Colloidal Superstructures with Triangular Cores: Size Effects on SERS EfficiencyClick to copy article linkArticle link copied!
- Roland P. M. HöllerRoland P. M. HöllerLeibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Straße 6, 01069 Dresden, GermanyMore by Roland P. M. Höller
- Christian Kuttner*Christian Kuttner*Email: [email protected]CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia-San Sebastián, SpainCluster of Excellence Centre for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062 Dresden, GermanyMore by Christian Kuttner
- Martin MayerMartin MayerLeibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Straße 6, 01069 Dresden, GermanyCluster of Excellence Centre for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062 Dresden, GermanyMore by Martin Mayer
- Ruosong WangRuosong WangLeibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Straße 6, 01069 Dresden, GermanyMore by Ruosong Wang
- Martin DulleMartin DulleJülich Centre for Neutron Science (JCNS-1) and Biological Matter (IBI-8), Forschungszentrum Jülich GmbH, 52425 Jülich, GermanyMore by Martin Dulle
- Rafael Contreras-CáceresRafael Contreras-CáceresDepartment of Chemistry in Pharmaceutical Science, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, SpainMore by Rafael Contreras-Cáceres
- Andreas FeryAndreas FeryLeibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Straße 6, 01069 Dresden, GermanyCluster of Excellence Centre for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062 Dresden, GermanyPhysical Chemistry of Polymeric Materials, Technische Universität Dresden, Hohe Straße 6, 01069 Dresden, GermanyMore by Andreas Fery
- Luis M. Liz-MarzánLuis M. Liz-MarzánCIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia-San Sebastián, SpainIkerbasque, Basque Foundation for Science, 48013 Bilbao, SpainCentro de Investigación Biomédica en Red, Bioingenierı́a, Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramón 182, 20014 Donostia-San Sebastián, SpainMore by Luis M. Liz-Marzán
Abstract

The design of colloidal nanostructures as surface-enhanced Raman scattering (SERS) substrates requires control over both structural and optical characteristics. A widespread expectation is that the SERS efficiency depends crucially on whether the plasmonic excitation matches the exciting laser wavelength. However, also the balance between radiative (scattering) and nonradiative (absorbing) properties plays a major role, regarding both the efficiency of near-field enhancement and the experimentally observed signal intensity. We present a study of the influence of mode-excitation matching and extinction characteristics for core/satellite superstructures, comprising gold nanotriangles decorated with small gold nanospheres. The variation of the core size and aspect ratio allowed tuning the main coupled mode between 700 and 800 nm, from off-resonant through resonant at 785 nm, as well as tuning extinction contributions, from dominantly absorbing to dominantly scattering. We observed additional gains of 1–2 orders of magnitude in signal enhancement, which were correlated to core size and diffuse optical properties. Our findings indicate a competition between SERS enhancement and increased scattering losses in larger assemblies. Thus, a balance of optical parameters is required for efficient SERS and the development of assemblies as advanced sensing devices.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 33 publications.
- Junnan Wang, Zeyu Wang, Jindou Shi, Chen Zhang, Yun Zhou, Zheyuan Da, Arshad Saleem Bhatti, Minqiang Wang. Arrays of Triangular Au Nanoparticles with Self-Cleaning Capacity for High-Sensitivity Surface-Enhanced Raman Scattering. ACS Applied Nano Materials 2024, 7
(6)
, 5841-5852. https://doi.org/10.1021/acsanm.3c05184
- Hoa Duc Trinh, Seokheon Kim, Seokhyun Yun, Ly Thi Minh Huynh, Sangwoon Yoon. Combinatorial Approach to Find Nanoparticle Assemblies with Maximum Surface-Enhanced Raman Scattering. ACS Applied Materials & Interfaces 2024, 16
(1)
, 1805-1814. https://doi.org/10.1021/acsami.3c14487
