ACS Publications. Most Trusted. Most Cited. Most Read
Luminescent–Magnetic Cellulose Fibers, Modified with Lanthanide-Doped Core/Shell Nanostructures
My Activity
  • Open Access
Article

Luminescent–Magnetic Cellulose Fibers, Modified with Lanthanide-Doped Core/Shell Nanostructures
Click to copy article linkArticle link copied!

  • Małgorzata Skwierczyńska
    Małgorzata Skwierczyńska
    Faculty of Chemistry, Department of Rare Earths, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland
  • Marcin Runowski
    Marcin Runowski
    Faculty of Chemistry, Department of Rare Earths, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland
  • Szymon Goderski
    Szymon Goderski
    Faculty of Chemistry, Department of Rare Earths, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland
  • Jacek Szczytko
    Jacek Szczytko
    Faculty of Physics, Institute of Experimental Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
  • Jarosław Rybusiński
    Jarosław Rybusiński
    Faculty of Physics, Institute of Experimental Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
  • Piotr Kulpiński
    Piotr Kulpiński
    Department of Man-Made Fibers, Technical University of Lodz, Żeromskiego 116, 90-924 Lodz, Poland
  • Stefan Lis*
    Stefan Lis
    Faculty of Chemistry, Department of Rare Earths, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland
    *E-mail: [email protected]. Phone: +48618291679 (S.L.).
    More by Stefan Lis
Open PDFSupporting Information (1)

ACS Omega

Cite this: ACS Omega 2018, 3, 8, 10383–10390
Click to copy citationCitation copied!
https://doi.org/10.1021/acsomega.8b00965
Published August 31, 2018

Copyright © 2018 American Chemical Society. This publication is licensed under these Terms of Use.

Abstract

Click to copy section linkSection link copied!

Novel luminescent–magnetic cellulose microfibers were prepared by a dry–wet spinning method with the use of N-methylmorpholine-N-oxide. The synthesized luminescent–magnetic core/shell type nanostructures, based on the lanthanide-doped fluorides and magnetite nanoparticles (NPs)—Fe3O4/SiO2/NH2/PAA/LnF3, were used as nanomodifiers of the fibers. Thanks to the successful incorporation of the bifunctional nanomodifiers into the cellulose structure, the functionalized fibers exhibited superior properties, that is, bright multicolor emission under UV light and strong magnetic response. By the use of the as-prepared fibers, the luminescent–magnetic thread was fabricated and used to sew and make a unique pattern in the glove material, as a proof of concept for advanced, multimodal cloths’/materials’ protection against counterfeiting. The presence and uniform distribution of the modifier NPs in the polymer matrix were confirmed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray analysis (EDX). The concentration of the modifier NPs in the fibers was determined by inductively coupled plasma mass spectrometry, EDX, and magnetic measurements. The luminescence characteristics of the materials were examined by photoluminescence spectroscopy, and their magnetic field-responsive behavior was investigated by a superconducting quantum interference device.

Copyright © 2018 American Chemical Society

1. Introduction

Click to copy section linkSection link copied!

Cellulose is the most widespread biopolymer on earth and is recognized as an easily accessible and environmental-friendly raw material. (1,2) Therefore, it is used in many industries, ranging from grocery, paper, textiles, and cosmetics, to more sophisticated applications such as modern composite materials, (3−5) biodegradable wound dressings, (6−10) alternative energy sources, (11,12) or in optoelectronics. (13,14) Recently, much attention has been paid to cellulose-based composites, for example, cellulose fibers for special purposes. So far, with the use of special modifiers or fillers, the fibers with antibacterial, (15−18) magnetic, (18−23) catalytic, (24,25) thermochromic, (26) conductive, (27,28) or photoluminescence properties (18,29−35) have been obtained. The combination of fiber properties with two or more functionalities of active nanomaterials would open the door to many new applications.
Materials at the nanometer scale show different characteristics from their bulk counterparts. (36,37) This is due to the high specific surface area of the nanomaterials (due to the increased ratio of ions/atoms located on and near the surface to the ones within the particle), leading to an increased number of defects, unsaturated coordination sites, and crystal lattice strains. (37,38) This is the reason why they change their physicochemical properties (e.g., spectroscopic, thermal, mechanical, magnetic, etc.).
Characteristic features of lanthanides are long (in the range of a few microseconds to milliseconds) luminescence lifetimes, photostability, and narrow bands of absorption and emission. (29−31,39−45) Depending on the dopant ions, an intense and multicolor (e.g., Tb3+—green, Eu3+—red) luminescence is provided. (30,46,47) Magnetite used as a magnetic core is the strongest magnet among ferrites and it can be easily obtained in the nanoscale. (48−50) Furthermore, its structure is well known (51) and it is biocompatible. (52−54) Thanks to the combination of two or more functionalities in a single nanomaterial, core/shell-type nanostructures may offer superior properties in comparison to the simple materials, for example, simultaneous luminescent–magnetic or luminescent–plasmonic activity. (39,55−57) Because of the presence of an external shell, they can exhibit improved core stability, increased biocompatibility, higher resistance to aggressive agents, and so forth. (39,58)
In this paper, we report a preparation method and photophysical studies of the luminescent–magnetic cellulose fibers modified with core/shell-type nanoparticles (NPs), based on the lanthanide-doped fluorides (Fe3O4/SiO2/NH2/PAA/LnF3). This kind of fibers can be produced by the dry–wet spinning method with the use of N-methylmorpholine-N-oxide (NMMO) as a direct solvent of cellulose. (59) It is one of the most promising methods for producing modified fibers, because a nanomodifier can be easily introduced into the spinning dope during the dissolution of cellulose in NMMO. Moreover, NMMO is almost completely recoverable (up to 99.6–99.7% recovery (60)) and this method is environmentally friendly. (61−64) It is worth noting that such a nanomodifier must meet certain requirements; for example, it should be stable in a highly alkaline environment, resistant to high temperatures (≈120 °C), be inert to NMMO, and be insoluble in water. (30) We successfully synthesized the optimized nanomodifiers, which fulfill these criteria. To the best of our knowledge, this is the first time that luminescent–magnetic cellulose fibers were prepared. The novelty in the research is focused on the preparation of bifunctional fibers, using only a single, core/shell-type nanomodifier in the form of a stable colloid, which ensured homogenous dispersion of the modifier NPs in the fiber matrix. Because of this fact, fibers revealing uniform luminescence and magnetism, with good mechanical properties, have been obtained. These fibers could be further processed into a thread, which can be used to protect textiles.
An inspiration of the present research was a growing demand for document and clothing security systems against counterfeiting. These fibers could be an excellent solution to prevent fake documents and textiles.

2. Results and Discussion

Click to copy section linkSection link copied!

2.1. Structure and Morphology

Figure 1a,b shows the recorded powder diffractograms of the prepared materials. For the readers’ convenience, the abbreviations Fe3O4/SiO2/LnF3:Tb3+ and Fe3O4/SiO2/LnF3:Eu3+ were used for Fe3O4/SiO2/NH2/PAA/CeF3:5% Tb3+ and Fe3O4/SiO2/NH2/PAA/LaF3:10% Ce3+, 30% Gd3+, 1% Eu3+, respectively. Both X-ray diffraction (XRD) patterns of the obtained luminescent–magnetic fibers reveal reflexes corresponding to two crystalline phases, which fit well with the reference patterns of Fe3O4 (cubic Fdm), CeF3 (hexagonal P6322), or LaF3 (hexagonal P63/mmc) from the Inorganic Crystal Structure Database. However, because of the low content of NP modifiers in the fibers (≈5 wt %), the reflexes from Fe3O4/SiO2/LnF3:Tb3+ and Fe3O4/SiO2/LnF3:Eu3+ were hardly observed. Cellulose I has the following diffraction peaks: (hkl 110) at 2θ ≈ 14.7° and (hkl 002) at 2θ ≈ 22.5° and cellulose II has the following peaks: (hkl 110) at 2θ ≈ 12.3°, (hkl 1–10) at 2θ ≈ 20.1°, and (hkl 020) 2θ ≈ 21.9°, (29) which are clearly observed in the diffractograms of the synthesized modified fibers. The reflexes’ broadening is caused by nanocrystallinity of the synthesized materials.

Figure 1

Figure 1. Powder XRD patterns of the Fe3O4; LnF3:Tb3+; Fe3O4/SiO2/LnF3:Tb3+; unmodified and modified with Fe3O4/SiO2/LnF3:Tb3+ fibers (a); powder XRD patterns of the Fe3O4; LnF3:Eu3+; Fe3O4/SiO2/LnF3:Eu3+; unmodified and modified with Fe3O4/SiO2/LnF3:Eu3+ fibers (b); TEM images of Fe3O4 (c), Fe3O4/SiO2/NH2 (d), Fe3O4/SiO2/LnF3:Tb3+ (e), and Fe3O4/SiO2/LnF3:Eu3+ (f); photographs of Fe3O4/SiO2/LnF3:Tb3+ (g,h) and Fe3O4/SiO2/LnF3:Eu3+ (i,j), taken before (g,i) and after (h,j) magnet capture, under UV light (λex = 254 nm).

Figure 1c–f shows the transmission electron microscopy (TEM) images of the synthesized nanomodifiers (for the overview of TEM images, see Figure S1): Fe3O4 (c), Fe3O4/SiO2/NH2 (d), Fe3O4/SiO2/NH2/PAA/LnF3:Tb3+ (e), and Fe3O4/SiO2/NH2/PAA/LnF3:Eu3+ (f). The size of the synthesized magnetite NPs (c) is in the range of 4–13 nm. The surface of Fe3O4 is coated with a silica shell modified with amine groups, which cause formation of agglomerated core/shell-type nanostructures—Fe3O4/SiO2/NH2 (d). Core/shell NPs are covered with lanthanide fluoride NPs, which led to the larger nanostructures, Fe3O4/SiO2/NH2/PAA/LnF3. The morphology of the modifier is a very important factor for further modifications of cellulose fibers. Because of the fact that the modifier NPs form agglomerates with a size not exceeding 100–150 nm, a homogenous distribution of the NPs inside the fibers matrix is ensured. Thus, the mechanical properties of the modified fibers are good enough to be further processed into thread or fabrics.
Figure 1g–j shows the colloid of the luminescent–magnetic modifier under UV light, before (g,i) and after (h,j) magnet capture. The modifier NPs under UV light reveal bright, multicolor luminescence (for the photographs taken in daylight see Figure S2). Thanks to the good magnetic–luminescence properties of the modifier NPs, even their small addition provides fibers with superior properties.

