ACS Publications. Most Trusted. Most Cited. Most Read
Colloidal Superstructures with Triangular Cores: Size Effects on SERS Efficiency
My Activity
    Article

    Colloidal Superstructures with Triangular Cores: Size Effects on SERS Efficiency
    Click to copy article linkArticle link copied!

    • Roland P. M. Höller
      Roland P. M. Höller
      Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Straße 6, 01069 Dresden, Germany
    • Christian Kuttner*
      Christian Kuttner
      CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
      Cluster of Excellence Centre for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062 Dresden, Germany
      *Email: [email protected]
    • Martin Mayer
      Martin Mayer
      Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Straße 6, 01069 Dresden, Germany
      Cluster of Excellence Centre for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062 Dresden, Germany
      More by Martin Mayer
    • Ruosong Wang
      Ruosong Wang
      Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Straße 6, 01069 Dresden, Germany
      More by Ruosong Wang
    • Martin Dulle
      Martin Dulle
      Jülich Centre for Neutron Science (JCNS-1) and Biological Matter (IBI-8), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
      More by Martin Dulle
    • Rafael Contreras-Cáceres
      Rafael Contreras-Cáceres
      Department of Chemistry in Pharmaceutical Science, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
    • Andreas Fery
      Andreas Fery
      Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Straße 6, 01069 Dresden, Germany
      Cluster of Excellence Centre for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062 Dresden, Germany
      Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Hohe Straße 6, 01069 Dresden, Germany
      More by Andreas Fery
    • Luis M. Liz-Marzán
      Luis M. Liz-Marzán
      CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
      Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
      Centro de Investigación Biomédica en Red, Bioingenierı́a, Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
    Other Access OptionsSupporting Information (1)

    ACS Photonics

    Cite this: ACS Photonics 2020, 7, 7, 1839–1848
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsphotonics.0c00642
    Published May 28, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The design of colloidal nanostructures as surface-enhanced Raman scattering (SERS) substrates requires control over both structural and optical characteristics. A widespread expectation is that the SERS efficiency depends crucially on whether the plasmonic excitation matches the exciting laser wavelength. However, also the balance between radiative (scattering) and nonradiative (absorbing) properties plays a major role, regarding both the efficiency of near-field enhancement and the experimentally observed signal intensity. We present a study of the influence of mode-excitation matching and extinction characteristics for core/satellite superstructures, comprising gold nanotriangles decorated with small gold nanospheres. The variation of the core size and aspect ratio allowed tuning the main coupled mode between 700 and 800 nm, from off-resonant through resonant at 785 nm, as well as tuning extinction contributions, from dominantly absorbing to dominantly scattering. We observed additional gains of 1–2 orders of magnitude in signal enhancement, which were correlated to core size and diffuse optical properties. Our findings indicate a competition between SERS enhancement and increased scattering losses in larger assemblies. Thus, a balance of optical parameters is required for efficient SERS and the development of assemblies as advanced sensing devices.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsphotonics.0c00642.

    • Additional data on the experimental optical properties and electron microscopy; the quantification of radiative and nonradiative losses; structural characterization and 3D SAXS modeling; electromagnetic simulations; analysis of SERS data and reference Raman spectra; and calculation of the enhancement factor and surface coverage of NTP (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 33 publications.

