ACS Publications. Most Trusted. Most Cited. Most Read
My Activity

On Metalenses with Arbitrarily Wide Field of View

  • Augusto Martins*
    Augusto Martins
    São Carlos School of Engineering, Department of Electrical and Computer Engineering, University of São Paulo, São Paulo, 13566-590, Brazil
    *E-mail: [email protected]
  • Kezheng Li
    Kezheng Li
    Department of Physics, University of York, York YO10 5DD, United Kingdom
    More by Kezheng Li
  • Juntao Li
    Juntao Li
    State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
    More by Juntao Li
  • Haowen Liang
    Haowen Liang
    State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
    More by Haowen Liang
  • Donato Conteduca
    Donato Conteduca
    Department of Physics, University of York, York YO10 5DD, United Kingdom
  • Ben-Hur V. Borges
    Ben-Hur V. Borges
    São Carlos School of Engineering, Department of Electrical and Computer Engineering, University of São Paulo, São Paulo, 13566-590, Brazil
  • Thomas F. Krauss
    Thomas F. Krauss
    Department of Physics, University of York, York YO10 5DD, United Kingdom
  • , and 
  • Emiliano R. Martins*
    Emiliano R. Martins
    São Carlos School of Engineering, Department of Electrical and Computer Engineering, University of São Paulo, São Paulo, 13566-590, Brazil
    *E-mail: [email protected]
Cite this: ACS Photonics 2020, 7, 8, 2073–2079
Publication Date (Web):June 30, 2020
Copyright © 2020 American Chemical Society

    Article Views





    Other access options
    Supporting Info (1)»


    Abstract Image

    Metalenses are nanostructured surfaces that mimic the functionality of optical elements. Many exciting demonstrations have already been made, for example, focusing into diffraction-limited spots or achromatic operation over a wide wavelength range. The key functionality that is yet missing, however, and that is most important for applications such as smartphones or virtual reality, is the ability to perform the imaging function with a single element over a wide field of view. Here, by relaxing the constraint on diffraction-limited resolution, we demonstrate the ability of single-layer metalenses to perform wide field of view (WFOV) imaging while maintaining high resolution suitable for most applications. We also discuss the WFOV physical properties and, in particular, we show that such a WFOV metalens mimics a spherical lens in the limit of infinite radius and infinite refractive index. Finally, we use Fourier analysis to explain the dependence of the FOV on the numerical aperture.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.


    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    Jump To

    The Supporting Information is available free of charge at

    • Phase and transmission maps, SEM micrographs, optical setups, and additional imaging comparison between WFOV and DL metalenses; Additional information on Metalens focusing and transmission efficiencies; Fourier transforms of quadratic (WFOV) and hyperbolic (DL) field profiles; Spectrum flattening of the spherical phase profile; Comparison between the WFOV metalens and an equivalent bulk quadratic lens at different angles and phase profile equations; FOV characterization; Angular spectrum formalism (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system:

    Cited By

    This article is cited by 82 publications.