2.2. Concentration of a Modifier in the Fibers

To estimate the real content of the modifier in the fiber matrix, the fibers were examined by means of inductively coupled plasma mass spectrometry (ICP–MS) and energy-dispersive X-ray analysis (EDX). On the basis of the known composition of the modifiers, the contents of the modifiers in the fibers were calculated as 4.6 (ICP) and 5.1 wt % (EDX) for Fe3O4/SiO2/LnF3:Tb3+, and 5.4 (ICP) and 6.0 wt % (EDX) for Fe3O4/SiO2/LnF3:Eu3+. The calculated results are shown in Table S1. To additionally confirm these results, the concentration of the modifier (Fe3O4/SiO2/LnF3:Tb3+) in the fibers was approximated (see Figure S3) by means of magnetic measurements. The modifier concentration was determined as 5.43%. The results are consistent with the quantities used for modification (≈5 wt %). Differences between the theoretical and determined content of the modifier may result from the incomplete incorporation of the modifier in the fiber structure or incomplete dissolution of the cellulose used to prepare the spinning dope.

2.3. SEM–EDX Analysis

Figure 2 shows the scanning electron microscopy (SEM) images of the overview (a1,b1), surface (a2,b2), and cross section (a3,b3) of the modified cellulose fibers (with Fe3O4/SiO2/LnF3:Eu3+—images a1–a3, with Fe3O4/SiO2/LnF3:Tb3+—b1–b3). In the images presented, the modifier NPs (white spots) are uniformly distributed on the surface and in the volume of the fiber. The fiber diameter is in the range of 25–30 μm. The SEM–EDX mapping presented in Figure 3 confirms a homogenous dispersion of the modifier NPs in the polymer matrix.

Figure 2

Figure 2. SEM images—overview (a1,b1), surface (a2,b2), and cross section (a3,b3) of the cellulose fibers modified with Fe3O4/SiO2/LnF3:Eu3+ (a1–a3) and Fe3O4/SiO2/LnF3:Tb3+ (b1–b3).

Figure 3

Figure 3. EDX mapping of the modified cellulose fibers (a—with Fe3O4/SiO2/LnF3:Tb3+ and b—with Fe3O4/SiO2/LnF3:Eu3+). Field of view (a1,b1); EDX mapping of oxygen—shown as green (a2,b2); silicon—violet (a3,b3); cerium—yellow (a4); and lanthanum—blue (b4).

Figure S4 (see the Supporting Information) presents the EDX analysis of fibers modified with Fe3O4/SiO2/LnF3:Tb3+ and Fe3O4/SiO2/LnF3:Eu3+. Both spectra reveal the presence of Fe, O, Si, and lanthanides occurring in a given nanomodifier. The most intense peaks corresponding to C and O originate from cellulose. The aluminum signal appearing in the EDX spectrum comes from the aluminum-holder, used to fix the EDX samples.

2.4. Luminescence Properties of the Modified Fibers

One of the two main goals of the present study was to produce fibers endowed with luminescence properties. The luminescence of the modified cellulose fibers under UV light irradiation is presented in Figure 4.

Figure 4

Figure 4. Luminescence of the synthesized fibers: (a,b) fibers modified with Fe3O4/SiO2/LnF3:Tb3+, (c,d) with Fe3O4/SiO2/LnF3:Eu3+; taken in daylight (a,c) and under ultraviolet light irradiation, λex = 254 nm (b,d).

Figure 5a,b shows excitation and emission spectra of Fe3O4/SiO2/LnF3:Tb3+ and fibers modified with Fe3O4/SiO2/LnF3:Tb3+, respectively. Excitation spectra were measured at λem = 545 nm, where the most intense emission band, resulting from 5D47F5 transition, was recorded. The broad band observed in the spectrum corresponds to the f–d transition within Ce3+ ions (allowed by selection rules), related to the excitation of Ce3+ and the subsequent energy transfer (ET) to Tb3+ ions. (65) In the emission spectrum (observed at λex = 251 nm), there are four characteristic bands associated with transitions from the lowest excited Tb3+ level—5D47FJ (J = 6–3). (66)

Figure 5

Figure 5. Excitation (a,c) and emission (b,d) spectra of the prepared materials: a,b—Fe3O4/SiO2/LnF3:Tb3+ and fibers modified with Fe3O4/SiO2/LnF3:Tb3+, c,d—Fe3O4/SiO2/LnF3:Eu3+ and fibers modified with Fe3O4/SiO2/LnF3:Eu3+.

Figure 5c,d presents the excitation and emission spectra of Fe3O4/SiO2/LnF3:Eu3+ and fiber modified with Fe3O4/SiO2/LnF3:Eu3+, respectively. The excitation spectrum (recorded at λem = 592 nm, where the most intense band in the emission spectra originated from the 5D07F1 transition was recorded) shows a main broad band at 248 nm connected with the ET from Ce3+ to Eu3+ ions. In the emission spectra, five narrow, split bands related to 5D17F2, 5D07FJ (J = 1–4) transitions can be observed.
The luminescence decay curves of the synthesized materials (Figure 6) were recorded at λex = 251 nm, λem = 545 nm (for the Tb3+-doped compounds) and at λex = 248 nm, λem = 592 nm (for the Eu3+-doped compounds). The recorded decay profiles were fitted well to biexponential function I = A1 exp(−t1) + A2 exp(−t2), with R2 > 0.999 (I—luminescence intensity at time t, A—amplitude, τ—luminescence lifetime, R2—correlation coefficient). The biexponential character of the recorded decay curves is related to the different local coordination environments of the Eu3+ and Tb3+ ions, situated inside and on the NPs’ surface. As the synthesized modifier NPs exhibit a high surface-to-volume ratio, the abundant surface ions, which are easily quenched by water molecules, are responsible for the short-living component of the decay curve (τ2). The determined luminescence lifetimes are in the range of several milliseconds (see Table 1), which is typical of Eu3+ and Tb3+ ions embedded in the inorganic fluoride matrices. (56) The emission lifetimes of the composite materials, that is, modified fibers, are shorter than the lifetimes of the modifier NPs. This may be a consequence of the spinning process, as the reagents used to obtain the spinning dope may deposit on the NPs, resulting in luminescence quenching. The emission of the obtained cellulose fibers is very intense, which is a crucial factor for their further applications.

Figure 6

Figure 6. Luminescence decay curves of the synthesized materials.

Table 1. Calculated Luminescence Lifetimes
 τ1 [ms]τ2 [ms]
Fe3O4/SiO2/LnF3:Tb3+2.54 (35%)6.27 (65%)
fibers with Fe3O4/SiO2/LnF3:Tb3+1.72 (38%)4.42 (62%)
Fe3O4/SiO2/LnF3:Eu3+1.68 (20%)9.60 (80%)
fibers with Fe3O4/SiO2/LnF3:Eu3+0.63 (30%)5.85 (70%)

2.5. Magnetic Properties

The second main goal was to receive fibers with magnetic properties (Figure 8b,c). Figure 7a,b presents the hysteresis loops of core/shell NPs, modifiers, and modified fibers, respectively. Magnetization as a function of magnetic field was measured at room temperature (300.0 K) and a magnetic field up to 7.0 T, using a superconducting quantum interference device (SQUID) magnetometer. The obtained results show that all core/shell NPs exhibit fast saturation of magnetization, typical for a superparamagnetic material. The weak hysteresis with a coercive field of about 0.005 T and remanence below 5% of saturation magnetization is characteristic for a soft ferromagnetic material. However, the zero-field-cooled/field-cooled (ZFC/FC) measurements at 0.02 T revealed that the examined modifier NPs, and hence the fibers, over 280.0 K show a behavior characteristic for superparamagnetic materials (Figure 7c,d). As it is well known, magnetite particles become superparamagnetic when they reach a size smaller than ≈12 nm. This leads to the conclusion that the dominant superparamagnetic contribution comes from the magnetite NPs, with an average size (see Figure S5) in this case of 8.7 nm, whereas the small ferromagnetic signal comes from the minority of the magnetite NPs, which are larger than 12 nm. Unmodified fibers exhibit negative magnetization as a function of magnetic field, which means that they are diamagnetic. The saturation magnetization of the fibers is smaller than that of the modifier—that is because of the lower content of modifier NPs (in 1 g of fibers, there is ≈5 wt % of the modifier).

Figure 7

Figure 7. Magnetic field dependence of magnetization at temperatures of 300 K for the core/shell NPs—Fe3O4/SiO2/NH2 (black), modifiers—Fe3O4/SiO2/LnF3:Tb3+ (green), Fe3O4/SiO2/LnF3:Eu3+ (red) (a), unmodified fibers (blue), fiber modified with Fe3O4/SiO2/LnF3:Tb3+ (green) and with Fe3O4/SiO2/LnF3:Eu3+(pink) (b); ZFC/FC curves of the modifiers (c) and modified fibers (d).