    1. Junnan Wang, Zeyu Wang, Jindou Shi, Chen Zhang, Yun Zhou, Zheyuan Da, Arshad Saleem Bhatti, Minqiang Wang. Arrays of Triangular Au Nanoparticles with Self-Cleaning Capacity for High-Sensitivity Surface-Enhanced Raman Scattering. ACS Applied Nano Materials 2024, 7 (6) , 5841-5852. https://doi.org/10.1021/acsanm.3c05184
    2. Hoa Duc Trinh, Seokheon Kim, Seokhyun Yun, Ly Thi Minh Huynh, Sangwoon Yoon. Combinatorial Approach to Find Nanoparticle Assemblies with Maximum Surface-Enhanced Raman Scattering. ACS Applied Materials & Interfaces 2024, 16 (1) , 1805-1814. https://doi.org/10.1021/acsami.3c14487
    3. Jeongwon Kim, Hajir Hilal, MohammadNavid Haddadnezhad, Jaewon Lee, Woocheol Park, Woongkyu Park, Joong-Wook Lee, Insub Jung, Sungho Park. Plasmonic All-Frame-Faceted Octahedral Nanoframes with Eight Engraved Y-Shaped Hot Zones. ACS Nano 2022, 16 (6) , 9214-9221. https://doi.org/10.1021/acsnano.2c01543
    4. Weimin Yang, Miao-Miao Liang, Guo-Ya Sun, Jingyu Wang, Yonglin He, Lihua Qian, Jing-Liang Yang, Pei-Wen Ren, Min Gao, Zhong-Qun Tian, Jian-Feng Li, Zhilin Yang. Statistical Strategy for Quantitative Evaluation of Plasmon-Enhanced Spectroscopy. ACS Photonics 2022, 9 (5) , 1733-1740. https://doi.org/10.1021/acsphotonics.2c00132
    5. Christian Kuttner, Valentina Piotto, Luis M. Liz-Marzán. Plasmonic Gradient Arrays for Rapid Screening of Surface-Enhanced Raman Scattering Efficiency: Particle Libraries of Gold Nanostars. Chemistry of Materials 2021, 33 (22) , 8904-8914. https://doi.org/10.1021/acs.chemmater.1c03223
    6. Roland P. M. Höller, Izabella J. Jahn, Dana Cialla-May, Munish Chanana, Jürgen Popp, Andreas Fery, Christian Kuttner. Biomacromolecular-Assembled Nanoclusters: Key Aspects for Robust Colloidal SERS Sensing. ACS Applied Materials & Interfaces 2020, 12 (51) , 57302-57313. https://doi.org/10.1021/acsami.0c16398
    7. Yuanyuan Li, Jiayi Peng, Hong Chen, Weiling Yue, Yixuan Liu, Xiaojun Luo, Lu Yang. Shape-controlled asymmetric bowl-like PDA@Au substrates for sensitive SERS detection of anabolic androgenic steroids. Talanta 2025, 287 , 127604. https://doi.org/10.1016/j.talanta.2025.127604
    8. Kuan-Wen Liu, Pei-Yu Sie, Hsi-Ying Chen, Fong-I Ho, Po-Sheng Huang, Pin Chieh Wu, Mei-Yi Liao. Enhanced SERS Performance through Defect-Guided Growth of 2D/3D AuAg Nanoplates for Chemical Sensing and Cellular Imaging Applications. Analytica Chimica Acta 2025, 19 , 343940. https://doi.org/10.1016/j.aca.2025.343940
    9. Hendrik Schlicke, Roman Maletz, Christina Dornack, Andreas Fery. Plasmonic Particle Integration into Near‐Infrared Photodetectors and Photoactivated Gas Sensors: Toward Sustainable Next‐Generation Ubiquitous Sensing. Small 2024, 20 (48) https://doi.org/10.1002/smll.202403502
    10. Paulo S. S. dos Santos, João P. Mendes, Jorge Pérez-Juste, I. Pastoriza-Santos, José M. M. M. de Almeida, Luís C. C. Coelho. From localized to propagating surface plasmon resonances in Au nanoparticle-coated optical fiber sensors and its implications in biosensing. Photonics Research 2024, 12 (10) , 2166. https://doi.org/10.1364/PRJ.518181
    11. Runze Tang, Robert A. Hughes, Walker J. Tuff, Ana Corcoran, Svetlana Neretina. Rapid formation of gold core–satellite nanostructures using Turkevich-synthesized satellites and dithiol linkers: the do's and don'ts for successful assembly. Nanoscale Advances 2024, 6 (14) , 3632-3643. https://doi.org/10.1039/D4NA00390J
    12. Kosuke Sugawa, Kaichi Ono, Ritsurai Tomii, Yuka Hori, Yu Aoki, Koki Honma, Kaoru Tamada, Joe Otsuki. Development of Au Nanoparticle Two-Dimensional Assemblies Dispersed with Au Nanoparticle-Nanostar Complexes and Surface-Enhanced Raman Scattering Activity. Nanomaterials 2024, 14 (9) , 764. https://doi.org/10.3390/nano14090764
    13. Dániel Zámbó, Dávid Kovács, Gergely Südi, Zsolt Zolnai, András Deák. Composite ligand shells on gold nanoprisms – an ensemble and single particle study. RSC Advances 2023, 13 (44) , 30696-30703. https://doi.org/10.1039/D3RA05548E
    14. Christian Rossner, Tobias A.F. König, Andreas Fery. Hairy Plasmonic Nanoparticles. 2023, 351-374. https://doi.org/10.1002/9783527835874.ch9
    15. Jeongwon Kim, Sungwoo Lee, Jiwoong Son, Jieun Kim, Hajir Hilal, Minsun Park, Insub Jung, Jwa‐Min Nam, Sungho Park. Plasmonic Cyclic Au Nanosphere Hexamers. Small 2023, 19 (7) https://doi.org/10.1002/smll.202205956
    16. Qing Gu, Jian Zhu, Guo-jun Weng, Jian-jun Li, Jun-wu Zhao. Core-satellite nanostructures and their biomedical applications. Microchimica Acta 2022, 189 (12) https://doi.org/10.1007/s00604-022-05559-0
