresponding record for this reference.
- 44Andleeb, H.; Tehseen, Y.; Ali Shah, S. J.; Khan, I.; Iqbal, J.; Hameed, S. Identification of novel pyrazole–rhodanine hybrid scaffolds as potent inhibitors of aldose reductase: design, synthesis, biological evaluation and molecular docking analysis. RSC Adv. 2016, 6, 77688– 77700, DOI: 10.1039/C6RA14531KThere is no corresponding record for this reference.
- 45Metwally, K.; Pratsinis, H.; Kletsas, D.; Quattrini, L.; Coviello, V.; Motta, C. L.; El-Rashedy, A. A.; Soliman, M. E. S. Novel quinazolinone-based 2,4-thiazolidinedione-3-acetic acid derivatives as potent aldose reductase inhibitors. Future Med. Chem. 2017, 9, 2147– 2166, DOI: 10.4155/fmc-2017-0149There is no corresponding record for this reference.
- 46Yildirim, M.; Kilic, A.; Cimentepe, M.; Necip, A.; Turedi, S. Synthesis of bioactive quercetin-boronate esters as a novel biological agent: enzyme inhibition, anti-microbial properties, computational insights and anti-cancer activity. J. Mol. Struct. 2025, 1321, 140216 DOI: 10.1016/j.molstruc.2024.140216There is no corresponding record for this reference.
- 47Yildirim, M.; Dogan, K.; Necip, A.; Cimentepe, M. Naringenin-loaded pHEMA cryogel membrane: preparation, characterization, antibacterial activity and in silico studies. Chem. Pap. 2024, 79, 211– 220There is no corresponding record for this reference.
- 48Yildirim, M.; Cimentepe, M.; Dogan, K.; Necip, A.; Amangeldinova, M.; Dellal, Ö.; Poyraz, S. Thymoquinone-loaded pHEMA cryogel membranes for superior control of staphylococcus aureus infections. Russ. J. Gen. Chem. 2024, 94, 3079– 3089, DOI: 10.1134/S1070363224110318There is no corresponding record for this reference.
- 49Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Delivery Rev. 1997, 23, 3– 25, DOI: 10.1016/S0169-409X(96)00423-1There is no corresponding record for this reference.
- 50Clark, D. E. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood–brain barrier penetration. J. Pharm. Sci. 1999, 88, 815– 821, DOI: 10.1021/js980402tThere is no corresponding record for this reference.
- 51Kelder, J.; Grootenhuis, P. D.; Bayada, D. M.; Delbressine, L. P.; Ploemen, J. P. Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm. Res. 1999, 16, 1514– 1519, DOI: 10.1023/A:1015040217741There is no corresponding record for this reference.
- 52Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Delivery Rev. 1997, 23 (1–3), 3– 25, DOI: 10.1016/S0169-409X(96)00423-1There is no corresponding record for this reference.
- 53Williams, H. D.; Trevaskis, N. L.; Charman, S. A.; Shanker, R. M.; Charman, W. N.; Pouton, C. W.; Porter, C. J. Strategies to address low drug solubility in discovery and development. Pharmacol. Rev. 2013, 65 (1), 315– 499, DOI: 10.1124/pr.112.005660There is no corresponding record for this reference.
- 54Veber, D. F.; Johnson, S. R.; Cheng, H. Y.; Myers, S. L.; Hickey, M. B.; Smith, B. R. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45 (12), 2615– 2623, DOI: 10.1021/jm020017nThere is no corresponding record for this reference.
- 55Anderson, A. C. The process of structure-based drug design. Chem. Biol. 2003, 10 (9), 787– 797, DOI: 10.1016/j.chembiol.2003.09.002There is no corresponding record for this reference.
- 56Hopkins, A. L.; Groom, C. R. The druggable genome. Nat. Rev. Drug Discovery 2002, 1 (9), 727– 730, DOI: 10.1038/nrd892There is no corresponding record for this reference.
- 57Demir, Y.; Işık, M.; Gülçin, İ.; Beydemir, Ş. Phenolic compounds inhibit the aldose reductase enzyme from the sheep kidney. J. Biochem. Mol. Toxicol. 2017, 31 (9), e21936 DOI: 10.1002/jbt.21935There is no corresponding record for this reference.
- 58Celestina, S. K.; Sundaram, K.; Ravi, S. In vitro studies of potent aldose reductase inhibitors: Synthesis, characterization, biological evaluation and docking analysis of rhodanine-3-hippuric acid derivatives. Bioorg. Chem. 2020, 97, 103640 DOI: 10.1016/j.bioorg.2020.103640There is no corresponding record for this reference.
- 59Yapar, G.; Duran, H. E.; Lolak, N.; Akocak, S.; Türkeş, C.; Durgun, M.; Işık, M.; Beydemir, Ş. Biological effects of bis-hydrazone compounds bearing isovanillin moiety on the aldose reductase. Bioorg. Chem. 2021, 117, 105473 DOI: 10.1016/j.bioorg.2021.105473There is no corresponding record for this reference.