2.6. Mechanical Properties

The results of the linear density and mechanical properties such as strength and elongation at break are presented in Table 2. The linear density of the modified fibers is significantly higher than for the unmodified ones (spun at the same draw-ratio—10 m/min), which is caused by the presence of the modifier NPs in the cellulose fibers. The measured mechanical properties show that introduction of a modifier into a polymer matrix slightly impairs the mechanical properties of the fibers. Unmodified fibers have the highest tenacity as well as elongation at break. This is probably due to the formation of NP agglomerates in the cellulose matrix, which decreases the elasticity of the fibers. However, it should be emphasized that the fibers have been obtained on a laboratory scale and that the properties of the cellulose fibers formed by the wet methods are highly dependent on the process conditions. The resultant good mechanical properties can be explained by the fact that the modifier NPs were introduced into the fibers in the form of a colloid. As a result, a good dispersion of the modifier NPs in the cellulose matrix (see SEM and SEM–EDX) was achieved. Thanks to this, the presence of the modifier NPs only slightly decreases the mechanical properties of the fibers, in contrast to the fibers in which the modifier particles were introduced in the form of a powder.
Table 2. Linear Density and Mechanical Properties of Modified Fibers
 linear density [tex]tenacity [cN/tex]elongation at break [%]
unmodified fibers (draw ratio 10 m/min)0.11630.39.69
fibers with Fe3O4/SiO2/LnF3:Tb3+0.62728.05.40
fibers with Fe3O4/SiO2/LnF3:Eu3+1.10721.87.90
The scheme of the formation of the luminescent–magnetic cellulose fibers is presented in Figure 8a. Thanks to the mentioned good mechanical properties of the modified fibers, the luminescent–magnetic thread has been successfully fabricated. The multifunctional thread has been further used to sew a unique pattern in the glove material (Figure 8d,e).

Figure 8

Figure 8. Scheme of the formation of the luminescent–magnetic cellulose fibers (a); photographs of the luminescent–magnetic fibers captured by a neodymium magnet, taken in daylight (b) and under UV light, λex = 254 nm (c); images of a glove with a pattern sewn with a luminescent–magnetic thread, taken in daylight (d) and under UV light, λex = 254 nm (e).

3. Conclusions

Click to copy section linkSection link copied!

The multifunctional, hybrid materials composed of cellulose microfibers, modified with luminescent–magnetic core/shell nanostructures, were successfully prepared by the NMMO method. XRD, SEM, and ICP–MS analyses confirmed the presence and evaluated the distribution and content of the modifier NPs in the cellulose matrices. The luminescence–magnetic properties of the modified fibers were verified by spectroscopic and magnetic measurements. The modified lyocell fibers presented in this paper can be used to produce threads and yarns as well as paper. Thanks to their good photophysical properties, these fibers can be introduced into knitted fabric and paper in small quantities, which significantly reduces manufacturing costs. This kind of luminescent–magnetic fibers are excellent materials for textile and document protection, because they are almost impossible to counterfeit, and at the same time their authenticity can be easily proven using UV light or a magnetometer. Under UV light irradiation, the modified hybrid fibers glow and exhibit magnetization, which make them novel and unique, multifunctional materials.

4. Experimental Section

Click to copy section linkSection link copied!

4.1. Materials

To prepare the cellulose solution, pulp from Rayonier [polymerization degree () 1250, 96.8 wt % of α-cellulose] and 50% aqueous solution of NMMO (from Huntsman Holland BV, The Netherlands) were used. In order to stabilize the molecular weight, the propyl ester of gallic acid—Tenox PG (purchased from Aldrich, Gillingham, Dorset, UK) as an antioxidant was applied. The modifiers of the cellulose fibers were the core/shell-type NPs: Fe3O4/SiO2/LnF3:Tb3+ and Fe3O4/SiO2/LnF3:Eu3+, synthesized according to the protocol reported by Runowski and Lis (39) (synthesis details can be found in the Supporting Information).

4.2. Instrumentations

The cellulose solution was made in a high-efficiency laboratory-scale IKAVISC kneader type MKD 0.6-H60. The fibers were spun with the use of the dry–wet spinning method on a laboratory-scale piston-spinning device with a spinneret equipped with 18 orifices of 0.4 mm diameter. TEM images were obtained using a Hitachi HT7700 microscope, operating at 100 kV, in order to determine the size and shape distribution of the modifier particles. The XRD patterns were measured with a Bruker AXS D8 Advance diffractometer (6°–60° 2θ range) using Cu Kα1 radiation (λ = 1.5406 Å). The concentration of the modifier NPs introduced into the fiber structure was determined with a Shimadzu ICPMS-2030 inductively coupled plasma mass spectrometer. To confirm the presence and evaluate the distribution of the modifier NPs, the EDX, SEM, and SEM–EDX images were obtained with a scanning electron microscope FEI Quanta 250 FEG, using an EDAX detector. The excitation and emission spectra as well as luminescence decay curves were recorded using a Hitachi F-7000 spectrophotometer. The spectra were corrected for the instrumental response. To study the magnetic properties of modified fibers, a SQUID MPMS-7 XL Quantum Design was used. The mechanical properties of the fibers were measured using a Zwick Z2.5/TN1S tensile testing machine, according to the Polish norm PN-85/P-04761/04. The fibers’ linear density was measured in accordance with the Polish norm PN-72/P-04800.

4.3. Preparation of the Spinning Dope

In order to prepare the spinning dope, an appropriate amount of cellulose pulp, an aqueous solution of NMMO, Tenox PG, and the modifier were placed into the kneader equipped with an efficient stirring system and heating. The modifier in the form of an aqueous colloidal solution was added in such a quantity as to reach about 5 wt % of each modifier in dry cellulose fibers. Subsequently, cellulose was dissolved under low pressure (≈20 hPa) at a temperature not exceeding 115 °C. During the process, water was removed until its contents in cellulose did not exceed 14 wt %. The dissolution of cellulose lasted about 1.5 h. The resulting thick, transparent, amber-like colored spinning dope was obtained.

4.4. Preparation of Cellulose Fibers

The spinning dope was placed into a preheated cylinder, with the temperature not exceeding 115 °C (to avoid decomposition of NMMO). Then, the melted solution was pressed through the nozzle holes, and through the air gap it was immersed in an aqueous solidifying bath at 20 °C. The fibers were spun at a take-up speed 10 m/min, washed, and dried at room temperature.

Supporting Information

Click to copy section linkSection link copied!

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsomega.8b00965.

  • Preparation of the core/shell-type NPs; overview of TEM images; photographs of the colloidal modifier; concentration of the modifiers in cellulose fibers; determination of the modifier concentration; EDX spectra of the modified fibers; and grain size distribution histograms for Fe3O4 (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
  • Authors
    • Małgorzata Skwierczyńska - Faculty of Chemistry, Department of Rare Earths, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland
    • Marcin Runowski - Faculty of Chemistry, Department of Rare Earths, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznan, PolandOrcidhttp://orcid.org/0000-0002-9704-2105
    • Szymon Goderski - Faculty of Chemistry, Department of Rare Earths, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland
    • Jacek Szczytko - Faculty of Physics, Institute of Experimental Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
    • Jarosław Rybusiński - Faculty of Physics, Institute of Experimental Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
    • Piotr Kulpiński - Department of Man-Made Fibers, Technical University of Lodz, Żeromskiego 116, 90-924 Lodz, Poland
  • Notes
    The authors declare no competing financial interest.

Acknowledgments

Click to copy section linkSection link copied!

This work was supported by the Polish National Science Centre (grant numbers 2015/17/N/ST5/01947 and 2016/21/B/ST5/00110).

References

Click to copy section linkSection link copied!

This article references 66 other publications.