    1. Shiyu Li, Ho-Chun Lin, Chia Wei Hsu. Fast Multichannel Inverse Design through Augmented Partial Factorization. ACS Photonics 2024, 11 (2) , 378-384.
    2. Dajun Lin, Tina M. Hayward, Wei Jia, Apratim Majumder, Berardi Sensale-Rodriguez, Rajesh Menon. Inverse-Designed Multi-Level Diffractive Doublet for Wide Field-of-View Imaging. ACS Photonics 2023, 10 (8) , 2661-2669.
    3. Trevon Badloe, Yeseul Kim, Joohoon Kim, Hyemi Park, Aleksandr Barulin, Yen N. Diep, Hansang Cho, Won-Sik Kim, Young-Ki Kim, Inki Kim, Junsuk Rho. Bright-Field and Edge-Enhanced Imaging Using an Electrically Tunable Dual-Mode Metalens. ACS Nano 2023, 17 (15) , 14678-14685.
    4. Shifei Zhang, Hongyin Zhou, Bingyi Liu, Zhaoxian Su, Lingling Huang. Recent Advances and Prospects of Optical Metasurfaces. ACS Photonics 2023, 10 (7) , 2045-2063.
    5. Gi-Hyun Go, Chung Hyun Park, Kie Young Woo, Minho Choi, Yong-Hoon Cho. Scannable Dual-Focus Metalens with Hybrid Phase. Nano Letters 2023, 23 (8) , 3152-3158.
    6. Younghwan Yang, Hyunjung Kang, Chunghwan Jung, Junhwa Seong, Nara Jeon, Jaekyung Kim, Dong Kyo Oh, Junkyeong Park, Hongyoon Kim, Junsuk Rho. Revisiting Optical Material Platforms for Efficient Linear and Nonlinear Dielectric Metasurfaces in the Ultraviolet, Visible, and Infrared. ACS Photonics 2023, 10 (2) , 307-321.
    7. Jiaran Qi, Yuzhong Wang, Cheng Pang, Hongjun Chu, Yayun Cheng. Broadband Wide Field-of-View Metalens by the Virtual-Diffraction-Aperture Method. ACS Photonics 2022, 9 (11) , 3668-3678.
    8. Nan He, Xinan Xu, Tingbiao Guo, Rui Chen, Yuxin Xing, Yi Jin, Sailing He. Highly Compact All-Solid-State Beam Steering Module Based on a Metafiber. ACS Photonics 2022, 9 (9) , 3094-3101.
    9. Emmanuel Lassalle, Tobias W. W. Mass, Damien Eschimese, Anton V. Baranikov, Egor Khaidarov, Shiqiang Li, Ramon Paniagua-Dominguez, Arseniy I. Kuznetsov. Imaging Properties of Large Field-of-View Quadratic Metalenses and Their Applications to Fingerprint Detection. ACS Photonics 2021, 8 (5) , 1457-1468.
    10. Junjie Hu, Weijian Yang. Metalens array miniaturized microscope for large-field-of-view imaging. Optics Communications 2024, 555 , 130231.
    11. Lianhong Dong, Weijie Kong, Fei Zhang, Ling Liu, Mingbo Pu, Changtao Wang, Xiong Li, Xiaoliang Ma, Xiangang Luo. Ultra-thin sub-diffraction metalens with a wide field-of-view for UV focusing. Optics Letters 2024, 49 (5) , 1189.
    12. Chang Li, Jie Lin, Chen Chen, Junbo Hao, Zilin Ye, Yiqun Wang, Lei Wang, Peng Jin. Single-shot wide-field full-stokes polarization imaging. Optics and Lasers in Engineering 2024, 173 , 107860.
    13. Anton V. Baranikov, Egor Khaidarov, Emmanuel Lassalle, Damien Eschimese, Joel Yeo, N. Duane Loh, Ramon Paniagua‐Dominguez, Arseniy I. Kuznetsov. Large Field‐of‐View and Multi‐Color Imaging with GaP Quadratic Metalenses. Laser & Photonics Reviews 2024, 18 (1)
    14. Younghwan Yang, Junhwa Seong, Minseok Choi, Junkyeong Park, Gyeongtae Kim, Hongyoon Kim, Junhyeon Jeong, Chunghwan Jung, Joohoon Kim, Gyoseon Jeon, Kyung-il Lee, Dong Hyun Yoon, Junsuk Rho. Integrated metasurfaces for re-envisioning a near-future disruptive optical platform. Light: Science & Applications 2023, 12 (1)
    15. Yuanlong Zhang, Xiaofei Song, Jiachen Xie, Jing Hu, Jiawei Chen, Xiang Li, Haiyu Zhang, Qiqun Zhou, Lekang Yuan, Chui Kong, Yibing Shen, Jiamin Wu, Lu Fang, Qionghai Dai. Large depth-of-field ultra-compact microscope by progressive optimization and deep learning. Nature Communications 2023, 14 (1)