- Jeongwon Kim, Hajir Hilal, MohammadNavid Haddadnezhad, Jaewon Lee, Woocheol Park, Woongkyu Park, Joong-Wook Lee, Insub Jung, Sungho Park. Plasmonic All-Frame-Faceted Octahedral Nanoframes with Eight Engraved Y-Shaped Hot Zones. ACS Nano 2022, 16
(6)
, 9214-9221. https://doi.org/10.1021/acsnano.2c01543
- Weimin Yang, Miao-Miao Liang, Guo-Ya Sun, Jingyu Wang, Yonglin He, Lihua Qian, Jing-Liang Yang, Pei-Wen Ren, Min Gao, Zhong-Qun Tian, Jian-Feng Li, Zhilin Yang. Statistical Strategy for Quantitative Evaluation of Plasmon-Enhanced Spectroscopy. ACS Photonics 2022, 9
(5)
, 1733-1740. https://doi.org/10.1021/acsphotonics.2c00132
- Christian Kuttner, Valentina Piotto, Luis M. Liz-Marzán. Plasmonic Gradient Arrays for Rapid Screening of Surface-Enhanced Raman Scattering Efficiency: Particle Libraries of Gold Nanostars. Chemistry of Materials 2021, 33
(22)
, 8904-8914. https://doi.org/10.1021/acs.chemmater.1c03223
- Roland P. M. Höller, Izabella J. Jahn, Dana Cialla-May, Munish Chanana, Jürgen Popp, Andreas Fery, Christian Kuttner. Biomacromolecular-Assembled Nanoclusters: Key Aspects for Robust Colloidal SERS Sensing. ACS Applied Materials & Interfaces 2020, 12
(51)
, 57302-57313. https://doi.org/10.1021/acsami.0c16398
- Yuanyuan Li, Jiayi Peng, Hong Chen, Weiling Yue, Yixuan Liu, Xiaojun Luo, Lu Yang. Shape-controlled asymmetric bowl-like PDA@Au substrates for sensitive SERS detection of anabolic androgenic steroids. Talanta 2025, 287 , 127604. https://doi.org/10.1016/j.talanta.2025.127604
- Kuan-Wen Liu, Pei-Yu Sie, Hsi-Ying Chen, Fong-I Ho, Po-Sheng Huang, Pin Chieh Wu, Mei-Yi Liao. Enhanced SERS Performance through Defect-Guided Growth of 2D/3D AuAg Nanoplates for Chemical Sensing and Cellular Imaging Applications. Analytica Chimica Acta 2025, 19 , 343940. https://doi.org/10.1016/j.aca.2025.343940
- Hendrik Schlicke, Roman Maletz, Christina Dornack, Andreas Fery. Plasmonic Particle Integration into Near‐Infrared Photodetectors and Photoactivated Gas Sensors: Toward Sustainable Next‐Generation Ubiquitous Sensing. Small 2024, 20
(48)
https://doi.org/10.1002/smll.202403502
- Paulo S. S. dos Santos, João P. Mendes, Jorge Pérez-Juste, I. Pastoriza-Santos, José M. M. M. de Almeida, Luís C. C. Coelho. From localized to propagating surface plasmon resonances in Au nanoparticle-coated optical fiber sensors and its implications in biosensing. Photonics Research 2024, 12
(10)
, 2166. https://doi.org/10.1364/PRJ.518181
- Runze Tang, Robert A. Hughes, Walker J. Tuff, Ana Corcoran, Svetlana Neretina. Rapid formation of gold core–satellite nanostructures using Turkevich-synthesized satellites and dithiol linkers: the do's and don'ts for successful assembly. Nanoscale Advances 2024, 6
(14)
, 3632-3643. https://doi.org/10.1039/D4NA00390J
- Kosuke Sugawa, Kaichi Ono, Ritsurai Tomii, Yuka Hori, Yu Aoki, Koki Honma, Kaoru Tamada, Joe Otsuki. Development of Au Nanoparticle Two-Dimensional Assemblies Dispersed with Au Nanoparticle-Nanostar Complexes and Surface-Enhanced Raman Scattering Activity. Nanomaterials 2024, 14
(9)
, 764. https://doi.org/10.3390/nano14090764
- Dániel Zámbó, Dávid Kovács, Gergely Südi, Zsolt Zolnai, András Deák. Composite ligand shells on gold nanoprisms – an ensemble and single particle study. RSC Advances 2023, 13
(44)
, 30696-30703. https://doi.org/10.1039/D3RA05548E
- Christian Rossner, Tobias A.F. König, Andreas Fery. Hairy Plasmonic Nanoparticles. 2023, 351-374. https://doi.org/10.1002/9783527835874.ch9
- Jeongwon Kim, Sungwoo Lee, Jiwoong Son, Jieun Kim, Hajir Hilal, Minsun Park, Insub Jung, Jwa‐Min Nam, Sungho Park. Plasmonic Cyclic Au Nanosphere Hexamers. Small 2023, 19
(7)
https://doi.org/10.1002/smll.202205956
- Qing Gu, Jian Zhu, Guo-jun Weng, Jian-jun Li, Jun-wu Zhao. Core-satellite nanostructures and their biomedical applications. Microchimica Acta 2022, 189
(12)
https://doi.org/10.1007/s00604-022-05559-0
- Malik H Mahmood, Ali Jaafar, László Himics, László Péter, István Rigó, Shereen Zangana, Attila Bonyár, Miklós Veres. Nanogold-capped poly(DEGDMA) microparticles as surface-enhanced Raman scattering substrates for DNA detection. Journal of Physics D: Applied Physics 2022, 55