  1. 1
    Kargarzadeh, H.; Ahmad, I.; Thomas, S.; Dufresne, A. Handbook of Nanocellulose and Cellulose Nanocomposites; Wiley, 2017.
  2. 2
    Wu, W.-B.; Jing, Y.; Gong, M.-R.; Zhou, X.-F.; Dai, H.-Q. Preparation and Properties of Magnetic Cellulose Fiber Composites. BioResources 2011, 6, 33963409
  3. 3
    Nechita, P.; Năstac, S. Foam-Formed Cellulose Composite Materials with Potential Applications in Sound Insulation. J. Compos. Mater. 2018, 52, 747754,  DOI: 10.1177/0021998317714639
  4. 4
    Tran, C. D.; Mututuvari, T. M. Cellulose, Chitosan and Keratin Composite Materials: Facile and Recyclable Synthesis, Conformation and Properties. ACS Sustain. Chem. Eng. 2016, 4, 18501861,  DOI: 10.1021/acssuschemeng.6b00084
  5. 5
    Tran, C. D.; Duri, S.; Delneri, A.; Franko, M. Chitosan-Cellulose Composite Materials: Preparation, Characterization and Application for Removal of Microcystin. J. Hazard. Mater. 2013, 252–253, 355366,  DOI: 10.1016/j.jhazmat.2013.02.046
  6. 6
    Czaja, W.; Krystynowicz, A.; Bielecki, S.; Brownjr, R., Jr. Microbial cellulose-the natural power to heal wounds. Biomaterials 2006, 27, 145151,  DOI: 10.1016/j.biomaterials.2005.07.035
  7. 7
    Matthew, I. R.; Browne, R. M.; Frame, J. W.; Millar, B. G. Subperiosteal Behaviour of Alginate and Cellulose Wound Dressing Materials. Biomaterials 1995, 16, 275278,  DOI: 10.1016/0142-9612(95)93254-b
  8. 8
    Maneerung, T.; Tokura, S.; Rujiravanit, R. Impregnation of Silver Nanoparticles into Bacterial Cellulose for Antimicrobial Wound Dressing. Carbohydr. Polym. 2008, 72, 4351,  DOI: 10.1016/j.carbpol.2007.07.025
  9. 9
    Laçin, N. T. Development of Biodegradable Antibacterial Cellulose Based Hydrogel Membranes for Wound Healing. Int. J. Biol. Macromol. 2014, 67, 2227,  DOI: 10.1016/j.ijbiomac.2014.03.003
  10. 10
    Sannino, A.; Demitri, C.; Madaghiele, M. Biodegradable Cellulose-Based Hydrogels: Design and Applications. Materials 2009, 2, 353373,  DOI: 10.3390/ma2020353
  11. 11
    Fatehi, P. Production of Biofuels from Cellulose of Woody Biomass. In Cellulose—Biomass Conversion; van de Ven, T. G. M., Ed.; InTechOpen, 2013; pp 4574.
  12. 12
    Xiao, S.; Liu, B.; Wang, Y.; Fang, Z.; Zhang, Z. Efficient conversion of cellulose into biofuel precursor 5-hydroxymethylfurfural in dimethyl sulfoxide-ionic liquid mixtures. Bioresour. Technol. 2014, 151, 361366,  DOI: 10.1016/j.biortech.2013.10.095
  13. 13
    Luo, Y.; Li, L.; Huang, S.; Chen, T.; Luo, H. Functional Nanomaterials for Optoelectric Conversion and Energy Storage 2014. J. Nanomater. 2014, 2014, 12,  DOI: 10.1155/2014/210853
  14. 14
    Zhu, H.; Fang, Z.; Wang, Z.; Dai, J.; Yao, Y.; Shen, F.; Preston, C.; Wu, W.; Peng, P.; Jang, N. Extreme Light Management in Mesoporous Wood Cellulose Paper for Optoelectronics. ACS Nano 2016, 10, 13691377,  DOI: 10.1021/acsnano.5b06781
  15. 15
    Roy, D.; Knapp, J. S.; Guthrie, J. T.; Perrier, S. Antibacterial Cellulose Fiber via RAFT Surface Graft Polymerization. Biomacromolecules 2008, 9, 9199,  DOI: 10.1021/bm700849j
  16. 16
    Smiechowicz, E.; Kulpinski, P.; Niekraszewicz, B.; Bacciarelli, A. Cellulose Fibers Modified with Silver Nanoparticles. Cellulose 2011, 18, 975985,  DOI: 10.1007/s10570-011-9544-9
  17. 17
    Qian, L.; Guan, Y.; Ziaee, Z.; He, B.; Zheng, A.; Xiao, H. Rendering cellulose fibers antimicrobial using cationic β-cyclodextrin-based polymers included with antibiotics. Cellulose 2009, 16, 309317,  DOI: 10.1007/s10570-008-9270-0
  18. 18
    Bayer, I. S.; Fragouli, D.; Attanasio, A.; Sorce, B.; Bertoni, G.; Brescia, R.; Di Corato, R.; Pellegrino, T.; Kalyva, M.; Sabella, S.; Pompa, P. P.; Cingolani, R.; Athanassiou, A. Water-Repellent Cellulose Fiber Networks with Multifunctional Properties. ACS Appl. Mater. Interfaces 2011, 3, 40244031,  DOI: 10.1021/am200891f
  19. 19
    Marchessault, R. H.; Rioux, P.; Raymond, L. Magnetic Cellulose Fibres and Paper: Preparation, Processing and Properties. Polymer 1992, 33, 40244028,  DOI: 10.1016/0032-3861(92)90600-2
  20. 20
    Rubacha, M. Magnetically Active Composite Cellulose Fibers. J. Appl. Polym. Sci. 2006, 101, 15291534,  DOI: 10.1002/app.23392
  21. 21
    Biliuta, G.; Coseri, S. Magnetic Cellulosic Materials Based on TEMPO-Oxidized Viscose Fibers. Cellulose 2016, 23, 34073415,  DOI: 10.1007/s10570-016-1082-z
  22. 22
    Tarrés, Q.; Deltell, A.; Espinach, F. X.; Pèlach, M. À.; Delgado-Aguilar, M.; Mutjé, P. Magnetic Bionanocomposites from Cellulose Nanofibers: Fast, Simple and Effective Production Method. Int. J. Biol. Macromol. 2017, 99, 2936,  DOI: 10.1016/j.ijbiomac.2017.02.072
  23. 23
    Sun, N.; Swatloski, R. P.; Maxim, M. L.; Rahman, M.; Harland, A. G.; Haque, A.; Spear, S. K.; Daly, D. T.; Rogers, R. D. Magnetite-Embedded Cellulose Fibers Prepared from Ionic Liquid. J. Mater. Chem. 2008, 18, 283290,  DOI: 10.1039/b713194a
  24. 24
    Fukahori, S.; Iguchi, Y.; Ichiura, H.; Kitaoka, T.; Tanaka, H.; Wariishi, H. Effect of Void Structure of Photocatalyst Paper on VOC Decomposition. Chemosphere 2007, 66, 21362141,  DOI: 10.1016/j.chemosphere.2006.09.022
  25. 25
    Ngo, Y. H.; Li, D.; Simon, G. P.; Garnier, G. Paper Surfaces Functionalized by Nanoparticles. Adv. Colloid Interface Sci. 2011, 163, 2338,  DOI: 10.1016/j.cis.2011.01.004
  26. 26
    Rubacha, M. Thermochromic Cellulose Fibers. Polym. Adv. Technol. 2007, 18, 323328,  DOI: 10.1002/pat.889
  27. 27
    Johnston, J. H.; Kelly, F. M.; Moraes, J.; Borrmann, T.; Flynn, D. Conducting polymer composites with cellulose and protein fibres. Curr. Appl. Phys. 2006, 6, 587590,  DOI: 10.1016/j.cap.2005.11.067
  28. 28
    Agarwal, M.; Lvov, Y.; Varahramyan, K. Conductive Wood Microfibres for Smart Paper through Layer-by-Layer Nanocoating. Nanotechnology 2006, 17, 53195325,  DOI: 10.1088/0957-4484/17/21/006
  29. 29
    Kulpinski, P.; Namyslak, M.; Grzyb, T.; Lis, S. Luminescent cellulose fibers activated by Eu3+-doped nanoparticles. Cellulose 2012, 19, 12711278,  DOI: 10.1007/s10570-012-9709-1
  30. 30
    Erdman, A.; Kulpinski, P.; Grzyb, T.; Lis, S. Preparation of Multicolor Luminescent Cellulose Fibers Containing Lanthanide Doped Inorganic Nanomaterials. J. Lumin. 2015, 169, 520527,  DOI: 10.1016/j.jlumin.2015.02.049
  31. 31
    Kulpinski, P.; Erdman, A.; Grzyb, T.; Lis, S. Luminescent Cellulose Fibers Modified with Cerium Fluoride Doped with Terbium Particles. Polym. Compos. 2016, 37, 153160,  DOI: 10.1002/pc.23166
  32. 32
    Shi, C.; Hou, X.; Li, X.; Ge, M. Preparation and Characterization of Persistent Luminescence of Regenerated Cellulose Fiber. J. Mater. Sci. Mater. Electron. 2017, 28, 10151021,  DOI: 10.1007/s10854-016-5622-y
  33. 33
    Ng, P. F.; Bai, G.; Si, L.; Lee, K. I.; Hao, J.; Xin, J. H.; Fei, B. Highly Phosphorescent Hollow Fibers Inner-Coated with Tungstate Nanocrystals. Mater. Res. Express 2017, 4, 125029,  DOI: 10.1088/2053-1591/aa8ebd
  34. 34
    Yao, J.; Ji, P.; Wang, B.; Wang, H.; Chen, S. Color-Tunable Luminescent Macrofibers Based on CdTe QDs-Loaded Bacterial Cellulose Nanofibers for PH and Glucose Sensing. Sens. Actuators, B 2018, 254, 110119,  DOI: 10.1016/j.snb.2017.07.071
  35. 35