    16. Dongmin Jeon, Kilsoo Shin, Seong-Won Moon, Junsuk Rho. Recent advancements of metalenses for functional imaging. Nano Convergence 2023, 10 (1)
    17. Beomseok Oh, Kyungtae Kim, Dongwoo Lee, Junsuk Rho. Engineering metalenses for planar optics and acoustics. Materials Today Physics 2023, 39 , 101273.
    18. Isma Javed, Azhar Javed Satti, Muhammad Ashar Naveed, Muhammad Zubair, Muhammad Qasim Mehmood, Yehia Massoud, , , . Broadband multifunctional achromatic metalens. 2023, 14.
    19. Woojun Han, Jinsoo Jeong, Jaisoon Kim, Sun-Je Kim. Aberration Theory of a Flat, Aplanatic Metalens Doublet and the Design of a Meta-Microscope Objective Lens. Sensors 2023, 23 (22) , 9273.
    20. Kezheng Li, Augusto Martins, Sanket Bohora, Ashim Dhakal, Emiliano R. Martins, Thomas F. Krauss. Hybrid Metalens for Miniaturised Ultraviolet Fluorescence Detection. Advanced Optical Materials 2023, 11 (22)
    21. Fan Xu, Wenjie Chen, Ming Li, Peng Liu, Yuhang Chen. Broadband achromatic and wide field-of-view single-layer metalenses in the mid-infrared. Optics Express 2023, 31 (22) , 36439.
    22. Shanshan Hu, Xingjian Xiao, Xin Ye, Rongtao Yu, Yanhao Chu, Ji Chen, Shining Zhu, Tao Li. Deep learning enhanced achromatic imaging with a singlet flat lens. Optics Express 2023, 31 (21) , 33873.
    23. T. Contreras, A. Martins, C. Stanford, C.O. Escobar, R. Guenette, M. Stancari, J. Martín-Albo, B. Lawrence-Sanderson, A. Para, A. Kish, F. Kellerer. A method to characterize metalenses for light collection applications. Journal of Instrumentation 2023, 18 (09) , T09004.
    24. Yilin Wang, Song Zhang, Mingze Liu, Pengcheng Huo, Le Tan, Ting Xu. Compact meta-optics infrared camera based on a polarization-insensitive metalens with a large field of view. Optics Letters 2023, 48 (17) , 4709.
    25. Fei Zhang, Minghao Liao, Mingbo Pu, Yinghui Guo, Lianwei Chen, Xiong Li, Qiong He, Tongtong Kang, Xiaoliang Ma, Yuan Ke, Xiangang Luo. A Miniature Meta-Optical System for Reconfigurable Wide-Angle Imaging and Polarization-Spectral Detection. Engineering 2023, 228
    26. Junbo Hao, Jie Lin, Xin Ye, Chen Chen, Feng Tang, Zhongliang Li, Chang Li, Jianyang Hu, Peng Jin. Polarization-optimized metasurface Fresnel zone plate for on-axis intensity redistribution. Optics Communications 2023, 540 , 129504.
    27. Zhixiang Wu, Yiyang Zou, Xinyu Li, Hu Deng, Liang Xiong, Quancheng Liu, Liping Shang. Broadband sub-diffraction focusing of oblique radially polarized wave by a high-numerical-aperture metalens. Physica Scripta 2023, 98 (8) , 085526.
    28. Junhyeok Jang, Gun-Yeal Lee, Youngjin Kim, Changhyun Kim, Yoonchan Jeong, Byoungho Lee. Dispersion-Engineered Metasurface Doublet Design for Broadband and Wide-Angle Operation in the Visible Range. IEEE Photonics Journal 2023, 15 (4) , 1-9.
    29. Fan Yang, Tian Gu, Juejun Hu. Analytical design framework for metasurface projection optics. Journal of the Optical Society of America B 2023, 40 (8) , 2211.
    30. Anna Wirth-Singh, Johannes E. Fröch, Zheyi Han, Luocheng Huang, Saswata Mukherjee, Zhihao Zhou, Zachary Coppens, Karl F. Böhringer, Arka Majumdar. Large field-of-view thermal imaging via all-silicon meta-optics. Applied Optics 2023, 62 (20) , 5467.
    31. Zhizhang Wang, Jitao Ji, Xin Ye, Yuxin Chen, Xueyun Li, Wange Song, Bin Fang, Ji Chen, Shining Zhu, Tao Li. On-chip integration of metasurface-doublet for optical phased array with enhanced beam steering. Nanophotonics 2023, 12 (13) , 2425-2432.