(40)
, 405401. https://doi.org/10.1088/1361-6463/ac7bba
- Grégory Barbillon. Au Nanoparticles Coated ZnO Film for Chemical Sensing by PIERS Coupled to SERS. Photonics 2022, 9
(8)
, 562. https://doi.org/10.3390/photonics9080562
- Xinchang Qi, Xingfan Wang, Yuhua Dong, Jianjun Xie, Xiaoyu Gui, Jing Bai, Jinglai Duan, Jie Liu, Huijun Yao. Fast synthesis of gold nanostar SERS substrates based on ion-track etched membrane by one-step redox reaction. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2022, 272 , 120955. https://doi.org/10.1016/j.saa.2022.120955
- Yong Wei, Huan Pei, Baoxin Yan, Yanying Zhu. The performance of surface enhanced Raman scattering and spatial resolution with triangular plate dimer from ultra-ultraviolet to near-infrared range. Journal of Physics: Condensed Matter 2022, 34
(4)
, 045002. https://doi.org/10.1088/1361-648X/ac316d
- ZhiHang Zhang, Jin Wang. Assembling of anisotropic plasmonic sheet-core-satellites for simultaneous ultrasensitive detection of MC-LR toxin. The Analyst 2021, 146
(22)
, 7005-7020. https://doi.org/10.1039/D1AN01524A
- Mathias Charconnet, Christian Kuttner, Javier Plou, Juan Luis García‐Pomar, Agustín Mihi, Luis M. Liz‐Marzán, Andreas Seifert. Mechanically Tunable Lattice‐Plasmon Resonances by Templated Self‐Assembled Superlattices for Multi‐Wavelength Surface‐Enhanced Raman Spectroscopy. Small Methods 2021, 5
(10)
https://doi.org/10.1002/smtd.202100453
- Udesh Dhawan, Ching-Li Tseng, Huey-Yuan Wang, Shin-Yun Hsu, Meng-Tsan Tsai, Ren-Jei Chung. Assessing Suitability of Co@Au Core/Shell Nanoparticle Geometry for Improved Theranostics in Colon Carcinoma. Nanomaterials 2021, 11
(8)
, 2048. https://doi.org/10.3390/nano11082048
- Xuejuan Chen, Lixia Qin, Shi-Zhao Kang, Xiangqing Li. A special zinc metal-organic frameworks-controlled composite nanosensor for highly sensitive and stable SERS detection. Applied Surface Science 2021, 550 , 149302. https://doi.org/10.1016/j.apsusc.2021.149302
- Antonio Buonerba, Alfonso Grassi. Trends in Sustainable Synthesis of Organics by Gold Nanoparticles Embedded in Polymer Matrices. Catalysts 2021, 11
(6)
, 714. https://doi.org/10.3390/catal11060714
- Ekaterina Podlesnaia, Andrea Csáki, Wolfgang Fritzsche. Time Optimization of Seed-Mediated Gold Nanotriangle Synthesis Based on Kinetic Studies. Nanomaterials 2021, 11
(4)
, 1049. https://doi.org/10.3390/nano11041049
- Guangqing Du, Yu Lu, Dayantha Lankanath, Xun Hou, Feng Chen. Theoretical Study on Symmetry-Broken Plasmonic Optical Tweezers for Heterogeneous Noble-Metal-Based Nano-Bowtie Antennas. Nanomaterials 2021, 11
(3)
, 759. https://doi.org/10.3390/nano11030759
- María Paz Oyarzún, Andreas Tapia-Arellano, Pablo Cabrera, Pedro Jara-Guajardo, Marcelo J. Kogan. Plasmonic Nanoparticles as Optical Sensing Probes for the Detection of Alzheimer’s Disease. Sensors 2021, 21
(6)
, 2067. https://doi.org/10.3390/s21062067
- Paulo S. S. dos Santos, José M. M. M. de Almeida, Isabel Pastoriza-Santos, Luís C. C. Coelho. Advances in Plasmonic Sensing at the NIR—A Review. Sensors 2021, 21
(6)
, 2111. https://doi.org/10.3390/s21062111
- Rachel A. Harder, Lahiru A. Wijenayaka, Hoa T. Phan, Amanda J. Haes. Tuning gold nanostar morphology for the SERS detection of uranyl. Journal of Raman Spectroscopy 2021, 52
(2)
, 497-505. https://doi.org/10.1002/jrs.5994
- Xufeng Xu, Helmut Cölfen. Ultracentrifugation Techniques for the Ordering of Nanoparticles. Nanomaterials 2021, 11
(2)
, 333. https://doi.org/10.3390/nano11020333
- Grégory Barbillon. Applications of Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy. Photonics 2021, 8
(2)
, 46. https://doi.org/10.3390/photonics8020046
- Yali Shi, Qian Li, Yao Zhang, Guoqing Wang, Yasutaka Matsuo, Xingguo Liang, Tohru Takarada, Kuniharu Ijiro, Mizuo Maeda. Hierarchical growth of Au nanograss with intense built-in hotspots for plasmonic applications. Journal of Materials Chemistry C 2020, 8
(45)
, 16073-16082. https://doi.org/10.1039/D0TC04294C
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.