    Junka, K.; Guo, J.; Filpponen, I.; Laine, J.; Rojas, O. J. Modification of Cellulose Nanofibrils with Luminescent Carbon Dots. Biomacromolecules 2014, 15, 876881,  DOI: 10.1021/bm4017176
  36. 36
    Tang, Z.; Kotov, N. A.; Giersig, M. Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires. Science 2002, 297, 237240,  DOI: 10.1126/science.1072086
  37. 37
    Buzea, C.; Pacheco, I. I.; Robbie, K. Nanomaterials and Nanoparticles: Sources and Toxicity. Biointerphases 2007, 2, MR17MR71,  DOI: 10.1116/1.2815690
  38. 38
    Roduner, E. Introduction. Nanoscopic Materials; Royal Society of Chemistry: Cambridge, 2006; pp 14.
  39. 39
    Runowski, M.; Lis, S. Synthesis, surface modification/decoration of luminescent-magnetic core/shell nanomaterials, based on the lanthanide doped fluorides (Fe3O4/SiO2/NH2/PAA/LnF3). J. Lumin. 2016, 170, 484490,  DOI: 10.1016/j.jlumin.2015.05.037
  40. 40
    Bünzli, J.-C. G.; Piguet, C. Taking Advantage of Luminescent Lanthanide Ions. Chem. Soc. Rev. 2005, 34, 10481077,  DOI: 10.1039/b406082m
  41. 41
    Montgomery, C. P.; Murray, B. S.; New, E. J.; Pal, R.; Parker, D. Cell-Penetrating Metal Complex Optical Probes: Targeted and Responsive Systems Based on Lanthanide Luminescence. Acc. Chem. Res. 2009, 42, 925937,  DOI: 10.1021/ar800174z
  42. 42
    Bettencourt-Dias, A. Small Molecule Luminescent Lanthanide Ion Complexes - Photophysical Characterization and Recent Developments. Curr. Org. Chem. 2007, 11, 14601480,  DOI: 10.2174/138527207782418735
  43. 43
    Qin, X.; Liu, X.; Huang, W.; Bettinelli, M.; Liu, X. Lanthanide-Activated Phosphors Based on 4f-5d Optical Transitions: Theoretical and Experimental Aspects. Chem. Rev. 2017, 117, 44884527,  DOI: 10.1021/acs.chemrev.6b00691
  44. 44
    Zhang, W.; Shen, Y.; Liu, M.; Gao, P.; Pu, H.; Fan, L.; Jiang, R.; Liu, Z.; Shi, F.; Lu, H. Sub-10 Nm Water-Dispersible β-NaGdF4: X%Eu3+ Nanoparticles with Enhanced Biocompatibility for in Vivo X-Ray Luminescence Computed Tomography. ACS Appl. Mater. Interfaces 2017, 9, 3998539993,  DOI: 10.1021/acsami.7b11295
  45. 45
    Runowski, M.; Marciniak, J.; Grzyb, T.; Przybylska, D.; Shyichuk, A.; Barszcz, B.; Katrusiak, A.; Lis, S. Lifetime nanomanometry - high-pressure luminescence of up-converting lanthanide nanocrystals - SrF2:Yb3+,Er3+. Nanoscale 2017, 9, 1603016037,  DOI: 10.1039/c7nr04353h
  46. 46
    Wang, C.; Zhou, T.; Jiang, J.; Geng, H.; Ning, Z.; Lai, X.; Bi, J.; Gao, D. Multicolor Tunable Luminescence Based on Tb3+/Eu3+ Doping through a Facile Hydrothermal Route. ACS Appl. Mater. Interfaces 2017, 9, 2618426190,  DOI: 10.1021/acsami.7b07172
  47. 47
    Gai, S.; Li, C.; Yang, P.; Lin, J. Recent Progress in Rare Earth Micro/Nanocrystals: Soft Chemical Synthesis, Luminescent Properties, and Biomedical Applications. Chem. Rev. 2014, 114, 23432389,  DOI: 10.1021/cr4001594
  48. 48
    Stanicki, D.; Elst, L. V.; Muller, R. N.; Laurent, S. Synthesis and Processing of Magnetic Nanoparticles. Curr. Opin. Chem. Eng. 2015, 8, 714,  DOI: 10.1016/j.coche.2015.01.003
  49. 49
    Khan, K.; Rehman, S.; Rahman, H. U.; Khan, Q. Synthesis and Application of Magnetic Nanoparticles. In Nanomagnetism; Estevez, M. G., Ed.; One Central Press, 2014; pp 135159.
  50. 50
    Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R. N. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chem. Rev. 2008, 108, 20642110,  DOI: 10.1021/cr068445e
  51. 51
    Fleet, M. E. The Structure of Magnetite. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1981, 37, 917920,  DOI: 10.1107/s0567740881004597
  52. 52
    Markides, H.; Rotherham, M.; El Haj, A. J. Biocompatibility and Toxicity of Magnetic Nanoparticles in Regenerative Medicine. J. Nanomater. 2012, 2012, 111,  DOI: 10.1155/2012/614094
  53. 53
    Revia, R. A.; Zhang, M. Magnetite Nanoparticles for Cancer Diagnosis, Treatment, and Treatment Monitoring: Recent Advances. Mater. Today 2016, 19, 157168,  DOI: 10.1016/j.mattod.2015.08.022
  54. 54
    Catalano, E.; Miola, M.; Ferraris, S.; Novak, S.; Oltolina, F.; Cochis, A.; Prat, M.; Vernè, E.; Rimondini, L.; Follenzi, A. Magnetite and silica-coated magnetite nanoparticles are highly biocompatible on endothelial cellsin vitro. Biomed. Phys. Eng. Express 2017, 3, 025015,  DOI: 10.1088/2057-1976/aa62cc
  55. 55
    Goderski, S.; Runowski, M.; Stopikowska, N.; Lis, S. Luminescent-plasmonic effects in GdPO4:Eu3+ nanorods covered with silver nanoparticles. J. Lumin. 2017, 188, 2430,  DOI: 10.1016/j.jlumin.2017.04.008
  56. 56
    Runowski, M.; Goderski, S.; Paczesny, J.; Księżopolska-Gocalska, M.; Ekner-Grzyb, A.; Grzyb, T.; Rybka, J. D.; Giersig, M.; Lis, S. Preparation of Biocompatible, Luminescent-Plasmonic Core/Shell Nanomaterials Based on Lanthanide and Gold Nanoparticles Exhibiting SERS Effects. J. Phys. Chem. C 2016, 120, 2378823798,  DOI: 10.1021/acs.jpcc.6b06644
  57. 57
    Runowski, M. Color-tunable up-conversion emission of luminescent-plasmonic, core/shell nanomaterials - KY3F10 :Yb3+,Tm3+/SiO2-NH2/Au. J. Lumin. 2017, 186, 199204,  DOI: 10.1016/j.jlumin.2017.02.032
  58. 58
    Szczeszak, A.; Ekner-Grzyb, A.; Runowski, M.; Szutkowski, K.; Mrówczyńska, L.; Kaźmierczak, Z.; Grzyb, T.; Dąbrowska, K.; Giersig, M.; Lis, S. Spectroscopic, Structural and in Vitro Cytotoxicity Evaluation of Luminescent, Lanthanide Doped Core@shell Nanomaterials GdVO4:Eu3+5%@SiO2@NH2. J. Colloid Interface Sci. 2016, 481, 245255,  DOI: 10.1016/j.jcis.2016.07.025
  59. 59
    Kulpinski, P.; Laszkiewicz, B.; Niekraszewicz, B.; Czarnecki, P.; Rubacha, M.; Peczek, B.; Jedrzejczak, J.; Kozlowski, R.; Mankowski, J. The Method of Making Modified Cellulose Fibers. EP 1601824, 2005.
  60. 60
    Wang, S.; Lu, A.; Zhang, L. Recent Advances in Regenerated Cellulose Materials. Prog. Polym. Sci. 2016, 53, 169206,  DOI: 10.1016/j.progpolymsci.2015.07.003
  61. 61
    Dogan, H.; Hilmioglu, N. D. Dissolution of Cellulose with NMMO by Microwave Heating. Carbohydr. Polym. 2009, 75, 9094,  DOI: 10.1016/j.carbpol.2008.06.014
  62. 62
    Righi, S.; Morfino, A.; Galletti, P.; Samorì, C.; Tugnoli, A.; Stramigioli, C. Comparative cradle-to-gate life cycle assessments of cellulose dissolution with 1-butyl-3-methylimidazolium chloride and N-methyl-morpholine-N-oxide. Green Chem. 2011, 13, 367375,  DOI: 10.1039/c0gc00647e
  63. 63
    Fink, H.-P.; Weigel, P.; Purz, H. J.; Ganster, J. Structure Formation of Regenerated Cellulose Materials from NMMO-Solutions. Prog. Polym. Sci. 2001, 26, 14731524,  DOI: 10.1016/s0079-6700(01)00025-9
  64. 64
    Meister, G.; Wechsler, M. Biodegradation of N-Methylmorpholine-N-Oxide. Biodegradation 1998, 9, 91102,  DOI: 10.1023/a:1008264908921
  65. 65
    Runowski, M.; Lis, S. Synthesis of lanthanide doped CeF3:Gd3+, Sm3+ nanoparticles, exhibiting altered luminescence after hydrothermal post-treatment. J. Alloys Compd. 2016, 661, 182189,  DOI: 10.1016/j.jallcom.2015.11.182
  66. 66
    Guo, Q.; Zhao, C.; Jiang, Z.; Liao, L.; Liu, H.; Yang, D.; Mei, L. Novel Emission-Tunable Oxyapatites-Type Phosphors: Synthesis, Luminescent Properties and the Applications in White Light Emitting Diodes with Higher Color Rendering Index. Dyes Pigm. 2017, 139, 361371,  DOI: 10.1016/j.dyepig.2016.12.042