    32. Nayoung Kim, Myungjoon Kim, Joonkyo Jung, Taeyong Chang, Suwan Jeon, Jonghwa Shin. Highly angle-sensitive and efficient optical metasurfaces with broken mirror symmetry. Nanophotonics 2023, 12 (13) , 2347-2358.
    33. Quan Yuan, Qin Ge, Linsen Chen, Yi Zhang, Yuhang Yang, Xun Cao, Shuming Wang, Shining Zhu, Zhenlin Wang. Recent advanced applications of metasurfaces in multi-dimensions. Nanophotonics 2023, 12 (13) , 2295-2315.
    34. Xiaoyu Che, Yefeng Yu, Zhishan Gao, Qun Yuan. A broadband achromatic Alvarez metalens. Optics & Laser Technology 2023, 159 , 108985.
    35. Jianying Liu, Jinkui Chu, Ran Zhang, Rui Liu, Jiaxin Fu. Wide field of view and full Stokes polarization imaging using metasurfaces inspired by the stomatopod eye. Nanophotonics 2023, 12 (6) , 1137-1146.
    36. Ji Chen, Shanshan Hu, Shining Zhu, Tao Li. Metamaterials: From fundamental physics to intelligent design. Interdisciplinary Materials 2023, 2 (1) , 5-29.
    37. Anna Wirth-Singh, Saswata Mukherjee, Zheyi Han, Johannes Fröch, Luocheng Huang, Zhihao Zhou, Zachary Coppens, Karl Böhringer, Arka Majumdar. Large Field-of-View LWIR Imaging via Meta-Optics. 2023, ATu3K.7.
    38. Xin Ye, Jiacheng Sun, Wei Jiang, Rongtao Yu, Chen Chen, Xingjian Xiao, Xiao Qian, Chunyu Huang, Yong Hu, Shining Zhu, Tao Li. Ultracompact Multimode Meta-Microscope Based on Both Spatial and Guided-Wave Illumination. Advanced Devices & Instrumentation 2023, 4
    39. Tao Li, Chen Chen, Xingjian Xiao, Ji Chen, Shanshan Hu, Shining Zhu. Revolutionary meta-imaging: from superlens to metalens. Photonics Insights 2023, 2 (1) , R01.
    40. Yu Hongli, Cen Zhaofeng, Li Xiaotong. Achromatic and wide field of view metalens based on the harmonic diffraction and a quadratic phase. Optics Express 2022, 30 (25) , 45413.
    41. Yongli He, Boxiang Song, Jiang Tang. Optical metalenses: fundamentals, dispersion manipulation, and applications. Frontiers of Optoelectronics 2022, 15 (1)
    42. Meiyan Pan, Yifei Fu, Mengjie Zheng, Hao Chen, Yujia Zang, Huigao Duan, Qiang Li, Min Qiu, Yueqiang Hu. Dielectric metalens for miniaturized imaging systems: progress and challenges. Light: Science & Applications 2022, 11 (1)
    43. Shiyu Li, Chia Wei Hsu. Thickness bound for nonlocal wide-field-of-view metalenses. Light: Science & Applications 2022, 11 (1)
    44. Cheng Zhang, Yujie Zhan, Yongxue Qiu, Leilei Xu, Jianguo Guan. Planar metasurface-based concentrators for solar energy harvest: from theory to engineering. PhotoniX 2022, 3 (1)
    45. Junbo Hao, Jie Lin, Chen Chen, Zilin Ye, Chang Li, Dahai Yang, Yiqun Wang, Peng Jin. Sub-diffraction focusing by a meta spiral zone plate. Optics and Lasers in Engineering 2022, 159 , 107202.
    46. Yang Liu, Jianhao Zhang, Xavier Le Roux, Eric Cassan, Delphine Marris-Morini, Laurent Vivien, Carlos Alonso-Ramos, Daniele Melati. Broadband behavior of quadratic metalenses with a wide field of view. Optics Express 2022, 30 (22) , 39860.
    47. Yanlai Lv, Zijun Shang, Shiyao Fu, Lei Huang, Liliang Gao, Chunqing Gao. Sorting orbital angular momentum of photons through a multi-ring azimuthal-quadratic phase. Optics Letters 2022, 47 (19) , 5032.
    48. Jianchao Zhang, Haowen Liang, Yong Long, Yongle Zhou, Qian Sun, Qinfei Wu, Xiao Fu, Emiliano R. Martins, Thomas F. Krauss, Juntao Li, Xue‐Hua Wang. Metalenses with Polarization‐Insensitive Adaptive Nano‐Antennas. Laser & Photonics Reviews 2022, 16 (9)
    49. Jacob Engelberg, Uriel Levy. Generalized metric for broadband flat lens performance comparison. Nanophotonics 2022, 11 (16) , 3559-3574.