- 60Tao, Y.; Zhang, Y.; Cheng, Y.; Wang, Y. Rapid screening and identification of α-glucosidase inhibitors from mulberry leaves using enzyme-immobilized magnetic beads coupled with HPLC/MS and NMR. Biomed. Chromatogr. 2013, 27, 148– 155, DOI: 10.1002/bmc.2761There is no corresponding record for this reference.
- 61Güleç, Ö.; Türkeş, C.; Arslan, M.; Işık, M.; Demir, Y.; Duran, H. E.; Fırat, M.; Küfrevioğlu, Ö. İ.; Beydemir, Ş. Dynamics of small molecule-enzyme interactions: Novel benzenesulfonamides as multi-target agents endowed with inhibitory effects against some metabolic enzymes. Arch. Biochem. Biophys. 2024, 759, 110099 DOI: 10.1016/j.abb.2024.110099There is no corresponding record for this reference.
- 62Lineweaver, H.; Burk, D. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 1934, 56, 658– 666, DOI: 10.1021/ja01318a036There is no corresponding record for this reference.
- 63Işık, M.; Akocak, S.; Lolak, N.; Taslimi, P.; Türkeş, C.; Gülçin, İ.; Durgun, M.; Beydemir, Ş. Synthesis, characterization, biological evaluation, and in silico studies of novel 1, 3-diaryltriazene-substituted sulfathiazole derivatives. Arch. Pharm. 2020, 353, 2000102 DOI: 10.1002/ardp.202000102There is no corresponding record for this reference.
- 64Schrödinger Release 2021–3: Protein Preparation Wizard; Schrödinger, LLC, Epik, Schrödinger, LLC/Impact, Schrödinger, LLC/Prime, New York (NY)/New York (NY)/New York (NY), 2021.There is no corresponding record for this reference.
- 65Yildirim, M.; Cimentepe, M.; Dogan, K.; Necip, A.; Karakoc, V. Development and molecular docking analysis of quercetin-loaded pHEMA cryogel membranes. J. Mol. Struct. 2025, 1319, 139271 DOI: 10.1016/j.molstruc.2024.139271There is no corresponding record for this reference.
- 66Bostancı, H. E.; Bilgicli, A. T.; Güzel, E.; Günsel, A.; Hepokur, C.; Cimen, B.; Yarasir, M. N. Evaluation of the effects of newly synthesized metallophthalocyanines on breast cancer cell lines with photodynamic therapy. Dalton Trans. 2022, 51, 15996– 16008, DOI: 10.1039/D2DT01912DThere is no corresponding record for this reference.
- 67Bostancı, H. E.; Çevik, U. A.; Kapavarapu, R.; Güldiken, Y. C.; Inan, Z. Ş.; Güler, Ö. Ö.; Uysal, T. K.; Uytun, A.; Çetin, F. N.; Özkay, Y.; Kaplancıklı, Z. A. Synthesis, biological evaluation and in silico studies of novel thiadiazole-hydrazone derivatives for carbonic anhydrase inhibitory and anticancer activities. SAR QSAR Environ. Res. 2023, 34, 543– 567, DOI: 10.1080/1062936X.2023.2240698There is no corresponding record for this reference.
- 68https://moltox.com/docs/manuals/Ames%20Instruction%20Manual%2031-100.pdf.There is no corresponding record for this reference.
- 69Kamber, M.; Flückiger-Isler, S.; Engelhardt, G.; Jaeckh, R.; Zeiger, E. Comparison of the Ames II and traditional Ames test responses with respect to mutagenicity, strain specificities, need for metabolism and correlation with rodent carcinogenicity. Mutagenesis 2009, 24 (4), 359– 366, DOI: 10.1093/mutage/gep017There is no corresponding record for this reference.
- 70Mondal, M. S.; Gabriels, J.; McGinnis, C.; Magnifico, M.; Marsilje, T. H.; Urban, L.; Collis, A.; Bojanic, D.; Biller, S. A.; Frieauff, W.; Martus, H. J.; Suter, W.; Bentley, P. High-content micronucleus assay in genotoxicity profiling: initial-stage development and some applications in the investigative/lead-finding studies in drug discovery. Toxicol. Sci. 2010, 118 (1), 71– 85, DOI: 10.1093/toxsci/kfq181There is no corresponding record for this reference.
- 71Mortelmans, K.; Zeiger, E. The Ames Salmonella/microsome mutagenicity assay. Mutat. Res., Fundam. Mol. Mech. Mutagen. 2000, 455 (1–2), 29– 60, DOI: 10.1016/S0027-5107(00)00064-6There is no corresponding record for this reference.
- 72Chandrasekaran, C. V.; Sundarajan, K.; David, K.; Agarwal, A. In vitro efficacy and safety of poly-herbal formulations. Toxicol. In Vitro. 2010, 24 (3), 885– 897, DOI: 10.1016/j.tiv.2009.11.021There is no corresponding record for this reference.
Supporting Information
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.5c00566.
1H NMR, 13C NMR, and HRMS spectra of compounds 6a–6q (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.