Cited By

Click to copy section linkSection link copied!

This article is cited by 27 publications.

  1. Kashmitha Muthamma, Dhanya Sunil. Cellulose as an Eco-Friendly and Sustainable Material for Optical Anticounterfeiting Applications: An Up-to-Date Appraisal. ACS Omega 2022, 7 (47) , 42681-42699. https://doi.org/10.1021/acsomega.2c05547
  2. Szymon Goderski, Shuhei Kanno, Koushi Yoshihara, Hiroaki Komiya, Kenta Goto, Takeshi Tanaka, Shogo Kawaguchi, Ayumi Ishii, Jun-ichi Shimoyama, Miki Hasegawa, Stefan Lis. Lanthanide Luminescence Enhancement of Core–Shell Magnetite–SiO2 Nanoparticles Covered with Chain-Structured Helical Eu/Tb Complexes. ACS Omega 2020, 5 (51) , 32930-32938. https://doi.org/10.1021/acsomega.0c03746
  3. Venkata N. K. B. Adusumalli, Marcin Runowski, Stefan Lis. 3,5-Dihydroxy Benzoic Acid-Capped CaF2:Tb3+ Nanocrystals as Luminescent Probes for the WO42– Ion in Aqueous Solution. ACS Omega 2020, 5 (9) , 4568-4575. https://doi.org/10.1021/acsomega.9b03956
  4. Marcin Runowski, Natalia Stopikowska, Daria Szeremeta, Szymon Goderski, Małgorzata Skwierczyńska, Stefan Lis. Upconverting Lanthanide Fluoride Core@Shell Nanorods for Luminescent Thermometry in the First and Second Biological Windows: β-NaYF4:Yb3+– Er3+@SiO2 Temperature Sensor. ACS Applied Materials & Interfaces 2019, 11 (14) , 13389-13396. https://doi.org/10.1021/acsami.9b00445
  5. Marcin Runowski, Przemysław Woźny, Natalia Stopikowska, Qingfeng Guo, Stefan Lis. Optical Pressure Sensor Based on the Emission and Excitation Band Width (fwhm) and Luminescence Shift of Ce3+-Doped Fluorapatite—High-Pressure Sensing. ACS Applied Materials & Interfaces 2019, 11 (4) , 4131-4138. https://doi.org/10.1021/acsami.8b19500
  6. Tariq Aziz, Wenlong Li, Jianguo Zhu, Beibei Chen. Developing multifunctional cellulose derivatives for environmental and biomedical applications: Insights into modification processes and advanced material properties. International Journal of Biological Macromolecules 2024, 278 , 134695. https://doi.org/10.1016/j.ijbiomac.2024.134695
  7. K. M. S. Dawngliana, S. Rai. Nanoarchitectonics and spectroscopic studies of Pr3+ doped ZnS nanoparticles glasses for visible reddish orange luminescent device applications. Applied Physics A 2024, 130 (7) https://doi.org/10.1007/s00339-024-07682-6
  8. Jaya Verma, Michal Petru, Saurav Goel. Cellulose based materials to accelerate the transition towards sustainability. Industrial Crops and Products 2024, 210 , 118078. https://doi.org/10.1016/j.indcrop.2024.118078
  9. Nina Jaroch, Justyna Czajka, Agata Szczeszak. Luminescent materials with dual-mode excitation and tunable emission color for anti-counterfeiting applications. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-37608-w
  10. Yuxia Luo, Qingdi Liu, Ping He, Liang Li, Zhao Zhang, Xinping Li, Guochen Bao, Ka‐Leung Wong, Peter A. Tanner, Lijun Jiang. Responsive Regulation of Energy Transfer in Lanthanide‐Doped Nanomaterials Dispersed in Chiral Nematic Structure. Advanced Science 2023, 10 (27) https://doi.org/10.1002/advs.202303235
  11. Elangbam Chitra Devi, Shougaijam Dorendrajit Singh. Magnetic and photoluminescence properties of rare-earth substituted quaternary spinel ferrite nanoparticles. Ceramics International 2023, 49 (5) , 8409-8416. https://doi.org/10.1016/j.ceramint.2022.11.003
  12. Maria Amela-Cortes, Noée Dumait, Franck Artzner, Stéphane Cordier, Yann Molard. Flexible and Transparent Luminescent Cellulose-Transition Metal Cluster Composites. Nanomaterials 2023, 13 (3) , 580. https://doi.org/10.3390/nano13030580
  13. Szymon Goderski, Michał Podpora, Małgorzata Skwierczyńska, Stefan Lis. Preparation and characterization of biluminescent composite nanoparticles based on AuAg nanoclusters and inorganic lanthanide-doped nanophosphors. Journal of Luminescence 2022, 251 , 119174. https://doi.org/10.1016/j.jlumin.2022.119174
  14. Tiina Nypelö. Magnetic cellulose: does extending cellulose versatility with magnetic functionality facilitate its use in devices?. Journal of Materials Chemistry C 2022, 10 (3) , 805-818. https://doi.org/10.1039/D1TC02105B
  15. Meimei Xu, Wanyin Ge, Jindou Shi, Yuanting Wu, Yongxiang Li. Stretchable and flexible Bi2Ti4O11: Yb3+, Er3+ @TPU film stimulated by near infrared for dynamic and multimodal anti-counterfeiting. Journal of Alloys and Compounds 2021, 884 , 161164. https://doi.org/10.1016/j.jallcom.2021.161164
  16. Avik De, Sukhen Bala, Sayan Saha, Krishna Sundar Das, Sohel Akhtar, Amit Adhikary, Arijit Ghosh, Guo-Zhang Huang, Srijita Paul Chowdhuri, Benu Brata Das, Ming-Liang Tong, Raju Mondal. Lanthanide clusters of phenanthroline containing a pyridine–pyrazole based ligand: magnetism and cell imaging. Dalton Transactions 2021, 50 (10) , 3593-3609. https://doi.org/10.1039/D0DT04122J
  17. Raul Barbosa, Santosh K. Gupta, Bhupendra B. Srivastava, Alexa Villarreal, Heriberto De Leon, Manuel Peredo, Saptasree Bose, Karen Lozano. Bright and persistent green and red light-emitting fine fibers: A potential candidate for smart textiles. Journal of Luminescence 2021, 231 , 117760. https://doi.org/10.1016/j.jlumin.2020.117760
  18. Yongsheng Xu, Binbin Yao, Erwei Wang, Ying Guo, Yinbo Fan, Qiliang Cui. Synthesis and physical property of GaN:Mn nanoparticles. Physica E: Low-dimensional Systems and Nanostructures 2021, 126 , 114445. https://doi.org/10.1016/j.physe.2020.114445
  19. Agata Szczeszak, Małgorzata Skwierczyńska, Dominika Przybylska, Marcin Runowski, Emilia Śmiechowicz, Aleksandra Erdman, Olena Ivashchenko, Tomasz Grzyb, Stefan Lis, Piotr Kulpiński, Konrad Olejnik. Upconversion luminescence in cellulose composites (fibres and paper) modified with lanthanide-doped SrF 2 nanoparticles. Journal of Materials Chemistry C 2020, 8 (34) , 11922-11928. https://doi.org/10.1039/D0TC02050H
  20. Yanfang Zhao, Ailing Wang, Jie Kang, Haibin Chu, Haixia Zhang, Yongliang Zhao. Factors affecting the metal-enhanced luminescence of lanthanide complexes by Ag@SiO2 nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry 2020, 400 , 112678. https://doi.org/10.1016/j.jphotochem.2020.112678
  21. Małgorzata Skwierczyńska, Przemysław Woźny, Marcin Runowski, Marcin Perzanowski, Piotr Kulpiński, Stefan Lis. Bifunctional magnetic-upconverting luminescent cellulose fibers for anticounterfeiting purposes. Journal of Alloys and Compounds 2020, 829 , 154456. https://doi.org/10.1016/j.jallcom.2020.154456
  22. Marcin Runowski, Natalia Stopikowska, Stefan Lis. UV-Vis-NIR absorption spectra of lanthanide oxides and fluorides. Dalton Transactions 2020, 49 (7) , 2129-2137. https://doi.org/10.1039/C9DT04921E
  23. Zhenyun Zhao, Jing Zhou, Ming Lu, Hang Xiao, Yiping Liu. Cellulose micro-dissolution by N-methylmorpholine N-oxide as a facile route for magnetic functional cotton textiles. Cellulose 2020, 27 (3) , 1817-1828. https://doi.org/10.1007/s10570-019-02905-z
  24. Giada Truccolo, Rhiannon E. Boseley, Simon W. Lewis, William J. Gee. Forensic applications of rare earths: Anticounterfeiting materials and latent fingerprint developers. 2020, 45-117. https://doi.org/10.1016/bs.hpcre.2020.07.001
  25. Marcin Runowski, Przemysław Woźny, Inocencio R. Martín, Víctor Lavín, Stefan Lis. Praseodymium doped YF3:Pr3+ nanoparticles as optical thermometer based on luminescence intensity ratio (LIR) – Studies in visible and NIR range. Journal of Luminescence 2019, 214 , 116571. https://doi.org/10.1016/j.jlumin.2019.116571
  26. Nargess Yousefi Limaee, Shohre Rouhani, Mohammad Ebrahim Olya, Farhood Najafi. Selective 2,4-dichlorophenoxyacetic acid optosensor employing a polyethersulfone nanofiber-coated fluorescent molecularly imprinted polymer. Polymer 2019, 177 , 73-83. https://doi.org/10.1016/j.polymer.2019.05.067
  27. Przemysław Woźny, Marcin Runowski, Stefan Lis. Emission color tuning and phase transition determination based on high-pressure up-conversion luminescence in YVO4: Yb3+, Er3+ nanoparticles. Journal of Luminescence 2019, 209 , 321-327. https://doi.org/10.1016/j.jlumin.2019.02.008

ACS Omega

Cite this: ACS Omega 2018, 3, 8, 10383–10390
Click to copy citationCitation copied!
https://doi.org/10.1021/acsomega.8b00965
Published August 31, 2018

Copyright © 2018 American Chemical Society. This publication is licensed under these Terms of Use.

Article Views

2225

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. Powder XRD patterns of the Fe3O4; LnF3:Tb3+; Fe3O4/SiO2/LnF3:Tb3+; unmodified and modified with Fe3O4/SiO2/LnF3:Tb3+ fibers (a); powder XRD patterns of the Fe3O4; LnF3:Eu3+; Fe3O4/SiO2/LnF3:Eu3+; unmodified and modified with Fe3O4/SiO2/LnF3:Eu3+ fibers (b); TEM images of Fe3O4 (c), Fe3O4/SiO2/NH2 (d), Fe3O4/SiO2/LnF3:Tb3+ (e), and Fe3O4/SiO2/LnF3:Eu3+ (f); photographs of Fe3O4/SiO2/LnF3:Tb3+ (g,h) and Fe3O4/SiO2/LnF3:Eu3+ (i,j), taken before (g,i) and after (h,j) magnet capture, under UV light (λex = 254 nm).

    Figure 2

    Figure 2. SEM images—overview (a1,b1), surface (a2,b2), and cross section (a3,b3) of the cellulose fibers modified with Fe3O4/SiO2/LnF3:Eu3+ (a1–a3) and Fe3O4/SiO2/LnF3:Tb3+ (b1–b3).

    Figure 3

    Figure 3. EDX mapping of the modified cellulose fibers (a—with Fe3O4/SiO2/LnF3:Tb3+ and b—with Fe3O4/SiO2/LnF3:Eu3+). Field of view (a1,b1); EDX mapping of oxygen—shown as green (a2,b2); silicon—violet (a3,b3); cerium—yellow (a4); and lanthanum—blue (b4).

    Figure 4

    Figure 4. Luminescence of the synthesized fibers: (a,b) fibers modified with Fe3O4/SiO2/LnF3:Tb3+, (c,d) with Fe3O4/SiO2/LnF3:Eu3+; taken in daylight (a,c) and under ultraviolet light irradiation, λex = 254 nm (b,d).

    Figure 5

    Figure 5. Excitation (a,c) and emission (b,d) spectra of the prepared materials: a,b—Fe3O4/SiO2/LnF3:Tb3+ and fibers modified with Fe3O4/SiO2/LnF3:Tb3+, c,d—Fe3O4/SiO2/LnF3:Eu3+ and fibers modified with Fe3O4/SiO2/LnF3:Eu3+.

    Figure 6

    Figure 6. Luminescence decay curves of the synthesized materials.

    Figure 7

    Figure 7. Magnetic field dependence of magnetization at temperatures of 300 K for the core/shell NPs—Fe3O4/SiO2/NH2 (black), modifiers—Fe3O4/SiO2/LnF3:Tb3+ (green), Fe3O4/SiO2/LnF3:Eu3+ (red) (a), unmodified fibers (blue), fiber modified with Fe3O4/SiO2/LnF3:Tb3+ (green) and with Fe3O4/SiO2/LnF3:Eu3+(pink) (b); ZFC/FC curves of the modifiers (c) and modified fibers (d).

    Figure 8

    Figure 8. Scheme of the formation of the luminescent–magnetic cellulose fibers (a); photographs of the luminescent–magnetic fibers captured by a neodymium magnet, taken in daylight (b) and under UV light, λex = 254 nm (c); images of a glove with a pattern sewn with a luminescent–magnetic thread, taken in daylight (d) and under UV light, λex = 254 nm (e).

  • References


    This article references 66 other publications.