    17. Malik H Mahmood, Ali Jaafar, László Himics, László Péter, István Rigó, Shereen Zangana, Attila Bonyár, Miklós Veres. Nanogold-capped poly(DEGDMA) microparticles as surface-enhanced Raman scattering substrates for DNA detection. Journal of Physics D: Applied Physics 2022, 55 (40) , 405401. https://doi.org/10.1088/1361-6463/ac7bba
    18. Grégory Barbillon. Au Nanoparticles Coated ZnO Film for Chemical Sensing by PIERS Coupled to SERS. Photonics 2022, 9 (8) , 562. https://doi.org/10.3390/photonics9080562
    19. Xinchang Qi, Xingfan Wang, Yuhua Dong, Jianjun Xie, Xiaoyu Gui, Jing Bai, Jinglai Duan, Jie Liu, Huijun Yao. Fast synthesis of gold nanostar SERS substrates based on ion-track etched membrane by one-step redox reaction. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2022, 272 , 120955. https://doi.org/10.1016/j.saa.2022.120955
    20. Yong Wei, Huan Pei, Baoxin Yan, Yanying Zhu. The performance of surface enhanced Raman scattering and spatial resolution with triangular plate dimer from ultra-ultraviolet to near-infrared range. Journal of Physics: Condensed Matter 2022, 34 (4) , 045002. https://doi.org/10.1088/1361-648X/ac316d
    21. ZhiHang Zhang, Jin Wang. Assembling of anisotropic plasmonic sheet-core-satellites for simultaneous ultrasensitive detection of MC-LR toxin. The Analyst 2021, 146 (22) , 7005-7020. https://doi.org/10.1039/D1AN01524A
    22. Mathias Charconnet, Christian Kuttner, Javier Plou, Juan Luis García‐Pomar, Agustín Mihi, Luis M. Liz‐Marzán, Andreas Seifert. Mechanically Tunable Lattice‐Plasmon Resonances by Templated Self‐Assembled Superlattices for Multi‐Wavelength Surface‐Enhanced Raman Spectroscopy. Small Methods 2021, 5 (10) https://doi.org/10.1002/smtd.202100453
    23. Udesh Dhawan, Ching-Li Tseng, Huey-Yuan Wang, Shin-Yun Hsu, Meng-Tsan Tsai, Ren-Jei Chung. Assessing Suitability of Co@Au Core/Shell Nanoparticle Geometry for Improved Theranostics in Colon Carcinoma. Nanomaterials 2021, 11 (8) , 2048. https://doi.org/10.3390/nano11082048
    24. Xuejuan Chen, Lixia Qin, Shi-Zhao Kang, Xiangqing Li. A special zinc metal-organic frameworks-controlled composite nanosensor for highly sensitive and stable SERS detection. Applied Surface Science 2021, 550 , 149302. https://doi.org/10.1016/j.apsusc.2021.149302
    25. Antonio Buonerba, Alfonso Grassi. Trends in Sustainable Synthesis of Organics by Gold Nanoparticles Embedded in Polymer Matrices. Catalysts 2021, 11 (6) , 714. https://doi.org/10.3390/catal11060714
    26. Ekaterina Podlesnaia, Andrea Csáki, Wolfgang Fritzsche. Time Optimization of Seed-Mediated Gold Nanotriangle Synthesis Based on Kinetic Studies. Nanomaterials 2021, 11 (4) , 1049. https://doi.org/10.3390/nano11041049
    27. Guangqing Du, Yu Lu, Dayantha Lankanath, Xun Hou, Feng Chen. Theoretical Study on Symmetry-Broken Plasmonic Optical Tweezers for Heterogeneous Noble-Metal-Based Nano-Bowtie Antennas. Nanomaterials 2021, 11 (3) , 759. https://doi.org/10.3390/nano11030759
    28. María Paz Oyarzún, Andreas Tapia-Arellano, Pablo Cabrera, Pedro Jara-Guajardo, Marcelo J. Kogan. Plasmonic Nanoparticles as Optical Sensing Probes for the Detection of Alzheimer’s Disease. Sensors 2021, 21 (6) , 2067. https://doi.org/10.3390/s21062067
    29. Paulo S. S. dos Santos, José M. M. M. de Almeida, Isabel Pastoriza-Santos, Luís C. C. Coelho. Advances in Plasmonic Sensing at the NIR—A Review. Sensors 2021, 21 (6) , 2111. https://doi.org/10.3390/s21062111
    30. Rachel A. Harder, Lahiru A. Wijenayaka, Hoa T. Phan, Amanda J. Haes. Tuning gold nanostar morphology for the SERS detection of uranyl. Journal of Raman Spectroscopy 2021, 52 (2) , 497-505. https://doi.org/10.1002/jrs.5994
    31. Xufeng Xu, Helmut Cölfen. Ultracentrifugation Techniques for the Ordering of Nanoparticles. Nanomaterials 2021, 11 (2) , 333. https://doi.org/10.3390/nano11020333
    32. Grégory Barbillon. Applications of Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy. Photonics 2021, 8 (2) , 46. https://doi.org/10.3390/photonics8020046
    33. Yali Shi, Qian Li, Yao Zhang, Guoqing Wang, Yasutaka Matsuo, Xingguo Liang, Tohru Takarada, Kuniharu Ijiro, Mizuo Maeda. Hierarchical growth of Au nanograss with intense built-in hotspots for plasmonic applications. Journal of Materials Chemistry C 2020, 8 (45) , 16073-16082. https://doi.org/10.1039/D0TC04294C

    ACS Photonics

    Cite this: ACS Photonics 2020, 7, 7, 1839–1848
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsphotonics.0c00642
    Published May 28, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    1840

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.