    50. Miao Zhao, Binbin Yu, Jing Du, Jing Wen. Focusing Characteristics and Widefield Imaging Performance of the Silicon Metalens in the Visible Range. Micromachines 2022, 13 (8) , 1183.
    51. Yi Zhou, Fengyuan Gan, Ruxue Wang, Dun Lan, Xiangshuo Shang, Wei Li. Doublet Metalens with Simultaneous Chromatic and Monochromatic Correction in the Mid-Infrared. Sensors 2022, 22 (16) , 6175.
    52. Hongfei Suo, Jigen Ding, Xing Tang, Lip Ket Chin, Chengbin Qian, Zhiwei Zhu, Yiming Liao, Zhenhong Fan, Yefeng Yu. Wide-angle and high-efficiency flat retroreflector. Optics Express 2022, 30 (15) , 27249.
    53. Shilin Luo, Fei Zhang, Xinjian Lu, Ting Xie, Mingbo Pu, Yinghui Guo, Yanqin Wang, Xiangang Luo. Single-layer metalens for achromatic focusing with wide field of view in the visible range. Journal of Physics D: Applied Physics 2022, 55 (23) , 235106.
    54. Saurabh Pandey, Neethu Baburaj, Shereena Joseph, Joby Joseph. Resonant optical modes in periodic nanostructures. ISSS Journal of Micro and Smart Systems 2022, 11 (1) , 113-137.
    55. Junbo Hao, Ting Ma, Zilin Ye, Chen Chen, Dahai Yang, Keya Zhou, Yiqun Wang, Peng Jin, Jie Lin. Simulation for multiwavelength large-aperture all-silicon metalenses in long-wave infrared. Nanotechnology 2022, 33 (22) , 225203.
    56. Augusto Martins, Kezheng Li, Guilherme S. Arruda, Donato Conteduca, Haowen Liang, Juntao Li, Ben‐Hur V. Borges, Thomas F. Krauss, Emiliano R. Martins. Correction of Aberrations via Polarization in Single Layer Metalenses. Advanced Optical Materials 2022, 10 (9)
    57. Ji Chen, Xin Ye, Shenglun Gao, Yuxin Chen, Yunwei Zhao, Chunyu Huang, Kai Qiu, Shining Zhu, Tao Li. Planar wide-angle-imaging camera enabled by metalens array. Optica 2022, 9 (4) , 431.
    58. Augusto Martins, Juntao Li, Ben-Hur V. Borges, Thomas F. Krauss, Emiliano R. Martins. Fundamental limits and design principles of doublet metalenses. Nanophotonics 2022, 11 (6) , 1187-1194.
    59. Fan Yang, Mikhail Y. Shalaginov, Sensong An, Hualiang Zhang, Tian Gu, Juejun Hu, , , . Understanding wide field-of-view metalenses. 2022, 19.
    60. Kunal Shastri, Francesco Monticone, , . Bandwidth bounds for wide-field-of-view dispersion-engineered achromatic metalenses. EPJ Applied Metamaterials 2022, 9 , 16.
    61. Md Shafiqul Islam, Ozdal Boyraz. Large Aperture and Wide Field of View Meta-Receiver for Free Space Optical Communications. 2022, JTh3A.67.
    62. Augusto Martins, Kezheng Li, Guilherme Arruda, Donato Conteduca, Haowen Liang, Juntao Li, Emiliano R. Martins, Thomas F. Krauss, Ben-Hur V. Borges. Aberration correction via polarization control in singlet metalenses. 2022, W3A.3.
    63. Chao Yan, Weichao Kong, Kunpeng Wang, Gangshuo Liu, Dengfeng Kuang. Wideband Reflecting Metasurfaces Concentrator at Visible Wavelength. SSRN Electronic Journal 2022, 185
    64. xiaoyu che, yefeng yu, Zhishan Gao, qun yuan. A Broadband Achromatic Alvarez Metalens. SSRN Electronic Journal 2022, 352
    65. Xiaoyu Che, Rui Gao, Yefeng Yu, Weijian Liu, Yifeng Sun, Dan Zhu, Wenyou Qiao, Lingjie Wang, Jianping Zhang, Qun Yuan, Zhishan Gao. Generalized phase profile design method for tunable devices using bilayer metasurfaces. Optics Express 2021, 29 (26) , 44214.
    66. XianGang Luo, Fei Zhang, MingBo Pu, YingHui Guo, Xiong Li, XiaoLiang Ma. Recent advances of wide-angle metalenses: principle, design, and applications. Nanophotonics 2021, 11 (1) , 1-20.