    1. 1
      Kargarzadeh, H.; Ahmad, I.; Thomas, S.; Dufresne, A. Handbook of Nanocellulose and Cellulose Nanocomposites; Wiley, 2017.
    2. 2
      Wu, W.-B.; Jing, Y.; Gong, M.-R.; Zhou, X.-F.; Dai, H.-Q. Preparation and Properties of Magnetic Cellulose Fiber Composites. BioResources 2011, 6, 33963409
    3. 3
      Nechita, P.; Năstac, S. Foam-Formed Cellulose Composite Materials with Potential Applications in Sound Insulation. J. Compos. Mater. 2018, 52, 747754,  DOI: 10.1177/0021998317714639
    4. 4
      Tran, C. D.; Mututuvari, T. M. Cellulose, Chitosan and Keratin Composite Materials: Facile and Recyclable Synthesis, Conformation and Properties. ACS Sustain. Chem. Eng. 2016, 4, 18501861,  DOI: 10.1021/acssuschemeng.6b00084
    5. 5
      Tran, C. D.; Duri, S.; Delneri, A.; Franko, M. Chitosan-Cellulose Composite Materials: Preparation, Characterization and Application for Removal of Microcystin. J. Hazard. Mater. 2013, 252–253, 355366,  DOI: 10.1016/j.jhazmat.2013.02.046
    6. 6
      Czaja, W.; Krystynowicz, A.; Bielecki, S.; Brownjr, R., Jr. Microbial cellulose-the natural power to heal wounds. Biomaterials 2006, 27, 145151,  DOI: 10.1016/j.biomaterials.2005.07.035
    7. 7
      Matthew, I. R.; Browne, R. M.; Frame, J. W.; Millar, B. G. Subperiosteal Behaviour of Alginate and Cellulose Wound Dressing Materials. Biomaterials 1995, 16, 275278,  DOI: 10.1016/0142-9612(95)93254-b
    8. 8
      Maneerung, T.; Tokura, S.; Rujiravanit, R. Impregnation of Silver Nanoparticles into Bacterial Cellulose for Antimicrobial Wound Dressing. Carbohydr. Polym. 2008, 72, 4351,  DOI: 10.1016/j.carbpol.2007.07.025
    9. 9
      Laçin, N. T. Development of Biodegradable Antibacterial Cellulose Based Hydrogel Membranes for Wound Healing. Int. J. Biol. Macromol. 2014, 67, 2227,  DOI: 10.1016/j.ijbiomac.2014.03.003
    10. 10
      Sannino, A.; Demitri, C.; Madaghiele, M. Biodegradable Cellulose-Based Hydrogels: Design and Applications. Materials 2009, 2, 353373,  DOI: 10.3390/ma2020353
    11. 11
      Fatehi, P. Production of Biofuels from Cellulose of Woody Biomass. In Cellulose—Biomass Conversion; van de Ven, T. G. M., Ed.; InTechOpen, 2013; pp 4574.
    12. 12
      Xiao, S.; Liu, B.; Wang, Y.; Fang, Z.; Zhang, Z. Efficient conversion of cellulose into biofuel precursor 5-hydroxymethylfurfural in dimethyl sulfoxide-ionic liquid mixtures. Bioresour. Technol. 2014, 151, 361366,  DOI: 10.1016/j.biortech.2013.10.095
    13. 13
      Luo, Y.; Li, L.; Huang, S.; Chen, T.; Luo, H. Functional Nanomaterials for Optoelectric Conversion and Energy Storage 2014. J. Nanomater. 2014, 2014, 12,  DOI: 10.1155/2014/210853
    14. 14
      Zhu, H.; Fang, Z.; Wang, Z.; Dai, J.; Yao, Y.; Shen, F.; Preston, C.; Wu, W.; Peng, P.; Jang, N. Extreme Light Management in Mesoporous Wood Cellulose Paper for Optoelectronics. ACS Nano 2016, 10, 13691377,  DOI: 10.1021/acsnano.5b06781
    15. 15
      Roy, D.; Knapp, J. S.; Guthrie, J. T.; Perrier, S. Antibacterial Cellulose Fiber via RAFT Surface Graft Polymerization. Biomacromolecules 2008, 9, 9199,  DOI: 10.1021/bm700849j
    16. 16
      Smiechowicz, E.; Kulpinski, P.; Niekraszewicz, B.; Bacciarelli, A. Cellulose Fibers Modified with Silver Nanoparticles. Cellulose 2011, 18, 975985,  DOI: 10.1007/s10570-011-9544-9
    17. 17
      Qian, L.; Guan, Y.; Ziaee, Z.; He, B.; Zheng, A.; Xiao, H. Rendering cellulose fibers antimicrobial using cationic β-cyclodextrin-based polymers included with antibiotics. Cellulose 2009, 16, 309317,  DOI: 10.1007/s10570-008-9270-0
    18. 18
      Bayer, I. S.; Fragouli, D.; Attanasio, A.; Sorce, B.; Bertoni, G.; Brescia, R.; Di Corato, R.; Pellegrino, T.; Kalyva, M.; Sabella, S.; Pompa, P. P.; Cingolani, R.; Athanassiou, A. Water-Repellent Cellulose Fiber Networks with Multifunctional Properties. ACS Appl. Mater. Interfaces 2011, 3, 40244031,  DOI: 10.1021/am200891f
    19. 19
      Marchessault, R. H.; Rioux, P.; Raymond, L. Magnetic Cellulose Fibres and Paper: Preparation, Processing and Properties. Polymer 1992, 33, 40244028,  DOI: 10.1016/0032-3861(92)90600-2
    20. 20
      Rubacha, M. Magnetically Active Composite Cellulose Fibers. J. Appl. Polym. Sci. 2006, 101, 15291534,  DOI: 10.1002/app.23392
    21. 21
      Biliuta, G.; Coseri, S. Magnetic Cellulosic Materials Based on TEMPO-Oxidized Viscose Fibers. Cellulose 2016, 23, 34073415,  DOI: 10.1007/s10570-016-1082-z
    22. 22
      Tarrés, Q.; Deltell, A.; Espinach, F. X.; Pèlach, M. À.; Delgado-Aguilar, M.; Mutjé, P. Magnetic Bionanocomposites from Cellulose Nanofibers: Fast, Simple and Effective Production Method. Int. J. Biol. Macromol. 2017, 99, 2936,  DOI: 10.1016/j.ijbiomac.2017.02.072
    23. 23
      Sun, N.; Swatloski, R. P.; Maxim, M. L.; Rahman, M.; Harland, A. G.; Haque, A.; Spear, S. K.; Daly, D. T.; Rogers, R. D. Magnetite-Embedded Cellulose Fibers Prepared from Ionic Liquid. J. Mater. Chem. 2008, 18, 283290,  DOI: 10.1039/b713194a
    24. 24
      Fukahori, S.; Iguchi, Y.; Ichiura, H.; Kitaoka, T.; Tanaka, H.; Wariishi, H. Effect of Void Structure of Photocatalyst Paper on VOC Decomposition. Chemosphere 2007, 66, 21362141,  DOI: 10.1016/j.chemosphere.2006.09.022
    25. 25
      Ngo, Y. H.; Li, D.; Simon, G. P.; Garnier, G. Paper Surfaces Functionalized by Nanoparticles. Adv. Colloid Interface Sci. 2011, 163, 2338,  DOI: 10.1016/j.cis.2011.01.004
    26. 26
      Rubacha, M. Thermochromic Cellulose Fibers. Polym. Adv. Technol. 2007, 18, 323328,  DOI: 10.1002/pat.889
    27. 27
      Johnston, J. H.; Kelly, F. M.; Moraes, J.; Borrmann, T.; Flynn, D. Conducting polymer composites with cellulose and protein fibres. Curr. Appl. Phys. 2006, 6, 587590,  DOI: 10.1016/j.cap.2005.11.067
    28. 28
      Agarwal, M.; Lvov, Y.; Varahramyan, K. Conductive Wood Microfibres for Smart Paper through Layer-by-Layer Nanocoating. Nanotechnology 2006, 17, 53195325,  DOI: 10.1088/0957-4484/17/21/006
    29. 29
      Kulpinski, P.; Namyslak, M.; Grzyb, T.; Lis, S. Luminescent cellulose fibers activated by Eu3+-doped nanoparticles. Cellulose 2012, 19, 12711278,  DOI: 10.1007/s10570-012-9709-1
    30. 30
      Erdman, A.; Kulpinski, P.; Grzyb, T.; Lis, S. Preparation of Multicolor Luminescent Cellulose Fibers Containing Lanthanide Doped Inorganic Nanomaterials. J. Lumin. 2015, 169, 520527,  DOI: 10.1016/j.jlumin.2015.02.049
    31. 31
      Kulpinski, P.; Erdman, A.; Grzyb, T.; Lis, S. Luminescent Cellulose Fibers Modified with Cerium Fluoride Doped with Terbium Particles. Polym. Compos. 2016, 37, 153160,  DOI: 10.1002/pc.23166
    32. 32
      Shi, C.; Hou, X.; Li, X.; Ge, M. Preparation and Characterization of Persistent Luminescence of Regenerated Cellulose Fiber. J. Mater. Sci. Mater. Electron. 2017, 28, 10151021,  DOI: 10.1007/s10854-016-5622-y
    33. 33
      Ng, P. F.; Bai, G.; Si, L.; Lee, K. I.; Hao, J.; Xin, J. H.; Fei, B. Highly Phosphorescent Hollow Fibers Inner-Coated with Tungstate Nanocrystals. Mater. Res. Express 2017, 4, 125029,  DOI: 10.1088/2053-1591/aa8ebd
    34. 34
      Yao, J.; Ji, P.; Wang, B.; Wang, H.; Chen, S. Color-Tunable Luminescent Macrofibers Based on CdTe QDs-Loaded Bacterial Cellulose Nanofibers for PH and Glucose Sensing. Sens. Actuators, B 2018, 254, 110119,  DOI: 10.1016/j.snb.2017.07.071
    35. 35
      Junka, K.; Guo, J.; Filpponen, I.; Laine, J.; Rojas, O. J. Modification of Cellulose Nanofibrils with Luminescent Carbon Dots. Biomacromolecules 2014, 15, 876881,  DOI: 10.1021/bm4017176
    36. 36
      Tang, Z.; Kotov, N. A.; Giersig, M. Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires. Science 2002, 297, 237240,  DOI: 10.1126/science.1072086
    37. 37
      Buzea, C.; Pacheco, I. I.; Robbie, K. Nanomaterials and Nanoparticles: Sources and Toxicity. Biointerphases 2007, 2, MR17MR71,  DOI: 10.1116/1.2815690
    38. 38
      Roduner, E. Introduction. Nanoscopic Materials; Royal Society of Chemistry: Cambridge, 2006; pp 14.
    39. 39
      Runowski, M.; Lis, S. Synthesis, surface modification/decoration of luminescent-magnetic core/shell nanomaterials, based on the lanthanide doped fluorides (Fe3O4/SiO2/NH2/PAA/LnF3). J. Lumin. 2016, 170, 484490,  DOI: 10.1016/j.jlumin.2015.05.037
    40. 40
      Bünzli, J.-C. G.; Piguet, C. Taking Advantage of Luminescent Lanthanide Ions. Chem. Soc. Rev. 2005, 34, 10481077,  DOI: 10.1039/b406082m
    41. 41
      Montgomery, C. P.; Murray, B. S.; New, E. J.; Pal, R.; Parker, D. Cell-Penetrating Metal Complex Optical Probes: Targeted and Responsive Systems Based on Lanthanide Luminescence. Acc. Chem. Res. 2009, 42, 925937,  DOI: 10.1021/ar800174z
    42. 42
      Bettencourt-Dias, A. Small Molecule Luminescent Lanthanide Ion Complexes - Photophysical Characterization and Recent Developments. Curr. Org. Chem. 2007, 11, 14601480,  DOI: 10.2174/138527207782418735
    43. 43
      Qin, X.; Liu, X.; Huang, W.; Bettinelli, M.; Liu, X. Lanthanide-Activated Phosphors Based on 4f-5d Optical Transitions: Theoretical and Experimental Aspects. Chem. Rev. 2017, 117, 44884527,  DOI: 10.1021/acs.chemrev.6b00691
    44. 44
      Zhang, W.; Shen, Y.; Liu, M.; Gao, P.; Pu, H.; Fan, L.; Jiang, R.; Liu, Z.; Shi, F.; Lu, H. Sub-10 Nm Water-Dispersible β-NaGdF4: X%Eu3+ Nanoparticles with Enhanced Biocompatibility for in Vivo X-Ray Luminescence Computed Tomography. ACS Appl. Mater. Interfaces 2017, 9, 3998539993,  DOI: 10.1021/acsami.7b11295
    45. 45
      Runowski, M.; Marciniak, J.; Grzyb, T.; Przybylska, D.; Shyichuk, A.; Barszcz, B.; Katrusiak, A.; Lis, S. Lifetime nanomanometry - high-pressure luminescence of up-converting lanthanide nanocrystals - SrF2:Yb3+,Er3+. Nanoscale 2017, 9, 1603016037,  DOI: 10.1039/c7nr04353h
    46. 46
      Wang, C.; Zhou, T.; Jiang, J.; Geng, H.; Ning, Z.; Lai, X.; Bi, J.; Gao, D. Multicolor Tunable Luminescence Based on Tb3+/Eu3+ Doping through a Facile Hydrothermal Route. ACS Appl. Mater. Interfaces 2017, 9, 2618426190,  DOI: 10.1021/acsami.7b07172
    47. 47
      Gai, S.; Li, C.; Yang, P.; Lin, J. Recent Progress in Rare Earth Micro/Nanocrystals: Soft Chemical Synthesis, Luminescent Properties, and Biomedical Applications. Chem. Rev. 2014, 114, 23432389,  DOI: 10.1021/cr4001594
    48. 48
      Stanicki, D.; Elst, L. V.; Muller, R. N.; Laurent, S. Synthesis and Processing of Magnetic Nanoparticles. Curr. Opin. Chem. Eng. 2015, 8, 714,  DOI: 10.1016/j.coche.2015.01.003
    49. 49
      Khan, K.; Rehman, S.; Rahman, H. U.; Khan, Q. Synthesis and Application of Magnetic Nanoparticles. In Nanomagnetism; Estevez, M. G., Ed.; One Central Press, 2014; pp 135159.
    50. 50
      Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R. N. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chem. Rev. 2008, 108, 20642110,  DOI: 10.1021/cr068445e
    51. 51
      Fleet, M. E. The Structure of Magnetite. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1981, 37, 917920,  DOI: 10.1107/s0567740881004597
    52. 52
      Markides, H.; Rotherham, M.; El Haj, A. J. Biocompatibility and Toxicity of Magnetic Nanoparticles in Regenerative Medicine. J. Nanomater. 2012, 2012, 111,  DOI: 10.1155/2012/614094
    53. 53
      Revia, R. A.; Zhang, M. Magnetite Nanoparticles for Cancer Diagnosis, Treatment, and Treatment Monitoring: Recent Advances. Mater. Today 2016, 19, 157168,  DOI: 10.1016/j.mattod.2015.08.022
    54. 54
      Catalano, E.; Miola, M.; Ferraris, S.; Novak, S.; Oltolina, F.; Cochis, A.; Prat, M.; Vernè, E.; Rimondini, L.; Follenzi, A. Magnetite and silica-coated magnetite nanoparticles are highly biocompatible on endothelial cellsin vitro. Biomed. Phys. Eng. Express 2017, 3, 025015,  DOI: 10.1088/2057-1976/aa62cc
    55. 55
      Goderski, S.; Runowski, M.; Stopikowska, N.; Lis, S. Luminescent-plasmonic effects in GdPO4:Eu3+ nanorods covered with silver nanoparticles. J. Lumin. 2017, 188, 2430,  DOI: 10.1016/j.jlumin.2017.04.008
    56. 56
      Runowski, M.; Goderski, S.; Paczesny, J.; Księżopolska-Gocalska, M.; Ekner-Grzyb, A.; Grzyb, T.; Rybka, J. D.; Giersig, M.; Lis, S. Preparation of Biocompatible, Luminescent-Plasmonic Core/Shell Nanomaterials Based on Lanthanide and Gold Nanoparticles Exhibiting SERS Effects. J. Phys. Chem. C 2016, 120, 2378823798,  DOI: 10.1021/acs.jpcc.6b06644
    57. 57
      Runowski, M. Color-tunable up-conversion emission of luminescent-plasmonic, core/shell nanomaterials - KY3F10 :Yb3+,Tm3+/SiO2-NH2/Au. J. Lumin. 2017, 186, 199204,  DOI: 10.1016/j.jlumin.2017.02.032
    58. 58
      Szczeszak, A.; Ekner-Grzyb, A.; Runowski, M.; Szutkowski, K.; Mrówczyńska, L.; Kaźmierczak, Z.; Grzyb, T.; Dąbrowska, K.; Giersig, M.; Lis, S. Spectroscopic, Structural and in Vitro Cytotoxicity Evaluation of Luminescent, Lanthanide Doped Core@shell Nanomaterials GdVO4:Eu3+5%@SiO2@NH2. J. Colloid Interface Sci. 2016, 481, 245255,  DOI: 10.1016/j.jcis.2016.07.025
    59. 59
      Kulpinski, P.; Laszkiewicz, B.; Niekraszewicz, B.; Czarnecki, P.; Rubacha, M.; Peczek, B.; Jedrzejczak, J.; Kozlowski, R.; Mankowski, J. The Method of Making Modified Cellulose Fibers. EP 1601824, 2005.
    60. 60
      Wang, S.; Lu, A.; Zhang, L. Recent Advances in Regenerated Cellulose Materials. Prog. Polym. Sci. 2016, 53, 169206,  DOI: 10.1016/j.progpolymsci.2015.07.003
    61. 61
      Dogan, H.; Hilmioglu, N. D. Dissolution of Cellulose with NMMO by Microwave Heating. Carbohydr. Polym. 2009, 75, 9094,  DOI: 10.1016/j.carbpol.2008.06.014
    62. 62
      Righi, S.; Morfino, A.; Galletti, P.; Samorì, C.; Tugnoli, A.; Stramigioli, C. Comparative cradle-to-gate life cycle assessments of cellulose dissolution with 1-butyl-3-methylimidazolium chloride and N-methyl-morpholine-N-oxide. Green Chem. 2011, 13, 367375,  DOI: 10.1039/c0gc00647e
    63. 63
      Fink, H.-P.; Weigel, P.; Purz, H. J.; Ganster, J. Structure Formation of Regenerated Cellulose Materials from NMMO-Solutions. Prog. Polym. Sci. 2001, 26, 14731524,  DOI: 10.1016/s0079-6700(01)00025-9
    64. 64
      Meister, G.; Wechsler, M. Biodegradation of N-Methylmorpholine-N-Oxide. Biodegradation 1998, 9, 91102,  DOI: 10.1023/a:1008264908921
    65. 65
      Runowski, M.; Lis, S. Synthesis of lanthanide doped CeF3:Gd3+, Sm3+ nanoparticles, exhibiting altered luminescence after hydrothermal post-treatment. J. Alloys Compd. 2016, 661, 182189,  DOI: 10.1016/j.jallcom.2015.11.182
    66. 66
      Guo, Q.; Zhao, C.; Jiang, Z.; Liao, L.; Liu, H.; Yang, D.; Mei, L. Novel Emission-Tunable Oxyapatites-Type Phosphors: Synthesis, Luminescent Properties and the Applications in White Light Emitting Diodes with Higher Color Rendering Index. Dyes Pigm. 2017, 139, 361371,  DOI: 10.1016/j.dyepig.2016.12.042
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsomega.8b00965.

    • Preparation of the core/shell-type NPs; overview of TEM images; photographs of the colloidal modifier; concentration of the modifiers in cellulose fibers; determination of the modifier concentration; EDX spectra of the modified fibers; and grain size distribution histograms for Fe3O4 (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.