    67. Yong-Qiang Liu, Jinhai Sun, Yingchao Shu, Lujun Wu, Lan Lu, Kainan Qi, Yongxing Che, Liangsheng Li, Hongcheng Yin. High numerical aperture and large focusing efficiency metalens based on multilayer transmitarray elements. Optics and Lasers in Engineering 2021, 147 , 106734.
    68. Yinghui Guo, Shicong Zhang, Mingbo Pu, Qiong He, Jinjin Jin, Mingfeng Xu, Yaxin Zhang, Ping Gao, Xiangang Luo. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light: Science & Applications 2021, 10 (1)
    69. Yang Liu, Xavier Le Roux, Eric Cassan, Delphine Marris-Morini, Laurent Vivien, Carlos Alonso-Ramos, Daniele Melati. Silicon-based broadband metalens for wide-angle optical beam steering. 2021, 1-2.
    70. Zhihao Liu, Weibin Feng, Yong Long, Songming Guo, Haowen Liang, Zhiren Qiu, Xiao Fu, Juntao Li. A Metasurface Beam Combiner Based on the Control of Angular Response. Photonics 2021, 8 (11) , 489.
    71. Gwanho Yoon, Takuo Tanaka, Thomas Zentgraf, Junsuk Rho. Recent progress on metasurfaces: applications and fabrication. Journal of Physics D: Applied Physics 2021, 54 (38) , 383002.
    72. Md Shafiqul Islam, Imam Uz Zaman, Parinaz Sadri-Moshkenani, Mohammad Wahiduzzaman Khan, Ozdal Boyraz, , , . Metalens wide-angle receiver for free space optical communications. 2021, 11.
    73. Shun Zhou, Yechuan Zhu, Shaobo Ge, Fei Xie, Na Jin, Weiguo Liu. Impact of Fabrication and Operation Errors on Super-Focusing Performance of a Nanoslit-Based Metalens. Journal of Nanoelectronics and Optoelectronics 2021, 16 (7) , 1115-1119.
    74. Chen-Yang Zhao, Chi Fai Cheung, Wen-Peng Fu. An Investigation of the Cutting Strategy for the Machining of Polar Microstructures Used in Ultra-Precision Machining Optical Precision Measurement. Micromachines 2021, 12 (7) , 755.
    75. Qian Sun, Haowen Liang, Jianchao Zhang, Weibin Feng, Emiliano R. Martins, Thomas F. Krauss, Juntao Li. Highly Efficient Air‐Mode Silicon Metasurfaces for Visible Light Operation Embedded in a Protective Silica Layer. Advanced Optical Materials 2021, 9 (11)
    76. Jingen Lin, Qian Sun, Weibin Feng, Songming Guo, Zhihao Liu, Haowen Liang, Juntao Li. Enhancing the Light Extraction Efficiency in Micro‐Organic Light‐Emitting Diodes with Metalens. Advanced Photonics Research 2021, 2 (6)
    77. Fei Zhang, Mingbo Pu, Xiong Li, Xiaoliang Ma, Yinghui Guo, Ping Gao, Honglin Yu, Min Gu, Xiangang Luo. Extreme‐Angle Silicon Infrared Optics Enabled by Streamlined Surfaces. Advanced Materials 2021, 33 (11)
    78. Huan Cui, Qun Hao, Jie Cao, Zihan Wang, Haoyu Zhang, Yang Cheng. Curved retina-like camera array imaging system with adjustable super-resolution fovea. Applied Optics 2021, 60 (6) , 1535.
    79. Fan Yang, Mikhail Shalaginov, Sensong An, Hualiang Zhang, Clara Rivero-Baleine, Tian Gu, Juejun Hu. Wide Field-of-view Achromatic Metalenses. 2021, FTu4A.1.
    80. Emmanuel Lassalle, Tobias W. W. Mass, Damien Eschimese, Anton V. Baranikov, Egor Khaidarov, Shiqiang Li, Ramon Paniagua-Dominguez, Arseniy I. Kuznetsov. Imaging properties of large field-of-view quadratic metalenses and their applications to fingerprint detection. 2021, FW5B.4.
    81. Xiangang Luo, Mingbo Pu, Yinghui Guo, Xiong Li, Fei Zhang, Xiaoliang Ma. Catenary Functions Meet Electromagnetic Waves: Opportunities and Promises. Advanced Optical Materials 2020, 8 (23)
    82. Cong Chen, Panpan Chen, Jianxin Xi, Wanxia Huang, Kuanguo Li, Li Liang, Fenghua Shi, Jianping Shi. On-chip monolithic wide-angle field-of-view metalens based on quadratic phase profile. AIP Advances 2020, 10 (11)

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Your Mendeley pairing has expired. Please reconnect